JPH053407B2 - - Google Patents

Info

Publication number
JPH053407B2
JPH053407B2 JP1124887A JP1124887A JPH053407B2 JP H053407 B2 JPH053407 B2 JP H053407B2 JP 1124887 A JP1124887 A JP 1124887A JP 1124887 A JP1124887 A JP 1124887A JP H053407 B2 JPH053407 B2 JP H053407B2
Authority
JP
Japan
Prior art keywords
fine particles
organic solvent
suspension
particles
alcoholic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1124887A
Other languages
Japanese (ja)
Other versions
JPS63182204A (en
Inventor
Tadahiro Yoneda
Saburo Nakahara
Mitsuo Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP62011248A priority Critical patent/JPS63182204A/en
Priority to EP87103111A priority patent/EP0236945B1/en
Priority to DE3751849T priority patent/DE3751849T2/en
Priority to DE8787103111T priority patent/DE3784357T2/en
Priority to EP92100741A priority patent/EP0479774B1/en
Priority to KR1019870002058A priority patent/KR910008721B1/en
Publication of JPS63182204A publication Critical patent/JPS63182204A/en
Priority to US07/322,185 priority patent/US5316714A/en
Priority to US07/731,259 priority patent/US5236622A/en
Priority to US07/925,424 priority patent/US5304324A/en
Publication of JPH053407B2 publication Critical patent/JPH053407B2/ja
Priority to US08/201,406 priority patent/US5863647A/en
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は無機酸化物微粒子の有機溶媒単分散体
の製法に関する。更に詳しくは、特定した製法に
より得られた水和物微粒子のアルコール性溶液懸
濁体にカツプリング処理を施した後、アルコール
性溶媒を目的とする有機溶媒に溶媒置換すること
によりすぐれた分散安定性、有機溶媒親和性を有
する有機酸化物微粒子の有機溶媒単分散体の製法
に関する。 この無機酸化物微粒子の有機溶媒単分散体は、
凝集粒子、粗大粒子がほとんど無く、微粒子表面
が改質されている結果、そのままで均一な分散性
の要求されるポリマーフイルム、繊維、シート、
各種成型剤や塗料などのフイラー材料として、
又、ガラス、プラスチツク、セラミツクなどの表
面処理材料として使用しうる等工業的価値のある
ものである。 (従来の技術) 一般に親水性である無機酸化物微粒子の表面改
質方法として界面活性剤を吸着させたり、微粒子
表面の金属ヒドロキシル基と反応しうる反応性モ
ノマーやカツプリング剤で処理することは従来よ
り行なわれている。界面活性剤による方法は、微
粒子の水性懸濁体中に界面活性剤を添加して微粒
子表面に吸着させる方法であり、表面改質効果が
一般に弱いという欠点があつた。一方、カツプリ
ング剤による方法では、粉体化している微粒子を
