JPH05342655A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH05342655A
JPH05342655A JP15328992A JP15328992A JPH05342655A JP H05342655 A JPH05342655 A JP H05342655A JP 15328992 A JP15328992 A JP 15328992A JP 15328992 A JP15328992 A JP 15328992A JP H05342655 A JPH05342655 A JP H05342655A
Authority
JP
Japan
Prior art keywords
magneto
layer
optical recording
recording medium
heat flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15328992A
Other languages
Japanese (ja)
Inventor
Fumiyoshi Kirino
文良 桐野
Takeshi Toda
戸田  剛
Takeshi Maeda
武志 前田
Hiroshi Ide
井手  浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15328992A priority Critical patent/JPH05342655A/en
Publication of JPH05342655A publication Critical patent/JPH05342655A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent interference between patterns due to thermal interference corresponding to a data pattern to be recorded and to enable ultrahigh density recording. CONSTITUTION:An inorg. dielectric layer 2, a magneto-optical recording layer 3 having perpendicular magnetic anisotropy, an inorg. dielectric layer 4 and heat circulation controlling layers 5, 6 are successively laminated on a glass or plastic substrate 1 to obtain a magneto-optical recording medium. The heat circulation controlling layers 5, 6 are two layers different from each other in heat conductivity, the heat conductivity of the lower layer 5 closer to the magneto-optical recording layer 3 is not higher than that of the recording layer 3 and the upper layer 6 farther from the recording layer 3 has higher heat conductivity than the recording layer 3 and the lower layer 5. The shape of recording magnetic domains can be controlled and fine magnetic recording domains can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレーザ光と外部印加磁界
とを用いて記録,再生或いは消去を行う光磁気記録に係
り、特に、超高密度光記録に好適な光磁気記録媒体の構
造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording for recording, reproducing or erasing using a laser beam and an externally applied magnetic field, and more particularly to a structure of a magneto-optical recording medium suitable for ultra high density optical recording. ..

【0002】[0002]

【従来の技術】近年の高度情報化社会の進展にともない
高密度で大容量なファイルメモリへのニーズが高まって
いる。このような状況下で、光記録はこれらのニーズに
応えるメモリとして注目されている。光記録は、CDに
代表される再生専用型,アーカイバファイルとして広く
文書ファイルなどに用いられている追記型、そして、文
書ファイルや画像ファイルに広く用いられている書換え
型の3種類に大別できる。このうち、光磁気記録を用い
た書換え型光記録が実用化された。そして、最近ではこ
の光磁気記録の高密度化を目指し、多くの研究機関で研
究開発が進められている。ところで、記録密度を向上さ
せる手法として、トラックピッチを詰める、記録ビット
を詰めたり記録ビットのエッジ部分に情報を持たせた記
録(ピットエッジ記録)を行う(線密度を高める)、そし
て、一つの記録ビットのサイズを小さくする、等の手法
が提案されている。これらの手法を組み合わせて記録を
行うことが有効である。この場合、重要なのは形成され
る記録磁区のサイズや形状を制御することである。これ
ら手法の公知な例として特開昭59−178641号公報をあげ
ることができる。
2. Description of the Related Art With the progress of advanced information society in recent years, there is an increasing need for a high-density and large-capacity file memory. Under such circumstances, optical recording is drawing attention as a memory that meets these needs. Optical recording can be roughly classified into three types: a read-only type represented by a CD, a write-once type widely used as an archiver file for a document file, and a rewritable type widely used for a document file and an image file. .. Of these, rewritable optical recording using magneto-optical recording has been put to practical use. In recent years, many research institutions are conducting research and development aiming at higher density of the magneto-optical recording. By the way, as a method of improving the recording density, the track pitch is reduced, the recording bits are reduced, or recording is performed by adding information to the edge portion of the recording bit (pit edge recording) (increasing the linear density), and Techniques such as reducing the size of recording bits have been proposed. It is effective to record by combining these methods. In this case, it is important to control the size and shape of the recording magnetic domain formed. Known examples of these techniques include JP-A-59-178641.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では高密
度記録を行う上で重要な技術である記録磁区の形状やサ
イズの制御に関する技術に対する考慮がなされておら
ず、高密度記録の実現が困難な場合があった。
In the above-mentioned prior art, no consideration is given to the technology relating to the control of the shape and size of the recording magnetic domain, which is an important technology for high density recording, and it is difficult to realize high density recording. There was a case.

【0004】本発明の目的は、光磁気記録における記録
或いは消去時に記録媒体中を流れる熱流を制御すること
による記録磁区の形状やサイズを制御する技術を提供す
ることにある。
An object of the present invention is to provide a technique for controlling the shape and size of a recording magnetic domain by controlling the heat flow flowing in a recording medium during recording or erasing in magneto-optical recording.