有機溶媒中に懸濁させる際にカツプリング剤を添
加したり、微粒子の水分散体から水溶媒を有機溶
媒に置換した後カツプリング剤を添加して粒子表
面を改質する等の方法であつたために、微粒子の
凝集は避けられず、従つて微粒子が単分散した有
機溶媒分散体を得ることができなかつた。 一方、金属アルコキシドのような加水分解性有
機金属化合物をアルコール性溶液中で加水分解し
て、水和物微粒子の懸濁体がえられることは知ら
れている。しかしこの懸濁体中には触媒成分や水
が含まれていたり、アルコールの種類が限定され
ているためこのままで懸濁体を各種の用途に用い
ることはできない。従つてこの懸濁体よりアルコ
ール溶媒を溜去したり遠心分離などの方法で水和
物微粒子として分離し、場合により乾燥、焼成し
た後所望の有機溶媒中に再懸濁させる方法をとつ
ていたが、工程中で凝集粒子の生成は避けられな
いものであつた。 (発明が解決しようとする問題点) 本発明は、加水分解可能な有機金属化合物をア
ルコール性溶液中で加水分解してえられる水和物
微粒子懸濁体より、酸化物微粒子の有機溶媒単分
散体をえるに際し、工程中における凝集粒子の生
成を防止しつつ微粒子表面を改質することによ
り、微粒子濃度が高くても安定な有機溶媒単分散
体を製造する方法を提供するものである。 (問題点を解決するための手段および作用) 本発明者らは上述した従来技術の問題点を解決
するべく鋭意検討した結果、加水分解可能な有機
金属化合物をアルコール性溶液中で加水分解して
えられる水和物微粒子懸濁体より無機酸化物微粒
子の有機溶媒単分散体を製造するに際し、少くと
も下記の工程、即ち第一の工程;加水分解可能な
有機金属化合物をアルコールの含水溶液中で加水
分解して、ほぼ非晶質な水和物微粒子(以後、水
和物微粒子(a)とよぶ)のアルコール性溶液懸濁体
をうる工程、第二の工程;該アルコール性溶液懸
濁体中にカツプリング剤を添加してカツプリング
処理を施す工程、第三の工程;カツプリング処理
を施されたアルコール性溶液懸濁体のアルコール
性溶媒を有機溶媒(以後、有機溶媒(B)とよぶ)に
溶媒置換して酸化物微粒子の有機溶媒単分散体を
うる工程、を含めた製法を適用することにより、
分散体中の微粒子の凝集をおさえ、かつ有機物と
の親和力の高い微粒子表面となし得、よつて無機
酸化物微粒子の安定な有機溶媒単分散体を製造し
うることを見出し本発明に至つたものである。 有機溶媒単分散体中の無機酸化物微粒子(以
後、酸化物微粒子(c)とよぶ)の原料である加水分
解可能な有機金属化合物とは、加水分解性有機基
を含有するシリコン、チタン、ジルコニウム、ア
ルミニウム等の金属化合物で、加水分解して水和
物を形成しうるものであれば良く、工業的に入手
し易く安価なものとして上記金属のアルコキシド
が好適に用いられる。それらは一般式M(OR)
m(但し、Mは金属元素、mは該元素の原子価に
相当する整数、Rはアルキル基を表わす。)で示
されるが、好ましくは上記アルキル基は炭素数8
までの低級アルキル基が用いられる。具体的には
テトラメチルシリケート、テトラエチルシリケー
ト、テトライソプロピルシリケート、テトラブチ
ルシリケート、テトラメチルチタネート、テトラ
エチルチタネート、テトライソプロピルチタネー
ト、テトラブチルチタネート、テトラメチルジル
コネート、テトラエチルジルコネート、テトライ
ソプロピルジルコネート、テトラブチルジルコネ
ート、テトラ(2−エチルヘキシル)チタネー
ト、トリメチルアルミネート、トリエチルアルミ
ネート、トリイソプロピルアルミネート、トリブ
チルアルミネートなどが掲げられるが、ジメチル
ジエチルシリケート、ジエチルジブチルチタネー
トなどの如く異なる複数のアルキル基の化合物で
あつても良い。 また、他の好ましい有機金属化合物としてこれ
らアルコキシドの誘導体がある。一例として前記
一般式M(OR)mのうち一部のアルコキシド基
(OR)がカルボキシル基あるいはβ−ジカルボ
ニル基など、キレート化合物を形成しうる基で置
換された化合物あるいはこれらアルコキシドまた
はアルキコシド置換化合物を部分的に加水分解し
て得られる低縮合物などである。 その他の有機金属化合物としては、例えばジル
コニウムアセテート、ジルコニウムオキサレー
ト、ジルコニウムラクテート、チタンラクテー
ト、アルミニウムラクテートなどのチタン、ジル
コンまたはアルミニウムのアシレート化合物;チ
タンアセチルアセトナート、ジルコンアセチルア
セトナート、チタンオクチルグリコラート、チタ
ントリエタノールアミネート、アルミニウムアセ
チルアセトナートなどチタン、ジルコンまたはア
ルミニウムのグリコール、β−ジケトン、ヒドロ
キシカルボン酸、ケトエステル、ケトアルコー
ル、アミノアルコール、キノリンなどのキレート
化合物などが挙げられる。 酸化物微粒子(c)は、上記したシリコン、チタ
ン、ジルコニウムおよび/またはアルミニウムの
有機金属化合物を主原料とするものであるが、そ
れ以外にナトリウム、カリウム、ルビジウム、セ
シウム、マグネシウム、カルシウム、ストロンチ
ウム、バリウム、ホウ素、ガリウム、インジウ
ム、錫、鉄、銅などの有機金属化合物または無機
塩を共存せしめて加水分解することにより、シリ
コン、チタン、ジルコニウムおよび/またはアル
ミニウムの酸化物と上記金属の酸化物の複合体微
粒子とすることもできる。その際、酸化物微粒子
中のシリコン、チタン、ジルコニウムおよび/ま
たはアルミニウムの酸化物の割合は特に限定され
るものではないが、70%以上とするのが好まし
い。 本発明において無機酸化物微粒子の有機溶媒単
分散体を得るために、まず上記有機金属化合物を
アルコール性溶液中で加水分解し縮合させて水和
物微粒子のアルコール性溶液懸濁体とする(以
下、第一工程とよぶ。)。その際有機金属化合物の
溶液中の最終濃度について何ら制限されるもので
はないが、2モル/以下とした方が生成した水
和物微粒子の凝集が起こり難く、従つて最終的に
本発明に開示する方法で酸化物微粒子の有機溶媒
分散体とした時に凝集粒子が無く好ましい。 アルコール性溶液中のアルコールは、特に限定
されるものではなく種々のものが使用しうる。例
えば、メタノール、エタノール、イソプロパノー
ル、ブタノール、イソアミルアルコール及びエチ
レングリコール、プロピレングリコール等が単独
でまたは混合物で用いられる。又、該溶液中にジ
オキサン、ジエチルエーテル、酢酸エチル、ベン
ゼン、トルエン、ヘキサン等の有機溶媒を一部混
合することもできる。 アルコール性溶液中には加水分解に必要な水を
共存せしめる。この水含量は、粒子の形状や粒子
径に影響を及ぼすので、好ましい量に制御する必
要があるが、有機金属化合物の金属の種類および
化合物の種類によつて変化する。また、この水は
気相中の湿気により供給することもできる。 加水分解は、例えば上記した有機金属化合物原
料またはそのアルコール溶液を上記アルコール性
溶液中に添加し、0〜100℃の範囲、好ましくは
0〜50℃の範囲で10分〜100時間撹拌することに
よつて行われる。その際、加水分解速度をコント
ロールする目的で、NH4 +、Na+などのカチオン
やSO4 2-、H2PO4 -などのアニオンの触媒成分を
添加することができるが、その有無および量は原
料によつて異なり、粒子の形状および粒子径への
影響を考慮して適宜選択される。 このようにして有機金属化合物をアルコール性
溶液中で適切な条件の元で加水分解すれば、水和
物微粒子(a)の単分散した懸濁体がえられる。更に
原料濃度、反応温度、水濃度、アルコール及び溶
媒の種類、触媒の種類及び濃度等を好ましい条件
に選定することにより、水和物微粒子(a)は球形で
平均粒径が0.05〜5μmの範囲で任意の粒径にコン
トロールされ、かつ粒子径の標準偏差値が1〜
1.5の範囲、更に好ましい条件の選定により1〜
1.3の範囲にあるような均一な粒子とすることが
できる。このようにコントロールされた水和物微
粒子は、各種充填剤や表面処理剤として用いられ
る時特に好ましいものである。 このようにして製造された水和物微粒子(a)のア
ルコール性溶液懸濁体中にカツプリング剤を添加
して微粒子表面にカツプリング処理を施す(以
下、第二工程とよぶ。)。 第一工程で得られた水和物微粒子(a)の表面に
は、原料に由来する有機基が一部残存して結合し
ていたり、触媒成分が吸着しているため粒子表面
は変化し易く活性である。 第一工程で得られた懸濁体を無処理のままアル
コール性溶媒を溜出させたような場合凝集粒子の
生成が観察されるが、その理由としては粒子表面
の加水分解反応が進行したり、吸着成分の脱離
等、表面状態が凝集を生起し易い形に変化するた