【0005】[0005]

【課題を解決するための手段】上記目的を実現するため
に、光磁気記録媒体中に熱流制御層を設けた。すなわ
ち、凹凸の案内溝を有するディスク基板上に窒化シリコ
ンに代表される無機化合物膜,垂直磁気異方性を有する
光磁気記録膜、そして再び無機化合物膜、そして最後に
熱流制御膜を順次積層した多層構造を有する光磁気記録
媒体を用いることに実現できる。
In order to achieve the above object, a heat flow control layer is provided in a magneto-optical recording medium. That is, an inorganic compound film typified by silicon nitride, a magneto-optical recording film having perpendicular magnetic anisotropy, an inorganic compound film again, and finally a heat flow control film were sequentially laminated on a disk substrate having uneven guide grooves. It can be realized by using a magneto-optical recording medium having a multilayer structure.

【0006】ここで、熱流制御膜は二つの層よりなる。
光磁気記録膜に近い側に形成する1層目の層は光磁気記
録膜と等しいか或いは小さな熱伝導率を有する材料層で
ある。そして、光磁気記録層より遠い側に形成される2
層目は光磁気記録膜及び1層目の熱流制御層より大きな
熱伝導率を有する材料層にて構成される。光磁気記録媒
体中の3層目の無機化合物膜が先の光磁気記録膜に近い
側に形成する1層目の層を兼ねても良い。
Here, the heat flow control film is composed of two layers.
The first layer formed on the side closer to the magneto-optical recording film is a material layer having a thermal conductivity equal to or smaller than that of the magneto-optical recording film. And formed on the side farther from the magneto-optical recording layer 2
The layer is composed of a magneto-optical recording film and a material layer having a higher thermal conductivity than the heat flow control layer of the first layer. The third layer of the inorganic compound film in the magneto-optical recording medium may also serve as the first layer formed on the side closer to the previous magneto-optical recording film.

【0007】これにより、微小記録磁区を容易に形成で
きることからビット線密度を詰めた記録が行え、記録磁
区の長さの制御も容易に行えることからピットエッジ記
録にも好適である。この熱流制御層を設けたことによる
記録可能な最小記録パワーの値に変化はなかった。ここ
で、熱流制御層による光磁気記録媒体内の熱流の制御に
おいて、光磁気記録層と熱伝導率が等しいか或いは小さ
い層に記録或いは消去時に光磁気記録層に与えられた熱
を吸収させる作用を持たせ、光磁気記録層と熱伝導率が
等しいか或いは小さい層の周囲へ熱が拡散するのを抑制
し、光磁気記録層及び光磁気記録層に近い層より大きな
熱伝導率を有する層に光磁気記録層と熱伝導率が等しい
か或いは小さい層が吸収した熱を放散させる作用を持た
せた。これにより、記録制御を容易に行える。
As a result, since minute recording magnetic domains can be easily formed, recording can be performed with a high bit line density, and the length of recording magnetic domains can be easily controlled, which is also suitable for pit edge recording. There was no change in the minimum recordable recording power value due to the provision of this heat flow control layer. Here, in the control of the heat flow in the magneto-optical recording medium by the heat flow control layer, the action of absorbing the heat given to the magneto-optical recording layer at the time of recording or erasing in the layer whose thermal conductivity is equal to or smaller than that of the magneto-optical recording layer. A layer having a higher thermal conductivity than the magneto-optical recording layer and a layer close to the magneto-optical recording layer by suppressing the diffusion of heat to the periphery of the layer having the same or smaller thermal conductivity as the magneto-optical recording layer. Has a function of dissipating heat absorbed by a layer having a thermal conductivity equal to or smaller than that of the magneto-optical recording layer. As a result, recording control can be easily performed.

【0008】また、この熱流制御層を形成することによ
り、記録或いは消去時の光磁気記録媒体内の熱流を制御
し、光磁気記録膜の最高到達温度が300℃以下に成る
ように制御することにより光磁気記録膜の熱による構造
緩和を抑制できる。これにより、記録や消去の繰返しに
よる再生信号出力の低下を抑制できる。勿論、光磁気記
録膜の耐熱性を向上させると光磁気記録膜の最高到達温
度も300℃に限定されずさらに高く設定できる。しか
し、この場合、基板の耐熱温度も考慮することが必要で
ある。
Further, by forming this heat flow control layer, the heat flow in the magneto-optical recording medium at the time of recording or erasing can be controlled so that the maximum attainable temperature of the magneto-optical recording film becomes 300 ° C. or less. Thereby, structural relaxation due to heat of the magneto-optical recording film can be suppressed. As a result, it is possible to suppress a decrease in the reproduction signal output due to repeated recording and erasing. Of course, if the heat resistance of the magneto-optical recording film is improved, the maximum temperature reached by the magneto-optical recording film is not limited to 300 ° C. and can be set higher. However, in this case, it is necessary to consider the heat resistant temperature of the substrate.

【0009】また、この熱流制御層に光反射層としての
作用を持たせることにより、副次的ではあるが記録媒体
内で多重干渉を生じ、結果としてKerr回転角やFaraday
回転角等の磁気光学効果の増大を図ることができるので
再生信号出力の増大を図ることができる。
Further, by making this heat flow control layer act as a light reflection layer, multiple interference occurs in the recording medium as a side effect, resulting in a Kerr rotation angle and a Faraday.
Since the magneto-optical effect such as the rotation angle can be increased, the reproduction signal output can be increased.

【0010】この2層よりなる熱流制御層の熱伝導率を
制御することにより、光磁気記録膜の磁化反転領域を任
意に選択できるので、形成できる記録磁区のサイズを任
意に選択できる。また、形成される磁区の形状も制御で
きるのでピットエッジ記録に好適な光磁気記録媒体を得
ることができる。これと同時に、記録するデータパター
ンに応じた熱によるパターン間の干渉の抑制も可能であ
る。勿論、記録波形の制御と併用することによりその効
果はさらに大きく増大できることは言うまでもない。
By controlling the thermal conductivity of the heat flow control layer composed of these two layers, the magnetization reversal region of the magneto-optical recording film can be arbitrarily selected, so that the size of the recording magnetic domain that can be formed can be arbitrarily selected. Further, since the shape of the magnetic domains formed can be controlled, a magneto-optical recording medium suitable for pit edge recording can be obtained. At the same time, it is possible to suppress interference between patterns due to heat according to the data pattern to be recorded. Of course, it is needless to say that the effect can be greatly increased by using it together with the control of the recording waveform.

【0011】この他、熱流制御層の熱伝導率を制御する
手法として先に示した2層とする以外に、熱伝導率を連
続的に変化させても良い。ここで重要なのは、熱伝導率
の変化のさせ方ではなく、各層の熱伝導率の値と光磁気
記録膜に近い側の熱流制御層の膜厚である。また、用い
る光磁気記録膜の構造に本発明の効果は依存しない。す
なわち、通常の単層膜以外に、磁気的に結合した2層膜
或いは3層膜を光磁気記録膜に用いても良い。
In addition to the two layers shown above as a method for controlling the thermal conductivity of the heat flow control layer, the thermal conductivity may be continuously changed. What is important here is not the method of changing the thermal conductivity but the value of the thermal conductivity of each layer and the film thickness of the heat flow control layer on the side closer to the magneto-optical recording film. The effect of the present invention does not depend on the structure of the magneto-optical recording film used. That is, in addition to a normal single layer film, a magnetically coupled two-layer film or three-layer film may be used as the magneto-optical recording film.

【0012】以上のことから、超高密度光記録を実現で
きた。
From the above, super high density optical recording was realized.

【0013】[0013]

【作用】光磁気記録媒体中に熱流制御層を設けることに
より光磁気記録媒体中の熱流の制御ができるので、記録
磁区形状の制御が可能となり、微小記録磁区の形成が可
能になる。ここで、第一熱流制御層により記録膜に照射
された熱を吸収し、さらに、第二熱流制御層によりこの
熱を周囲へ拡散することなく放熱させることにより、記
録膜の最高到達温度を300℃以下にすることができ
る。これにより、記録膜の構造緩和を抑制できるので書
換えの繰返しにともない再生出力の低下をきたすことは
なかった。さらに、記録するデータパターンに応じた熱
干渉によるパターン間の干渉も生じないので超高密度光
記録を実現できる。また、形成される記録磁区形状の制
御、特に、磁区幅一定化、及び磁区長の制御が可能にな
るので、ピットエッジ記録が可能になる。この他、熱流
制御層に光反射作用を持たせることにより、磁気光学効
果の増大が図れるので再生信号出力を増大できる。
By providing the heat flow control layer in the magneto-optical recording medium, the heat flow in the magneto-optical recording medium can be controlled, so that the shape of the recording magnetic domain can be controlled and the minute recording magnetic domain can be formed. Here, the first heat flow control layer absorbs the heat applied to the recording film, and the second heat flow control layer allows the heat to radiate without being diffused to the surroundings, so that the maximum attainable temperature of the recording film is 300. It can be kept at or below ° C. As a result, the structural relaxation of the recording film can be suppressed, so that the reproduction output is not lowered with the repeated rewriting. Further, since there is no interference between patterns due to thermal interference depending on the data pattern to be recorded, ultra-high density optical recording can be realized. Further, since it is possible to control the shape of the recording magnetic domain to be formed, particularly to make the magnetic domain width constant and control the magnetic domain length, pit edge recording becomes possible. In addition, since the magneto-optical effect can be increased by providing the heat flow control layer with a light reflecting effect, the reproduction signal output can be increased.

【0014】[0014]

【実施例】【Example】

〈実施例1〉本実施例において作製した光磁気ディスク
の断面構造を図1に示す。凹凸の案内溝を有するポリカ
ーボネイト等のプラスチックやガラスの基板1上に、ま
ず、窒化シリコン層2を750nmの膜厚にスパッタ法
により形成した。その時の作製条件は、放電ガスにAr
/N2 、ターゲットに純Siをそれぞれ用い、放電ガス
圧力:10mTorr、投入RF電力密度:6.6W/cm2
スパッタをおこなった。
Example 1 The sectional structure of the magneto-optical disk produced in this example is shown in FIG. First, a silicon nitride layer 2 having a film thickness of 750 nm was formed by a sputtering method on a substrate 1 made of plastic such as polycarbonate or glass having uneven guide grooves. The manufacturing conditions at that time were Ar gas and discharge gas.
/ N 2 , pure Si was used as the target, and the sputtering was performed at a discharge gas pressure of 10 mTorr and an input RF power density of 6.6 W / cm 2 .