めと考えられる。 本発明者らは粒子表面の活性を制御する方法に
ついて種々検討した結果、水和物微粒子(a)の表面
はカツプリング剤との反応性が大きく、第一工程
の後カツプリング処理すればカツプリング剤使用
量が少量でも微粒子の凝集防止効果に優れ、かつ
微粒子表面を有機溶媒親和性に変換しうることを
見出したのである。 本発明に使用しうるカツプリング剤は、分子中
に1個以上の非加水分解性有機基と1個以上の加
水分解性基を有しておれば特に制限はないが、容
易に入手し得るものとしてシラン系、チタネート
系、アルミニウム系のカツプリング剤が好まし
い。例えば、メチルトリメトキシシラン、フエニ
ルトリメトキシシラン、ベンジルトリメトキシシ
ラン、メチルトリイソプロポキシシラン、3−ク
ロロプロピルトリメトキシシラン、ジメトキシジ
メチルシラン、ジエトキシメチルフエニルシラ
ン、エトキシトリメチルシラン、3−アミノプロ
ピルトリエトキシシラン、3−(2−アミノエチ
ルアミノプロピル)トリメトキシシラン、3−グ
リシドキシプロピルトリメトキシシラン、アリル
トリエトキシシラン、ビニルトリエトキシシラン
等の分子中に一種又は二種以上の(置換)アルキ
ル基、(置換)フエニル基、ビニル基等を有する
アルコキシシラン類、トリメチルクロロシラン、
ジエチルジクロロシラン等のクロロシラン類、ア
セトキシトリエチルシラン、ジアセトキシジフエ
ニルシラン、トリアセトキビニルシラン等のアセ
トキシシラン類、等のシラン系カツプリング剤、
イソプロピルトリイソステロイルチタネート、ビ
ス(ジオクチルパイロホスフエート)オキシアセ
テートチタネート、等のチタネート系カツプリン
グ剤、アセトアルコキシアルミニウムジイソプロ
ピレート等のアルミニウム系カツプリング剤等が
掲げられるがこれに限定されることはない。第一
工程で有機金属化合物としてアルコキシド又はそ
の誘導体を用いた場合には、カツプリング剤とし
て加水分解性基にアルコキシ基を有したものを使
用すると反応性が高い点で特に好ましい。 カツプリング剤の添加量は微粒子の酸化物に換
算した重量に対して0.1〜10重量%、好ましくは
0.5〜5重量%の範囲とする。下限を下まわると
その効果は小さく、上限を上まわつても効果はあ
るが経済的ではない。 カツプリング処理の温度は0〜100℃の範囲で
あれば良く好ましくは第一工程における温度にお
いて行なう。 次にカツプリング処理された水和物微粒子(以
後、水和物微粒子(b)とよぶ。)のアルコール性溶
液懸濁体のアルコール性溶媒を有機溶媒(B)に置換
して酸化物微粒子(c)の有機溶媒分散体とする。
(以下、第三工程とよぶ。) アルコール性溶媒とは、第一工程で用いたアル
コール、有機溶媒、加水分解当量を越える添加
水、触媒及び加水分解された有機金属化合物から
副生する有機物、カツプリング剤と粒子表面の反
応から副生する有機物等からなる溶媒をいう。 溶媒置換の具体的方法として、例えば(1)カツプ
リング処理された水和物微粒子(c)を沈降分離、遠
心分離等によりアルコール性溶媒より分離した
後、有機溶媒(B)に再分散させる方法。(2)水和物微
粒子(b)のアルコール性溶液懸濁体を有機溶媒(B)共
存下アルコール性溶媒を溜出せしめて有機溶媒分
散体とする方法。等任意の方法がとりうる。 第三工程の後、場合により有機溶媒分散体を熱
処理して酸化物微粒子(c)の脱水を進行させること
ができる。 上述の溶媒置換の方法(2)は固液分離を含まず、
又、第三工程の後熱処理を行う場合には同じ装置
を利用できる点で好ましい。その場合には有機溶
媒(B)の沸点は第一工程で用いるアルコールに比べ
同等かそれ以上のものを選ぶ。アルコール性溶媒
を溜出させる温度、圧力等の操作条件は特に限定
されるものではなく任意に選択することができ
る。 使用される有機溶媒(B)は、飽和又は不飽和の脂
肪族炭化水素、芳香族炭化水素及びそれらのハロ
ゲン化物、一価及び二価以上のアルコール化合
物、エーテル化合物、エステル化合物、アミン類
等の含窒素化合物、アルデヒド、ケトン類等のカ
ルボニル化合物、カルボン酸化合物あるいは単糖
類、多糖類等の炭水化物等の有機化合物の中から
任意に選ぶことができるが室温で液状のものが好
ましい。又、第一工程で用いたアルコールと同じ
ものでも良い。酸化物微粒子(c)の有機溶媒単分散
体を重合系に使用する場合、有機溶媒は使用目的