【0015】つづいて、TbFeCoNb合金よりなる
光磁気記録膜3をスパッタ法により形成した。作製条件
は、放電ガスにAr、ターゲットにTbFeCoNb合
金をそれぞれ用い、放電ガス圧力:5mTorr、投入RF
電力密度:4.4W/cm2でスパッタをおこなった。次
に、再び窒化シリコン膜4をスパッタ法により250n
mの膜厚に作製した。その時の作製条件は先の窒化シリ
コン膜2と同様である。
Subsequently, a magneto-optical recording film 3 made of a TbFeCoNb alloy was formed by the sputtering method. The manufacturing conditions were such that Ar was used as the discharge gas and TbFeCoNb alloy was used as the target, the discharge gas pressure was 5 mTorr, and the input RF was applied.
Sputtering was performed at a power density of 4.4 W / cm 2 . Next, the silicon nitride film 4 is again sputtered to 250 n
It was formed to a film thickness of m. The manufacturing conditions at that time are the same as those of the silicon nitride film 2 described above.

【0016】次に、第一熱流制御層5としてNi膜を3
5nmの膜厚にスパッタ法により形成した。作製条件
は、放電ガスにAr、ターゲットに純Niをそれぞれ用
い、放電ガス圧力が15mTorr、投入RF電力密度が
3.3W/cm2でスパッタをおこなった。第2熱流制御層
6としてAl膜を40nmの膜厚にスパッタ法により形
成した。作製条件は、放電ガスにAr、ターゲットに純
Alをそれぞれ用い、放電ガス圧力が15mTorr、投入
RF電力密度が3.3W/cm2である。
Next, a Ni film 3 is formed as the first heat flow control layer 5.
It was formed by a sputtering method to have a film thickness of 5 nm. The production conditions were such that Ar was used as the discharge gas and pure Ni was used as the target, and the sputtering was performed at a discharge gas pressure of 15 mTorr and an input RF power density of 3.3 W / cm 2 . An Al film having a thickness of 40 nm was formed as the second heat flow control layer 6 by the sputtering method. The manufacturing conditions were such that Ar was used as the discharge gas and pure Al was used as the target, the discharge gas pressure was 15 mTorr, and the input RF power density was 3.3 W / cm 2 .

【0017】このようにして作製した光磁気ディスクを
用いて、記録/消去特性を調べた。まず、再生信号出力
の記録レーザパワーの依存性を調べた。その結果、最内
周位置(r=30mm)に、周波数が12MHz、パルス
幅が80ns、レーザパワーが5.5mW で記録を行っ
た。その時の搬送波対雑音比はC/N=62dBであっ
た。このディスクに、図2のaに示すようなパターンを
記録して、その信号を再生した。そして、再生信号波形
cと記録された磁区bを偏光顕微鏡で観察した結果をそ
れぞれ示す。これによると、熱干渉なくかつ微小な磁区
が良好に形成されていることが波形及び磁区観察結果か
らわかった。
The recording / erasing characteristics were examined using the magneto-optical disk manufactured as described above. First, the dependence of the reproduction signal output on the recording laser power was examined. As a result, recording was performed at the innermost peripheral position (r = 30 mm) with a frequency of 12 MHz, a pulse width of 80 ns, and a laser power of 5.5 mW. The carrier-to-noise ratio at that time was C / N = 62 dB. A pattern shown in FIG. 2A was recorded on this disc, and the signal was reproduced. The results of observing the reproduced signal waveform c and the recorded magnetic domain b with a polarization microscope are shown. According to this, it was found from the waveform and magnetic domain observation results that fine magnetic domains were well formed without thermal interference.

【0018】このディスクを用いて記録/再生/消去を
繰返した時の再生信号出力の変化を調べたところ、10
7 回の繰返し後でもその値に変化は見られなかった。
When a change in reproduction signal output when recording / reproducing / erasing was repeated using this disc, it was found to be 10
There was no change in the value after 7 repetitions.

【0019】本実施例の構造における最高到達温度を調
べたところ、最高で300℃であった。このことから、
記録膜の温度が300℃を越していないので、非晶質記
録膜の構造緩和が生じないので耐熱性の向上に有効であ
る。このように記録膜の温度が任意に制御できるのは、
図3に模式的に示すように、第一熱流制御層により光磁
気記録膜に与えられた熱を吸収し、この熱が蓄熱して光
磁気記録膜を温めることがないように放熱層として、こ
の層より熱伝導率が大きな層として第二熱流制御層を形
成したことによる。この構造を用いることによる記録可
能な最小パワーや記録/消去の繰返し特性は、従来のデ
ィスクと大きな違いは見られなかった。しかし、形成さ
れる記録磁区の形状は良好であり、所望の長さの磁区長
が得られ、また、所望の磁区幅を有し、しかもその幅は
一定の磁区幅を有する記録磁区が得られた。特に、0.
7μm 以下の微小記録磁区の形成に対して有効であっ
た。
When the highest temperature reached in the structure of this example was examined, it was found to be 300 ° C. at the highest. From this,
Since the temperature of the recording film does not exceed 300 ° C., structural relaxation of the amorphous recording film does not occur, which is effective in improving heat resistance. In this way, the temperature of the recording film can be controlled arbitrarily,
As schematically shown in FIG. 3, the first heat flow control layer absorbs the heat given to the magneto-optical recording film, and the heat is not accumulated to heat the magneto-optical recording film. This is because the second heat flow control layer was formed as a layer having higher thermal conductivity than this layer. The minimum recordable power and the recording / erasing repeatability by using this structure did not show a big difference from the conventional disc. However, the shape of the recording magnetic domain formed is good, a magnetic domain length having a desired length can be obtained, and a recording magnetic domain having a desired magnetic domain width and having a constant magnetic domain width can be obtained. It was In particular, 0.
It was effective for forming minute recording magnetic domains of 7 μm or less.

【0020】本発明の効果は用いる各材料や組成に依存
するのではなく、ディスクの熱構造に依存する。本実施
例では第一熱流制御層にNiを用いたが、この他に、ス
テンレス鋼,モネル,Nb及びCrを用いても同様の効
果が得られる。また、第二熱流制御層として、Al以外
に、Pb,Cu,Ag或いはAuを用いても同様の効果
が得られる。また、記録膜にはTbFeCoNb膜以外
に、PtとCoとを交互に積層した交互積層多層膜,ガ
ーネット系の記録膜,ホイスラー合金等を用いても同じ
で、それぞれの記録膜の熱伝導率を考慮してある。第一
熱流制御層及び第二熱流制御層の熱伝導率、さらには材
料を選択すれば良い。
The effect of the present invention does not depend on each material and composition used, but on the thermal structure of the disk. Although Ni is used for the first heat flow control layer in this embodiment, the same effect can be obtained by using stainless steel, Monel, Nb, and Cr. The same effect can be obtained by using Pb, Cu, Ag, or Au in addition to Al as the second heat flow control layer. In addition to the TbFeCoNb film, the recording film may be formed by using an alternately laminated multilayer film in which Pt and Co are alternately laminated, a garnet-based recording film, a Heusler alloy, and the like, and the thermal conductivity of each recording film is Considered. The thermal conductivity of the first heat flow control layer and the second heat flow control layer, and further the material may be selected.

【0021】〈実施例2〉本実施例において作製した光
磁気ディスクの断面構造を図4に示す。凹凸の案内溝を
有するポリカーボネイト等のプラスチックやガラスの基
板1上に、まず、窒化シリコン層2を750nmの膜厚
にスパッタ法により形成した。その時の作製条件は、放
電ガスにAr/N2 、ターゲットに純Siをそれぞれ用
い、放電ガス圧力が10mTorr、投入RF電力密度が
6.6W/cm2でスパッタをおこなった。
<Embodiment 2> The sectional structure of the magneto-optical disk manufactured in this embodiment is shown in FIG. First, a silicon nitride layer 2 having a film thickness of 750 nm was formed by a sputtering method on a substrate 1 made of plastic such as polycarbonate or glass having uneven guide grooves. The manufacturing conditions at that time were such that Ar / N 2 was used as a discharge gas and pure Si was used as a target, and the sputtering was performed at a discharge gas pressure of 10 mTorr and an input RF power density of 6.6 W / cm 2 .

【0022】つづいて、TbFeCoNb合金よりなる
光磁気記録膜3−1をスパッタ法により形成した。作製
条件は、放電ガスにAr、ターゲットにTbFeCoN
b合金をそれぞれ用い、放電ガス圧力が5mTorr、投入
RF電力密度が4.4W/cm2でスパッタをおこなった。
次に、TbDyFeCoCrよりなる光磁気記録膜3−
2をスパッタ法により形成した。作製条件は、放電ガス
にAr、ターゲットにTbDyFeCoCr合金をそれ
ぞれ用い、放電ガス圧力が5mTorr、投入RF電力密度
が4.4W/ cm2 でスパッタをおこなった。次に、再び
窒化シリコン膜4をスパッタ法により250nmの膜厚
に作製した。その時の作製条件は先の窒化シリコン膜2
と同様である。
Subsequently, a magneto-optical recording film 3-1 made of a TbFeCoNb alloy was formed by the sputtering method. The manufacturing conditions are Ar for the discharge gas and TbFeCoN for the target.
Sputtering was performed at a discharge gas pressure of 5 mTorr and an input RF power density of 4.4 W / cm 2 using each of the b alloys.
Next, the magneto-optical recording film 3 made of TbDyFeCoCr 3-
2 was formed by the sputtering method. The manufacturing conditions were such that Ar was used as the discharge gas and TbDyFeCoCr alloy was used as the target, and the sputtering was performed at a discharge gas pressure of 5 mTorr and an input RF power density of 4.4 W / cm 2 . Next, the silicon nitride film 4 was again formed to a thickness of 250 nm by the sputtering method. The manufacturing conditions at that time are the same as those of the silicon nitride film 2 described above.
Is the same as.