に応じた重合性モノマーあるいはプレポリマーと
することができる。 本発明でいう無機酸化物微粒子とは、その中に
水酸基、カツプリング剤残基、吸着された触媒及
び吸着水を部分的に保有しているものも含めるも
のである。 このようにして最終的に無機酸化物微粒子の有
機溶媒単分散体とするが、単分散体中の微粒子の
濃度は酸化物に換算して50重量%の濃度程度にお
いても分散安定性は良好である。又、単分散体中
有機溶媒(B)以外のアルコール性溶媒が全溶媒中に
20重量%以下程度残存していても構わない。 (発明の効果) 特定された製法により得られた無機酸化物微粒
子の有機溶媒単分散体は凝集粒子が殆んど無く、
微粒子表面が有機溶媒やポリマーとなじみ易い結
果、微粒子濃度が高い分散体においても貯蔵安定
性が高く、使用時においては微粒子が非常に高分
散された状態となり、ポリマー用フイラー、表面
処理剤、潤滑材などの用途に好適なものである。 (実施例) 以下、実施例を掲げて本発明を更に詳しく説明
するが実施例によつて本発明の範囲が制限される
ことはない。 なお、無機酸化物微粒子の有機溶媒分散体試料
中の微粒子の形状、平均粒子径、標準偏差値、凝
集粒子の有無、分散安定性及び各工程で製造され
た微粒子の結晶性、吸着水含量は下記の方法によ
り分析、評価した。 ●粒子形状 5万倍の電子顕微鏡観察により判定した。 ●平均粒子径及び標準偏差値 5万倍の電子顕微鏡撮影像の任意の粒子100
個の粒子径を実測して下記の式より求めた。 標準偏差値=X+σo-1/X (但し ) ●凝集粒子の有無 試料をスラリーの状態のまま1000倍の光学顕
微鏡で観察し評価した。 ●分散安定性 試料を密栓したガラス製容器に入れ静置し、
容器底部に粒子沈降層及び上部に上澄層の有無
を観察し、下記の基準に基づいて評価した。 1日静置後に沈降層又は上澄層が認められたも
の × 2日〜1ケ月静置後に沈降層又は上澄層が認めら
れたもの 〇 1ケ月後も沈降層又は上澄層が認められないもの
◎ ●微粒子の結晶性 懸濁体又は分散体の一部を遠心分離、無水エ
タノールによる洗浄、遠心分離をくり返し行な
つた後、50℃にて真空乾燥して粉体試料を得
る。該粉体試料をX線回析により微粒子の結晶
性を評価した。 ●吸着水含量 上述した方法と同様にして得た粉体試料を磁
製容器に秤量(その時の試料重量をAgとす
る)した後乾燥空気を流通している200℃のオ
ーブン中に入れ5時間保持する。冷却後容器を
秤量(その時の試料重量をBgとする)し下記
の式により微粒子中の吸着水含量を測定した。 吸着水含量=A−B/A×100(%) 水和物微粒子のアルコール性溶液懸濁体の製造 例 1−(1) 撹拌機、滴下口、温度計を備えた30のガラス
製反応器にメタノール16及び28%アンモニア水
溶液1.5Kgを添加して混合した。該混合液を20℃
±0.5℃に調整し撹拌しながら、テトラメチルシ
リケート1.0Kgをメタノール2に希釈した溶液
を滴下口より1時間かけて滴下し、滴下後も2時
間撹拌を続け加水分解を行ないシリカ水和物微粒
子(1a)のアルコール性溶液懸濁体を製造した。
この時の最終溶液全量に対する各原料の濃度はテ
トラメチルシリケート0.32モル/、水2.90モ
ル/、アンモニア1.19モル/であつた。反応
条件及び微粒子の分析結果を表−1に示す。 例 1−(2)〜(7) 有機金属化合物の種類、アルコールの種類、最
終溶液全量に対する各原料の濃度及び反応温度を
表−1に示した通りとする以外は例1−(1)と同様
にして、アリカ水和物微粒子(2a)〜(3a)の
懸濁体、チタニア水和物微粒子(4a)の懸濁体、
ジルコニア水和物微粒子(5a)の懸濁体、アル
ミナ水和物微粒子(6a)の懸濁体、シリカ−ア
ルミナ複合水和物微粒子(7a)の懸濁体を製造
した。それらの反応条件及び分析結果を表−1に
示す。