【0023】次に、第一熱流制御層5としてNi膜を3
5nmの膜厚にスパッタ法により形成した。作製条件
は、放電ガスにAr、ターゲットに純Niをそれぞれ用
い、放電ガス圧力が15mTorr、投入RF電力密度が
3.3W/cm2でスパッタをおこなった。第二熱流制御層
6としてAl膜を40nmの膜厚にスパッタ法により形
成した。作製条件は、放電ガスにAr、ターゲットに純
Alをそれぞれ用い、放電ガス圧力が15mTorr、投入
RF電力密度が3.3W/cm2である。
Next, a Ni film 3 is formed as the first heat flow control layer 5.
It was formed by a sputtering method to have a film thickness of 5 nm. The production conditions were such that Ar was used as the discharge gas and pure Ni was used as the target, and the sputtering was performed at a discharge gas pressure of 15 mTorr and an input RF power density of 3.3 W / cm 2 . An Al film having a thickness of 40 nm was formed as the second heat flow control layer 6 by the sputtering method. The manufacturing conditions were such that Ar was used as the discharge gas and pure Al was used as the target, the discharge gas pressure was 15 mTorr, and the input RF power density was 3.3 W / cm 2 .

【0024】このようにして作製した光磁気ディスクを
用いて、記録/消去特性を調べた。まず、再生信号出力
の記録レーザパワー依存性を調べた。その結果、最内周
位置(r=30mm)に、周波数が12MHz、パルス幅
が80ns、レーザパワーが7.5mW で記録を行っ
た。その時の搬送波対雑音比がC/N=61dBであっ
た。このディスクに対して図5に示す波形を用いて光強
度を変調させてオーバーライトを行った。その結果、1
7 回のオーバーライトを繰返した後でも再生信号出力
に変化は見られなかった。また、磁区形状及び磁区のサ
イズの制御性も0.7μm 以下の微小磁区に対して特に
有効であった。
The recording / erasing characteristics were examined using the magneto-optical disk thus manufactured. First, the dependence of the reproduction signal output on the recording laser power was examined. As a result, recording was performed at the innermost peripheral position (r = 30 mm) with a frequency of 12 MHz, a pulse width of 80 ns and a laser power of 7.5 mW. The carrier-to-noise ratio at that time was C / N = 61 dB. This disc was overwritten by modulating the light intensity using the waveform shown in FIG. As a result, 1
Change in the reproduction signal output even after repeated 0 7 times of overwriting was not observed. In addition, the controllability of the magnetic domain shape and the size of the magnetic domain was also particularly effective for minute magnetic domains of 0.7 μm or less.

【0025】第一熱流制御層として熱伝導率の小さな材
料を用いると、熱の周囲への拡散を抑制できる。これに
より形成される磁区サイズをコントロールできるととも
に、記録領域の周囲に形成される消去領域の範囲を狭く
できるので、トラック間の干渉(熱クロストーク)を大
きく抑制できる。また、第二熱流制御層に熱伝導率の大
きな材料を用いているので、第一熱流制御層に蓄熱した
熱を記録膜の温度を上昇させずに周囲へ拡散できる。そ
のため、記録膜の最高到達温度を300℃以下にするこ
とができるため、記録膜の構造緩和を抑制できるので、
書換えにともなう記録感度の変動及び再生信号出力の低
下を抑制できた。
If a material having a small thermal conductivity is used for the first heat flow control layer, the diffusion of heat to the surroundings can be suppressed. As a result, the size of the magnetic domain formed can be controlled and the range of the erased area formed around the recording area can be narrowed, so that interference between tracks (thermal crosstalk) can be greatly suppressed. Moreover, since the material having a large thermal conductivity is used for the second heat flow control layer, the heat stored in the first heat flow control layer can be diffused to the surroundings without increasing the temperature of the recording film. Therefore, since the highest temperature reached by the recording film can be set to 300 ° C. or less, structural relaxation of the recording film can be suppressed,
It was possible to suppress a change in recording sensitivity and a decrease in reproduced signal output due to rewriting.

【0026】[0026]

【発明の効果】本発明によれば光磁気記録媒体中に熱流
制御層を設けることにより光磁気記録媒体中の熱流の制
御ができるので、記録磁区形状の制御が可能となり、微
小記録磁区の形成が可能になる。さらに、記録するデー
タパターンに応じた熱干渉によるパターン間の干渉も生
じないので超高密度光記録を実現できる。また、形成さ
れる記録磁区形状の制御、特に、磁区幅一定化、及び磁
区長の制御が可能になるので、ピットエッジ記録が可能
になる。この他、光磁気記録膜の最高到達温度を300
℃以下にすることができるので、再生信号出力の低下を
抑制でき、書換え特性を大きく向上させることができ
た。さらに、熱流制御層に光反射作用を持たせることに
より、磁気光学効果の増大が図れるので再生信号出力を
増大できる。
According to the present invention, since the heat flow in the magneto-optical recording medium can be controlled by providing the heat flow control layer in the magneto-optical recording medium, the shape of the recording magnetic domain can be controlled and the minute recording magnetic domain can be formed. Will be possible. Further, since there is no interference between patterns due to thermal interference depending on the data pattern to be recorded, ultra-high density optical recording can be realized. Further, since it is possible to control the shape of the recording magnetic domain to be formed, particularly to make the magnetic domain width constant and control the magnetic domain length, pit edge recording becomes possible. In addition, the maximum temperature of the magneto-optical recording film is set to 300
Since the temperature can be set to not more than 0 ° C., it is possible to suppress the reduction of the reproduction signal output, and it is possible to greatly improve the rewriting characteristics. Further, by providing the heat flow control layer with a light reflecting effect, the magneto-optical effect can be increased, and thus the reproduction signal output can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】光磁気記録媒体の断面図。FIG. 1 is a sectional view of a magneto-optical recording medium.

【図2】記録信号のパターンと再生信号のタイミングチ
ャート。
FIG. 2 is a timing chart of a recording signal pattern and a reproduction signal.

【図3】記録媒体中を流れる熱流を示す説明図。FIG. 3 is an explanatory diagram showing a heat flow flowing in a recording medium.

【図4】光磁気記録媒体の断面図。FIG. 4 is a sectional view of a magneto-optical recording medium.

【図5】記録信号のパターンを示す特性図。FIG. 5 is a characteristic diagram showing a pattern of a recording signal.

【符号の説明】[Explanation of symbols]

1…基板、2…窒化シリコン膜、3…光磁気記録膜、4
…窒化シリコン膜、5…第一熱流制御層、6…第二熱流
制御層。
1 ... Substrate, 2 ... Silicon nitride film, 3 ... Magneto-optical recording film, 4
... Silicon nitride film, 5 ... First heat flow control layer, 6 ... Second heat flow control layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井手 浩 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Ide 1-280, Higashi Koigokubo, Kokubunji, Tokyo Metropolitan Research Center, Hitachi, Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】レーザ光と外部印加磁界を用いて記録,消
去、或いは再生を行う光磁気記録において、光磁気記録
媒体としてガラスもしくはプラスチックの基板上に無機
誘電体層,垂直磁気異方性の少なくとも1層よりなる光
磁気記録層,無機誘電体層および熱流制御層を、順次、
積層し、前記熱流制御層が熱伝導率が異なる2層より成
り、前記光磁気記録層に近い層が前記光磁気記録層と熱
伝導率が等しいか或いは小さく、前記光磁気記録層から
離れた層が前記光磁気記録層及び前記光磁気記録層に近
い層より大きな熱伝導率の層よりなることを特徴とする
光磁気記録媒体。
1. In magneto-optical recording for recording, erasing or reproducing by using a laser beam and an externally applied magnetic field, an inorganic dielectric layer and a perpendicular magnetic anisotropy are formed on a glass or plastic substrate as a magneto-optical recording medium. A magneto-optical recording layer, an inorganic dielectric layer, and a heat flow control layer, which are at least one layer,
The heat flow control layer is composed of two layers having different thermal conductivities, and a layer close to the magneto-optical recording layer has a thermal conductivity equal to or smaller than that of the magneto-optical recording layer and is separated from the magneto-optical recording layer. A magneto-optical recording medium, wherein the layer is composed of the magneto-optical recording layer and a layer having a thermal conductivity higher than that of the layer close to the magneto-optical recording layer.
【請求項2】請求項1において、記録或いは消去時の光
磁気記録媒体内の熱流を制御し、さらに優位には光磁気
記録膜の最高到達温度が300℃以下になるように制御
した光磁気記録媒体。
2. The magneto-optical device according to claim 1, wherein the heat flow in the magneto-optical recording medium at the time of recording or erasing is controlled, and more preferably, the maximum temperature of the magneto-optical recording film is controlled to 300 ° C. or less. recoding media.
【請求項3】請求項1において、前記光磁気記録層と熱
伝導率が等しいか或いは小さい層に記録或いは消去時に
前記光磁気記録層に与えられた熱を吸収させ、前記光磁
気記録層と熱伝導率が等しいか或いは小さい層の周囲へ
熱が拡散するのを抑制する作用をもたせ、前記光磁気記
録層及び前記光磁気記録層に近い層より大きな熱伝導率
を有する層に、前記光磁気記録層と熱伝導率が等しいか
或いは小さい層が吸収した熱を放熱させる作用を持たせ
た光磁気記録媒体。
3. The magneto-optical recording layer according to claim 1, wherein the layer having thermal conductivity equal to or smaller than that of the magneto-optical recording layer absorbs heat applied to the magneto-optical recording layer during recording or erasing. The layer having the thermal conductivity equal to or smaller than that of the magneto-optical recording layer and the layer closer to the magneto-optical recording layer has the effect of suppressing the diffusion of heat to the periphery of the layer, A magneto-optical recording medium having a function of releasing heat absorbed by a layer having a thermal conductivity equal to or smaller than that of the magnetic recording layer.
【請求項4】請求項1に記載の前記熱流制御層に光反射
層としての作用を持たせ、さらに優位にはこれにより記
録媒体内で多重干渉を生じカー(Kerr)回転角或いは/
及びファラデー(Faraday)回転角の増大を図った光磁気
記録媒体。
4. The heat flow control layer according to claim 1 has a function as a light reflection layer, and more advantageously, this causes multiple interference in a recording medium, and a Kerr rotation angle or /
And a Faraday magneto-optical recording medium with an increased rotation angle.
【請求項5】請求項1に記載の2層よりなる前記熱流制
御層の熱伝導率を制御することにより、前記光磁気記録
膜の磁化反転領域を制御した光磁気記録媒体。
5. A magneto-optical recording medium in which the magnetization reversal region of the magneto-optical recording film is controlled by controlling the thermal conductivity of the two-layer heat flow control layer according to claim 1.
【請求項6】請求項1に記載の前記垂直磁気異方性を有
する光磁気記録膜が磁気特性の異なる少なくとも2種類
の磁性膜よりなる光磁気記録媒体。
6. A magneto-optical recording medium according to claim 1, wherein the magneto-optical recording film having the perpendicular magnetic anisotropy comprises at least two kinds of magnetic films having different magnetic characteristics.
【請求項7】請求項1に記載の2層よりなる前記熱流制
御層の熱伝導率を制御することにより、形成される磁区
の形状を制御した光磁気記録媒体。
7. A magneto-optical recording medium in which the shape of magnetic domains to be formed is controlled by controlling the thermal conductivity of the heat flow control layer consisting of the two layers according to claim 1.
【請求項8】請求項1に記載の熱流制御層の熱伝導率を
膜厚方向に連続的に変化させた光磁気記録媒体。
8. A magneto-optical recording medium in which the thermal conductivity of the heat flow control layer according to claim 1 is continuously changed in the film thickness direction.
【請求項9】請求項1に記載の2層よりなる前記熱流制
御層の熱伝導率を制御することにより、記録しようとす
るデータパターンに依存したパターン間の熱干渉による
記録ビットのシフトを抑制した光磁気記録媒体。
9. The shift of recording bits due to thermal interference between patterns depending on the data pattern to be recorded is suppressed by controlling the thermal conductivity of the two-layer heat flow control layer according to claim 1. Magneto-optical recording medium.
JP15328992A 1992-06-12 1992-06-12 Magneto-optical recording medium Pending JPH05342655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15328992A JPH05342655A (en) 1992-06-12 1992-06-12 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15328992A JPH05342655A (en) 1992-06-12 1992-06-12 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH05342655A true JPH05342655A (en) 1993-12-24

Family

ID=15559227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15328992A Pending JPH05342655A (en) 1992-06-12 1992-06-12 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH05342655A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5904819A (en) * 1995-07-31 1999-05-18 Sony Corporation Optical disk and method of manufacturing optical disk
KR100826032B1 (en) * 2005-01-12 2008-04-28 시게이트 테크놀로지 엘엘씨 Patterned thin films and use of such films as thermal control layers in heat assisted magnetic recording media

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5904819A (en) * 1995-07-31 1999-05-18 Sony Corporation Optical disk and method of manufacturing optical disk
US5976659A (en) * 1995-07-31 1999-11-02 Sony Corporation Optical disk and method of manufacturing optical disk
KR100826032B1 (en) * 2005-01-12 2008-04-28 시게이트 테크놀로지 엘엘씨 Patterned thin films and use of such films as thermal control layers in heat assisted magnetic recording media

Similar Documents

Publication Publication Date Title
EP0509836B1 (en) Magneto-optical recording medium
US5390162A (en) Method for reproducing signals recorded on optical recording medium
US5432774A (en) Optical recording medium
HU203815B (en) Magnetooptical data carrier and method for making said data carrier
US5740153A (en) Magneto-optical disk, optical pickup, and magneto-optical disk drive
JPH05342655A (en) Magneto-optical recording medium
KR0157654B1 (en) Magneto-optical recording medium and reproducing method of magneto-optically recorded information using thereof
JP2674275B2 (en) Magneto-optical recording medium and magneto-optical recording method
JP3334146B2 (en) Optical head device
JPH04313833A (en) Magneto-optical recording medium and magneto-optical recording and reproducing method using this medium
JPH0414641A (en) Structure for magneto-optical recording film and its recording method
JP2929918B2 (en) Magneto-optical recording medium and reproducing method thereof
JPH08106662A (en) Magneto-optical recording medium
JP2738714B2 (en) Recording method of magneto-optical recording
JP2001331985A (en) Magneto-optical recording medium and method for manufacturing the same
JPH064925A (en) Method for erasing information in magneto-optical recording
JPH07161086A (en) Recording and reproducing method for optical recording and structure of recording medium
JP3467574B2 (en) Magneto-optical recording medium and data recording method
JPH09312043A (en) Magneto-optical recording medium and is production
JPH05242525A (en) Optical recording medium
JPH04247346A (en) Magneto-optical recording medium
JPH03235237A (en) Structure of magneto-optical recording medium
JPH05258377A (en) Method for positioning record of information
JPH04179104A (en) Structure of magneto-optical recording film
JPH07141709A (en) Magneto-optical recording medium