(Industrial Application Field) The present invention relates to a method for producing a monodisperse of inorganic oxide fine particles in an organic solvent. More specifically, after coupling a suspension of hydrate fine particles in an alcoholic solution obtained by the specified manufacturing method, excellent dispersion stability can be achieved by replacing the alcoholic solvent with the desired organic solvent. , relates to a method for producing an organic solvent monodispersion of organic oxide fine particles having affinity for organic solvents. This organic solvent monodispersion of inorganic oxide fine particles is
There are almost no agglomerated particles or coarse particles, and the fine particle surface has been modified, so it can be used for polymer films, fibers, sheets, etc. that require uniform dispersibility as is.
As a filler material for various molding agents and paints,
It also has industrial value, as it can be used as a surface treatment material for glass, plastic, ceramics, etc. (Prior art) Conventional methods for surface modification of hydrophilic inorganic oxide fine particles include adsorption of surfactants or treatment with reactive monomers or coupling agents that can react with metal hydroxyl groups on the surface of the fine particles. It is practiced more than ever. The method using a surfactant is a method in which a surfactant is added to an aqueous suspension of fine particles and adsorbed onto the surface of the fine particles, and has the drawback that the surface modification effect is generally weak. On the other hand, in the method using a coupling agent, the coupling agent is added when the powdered fine particles are suspended in an organic solvent, or the coupling agent is added after replacing the water solvent with an organic solvent in an aqueous dispersion of fine particles. Since this method involves modifying the surface of the particles by modifying the surface of the particles, agglomeration of the particles is unavoidable, and it has therefore been impossible to obtain an organic solvent dispersion in which the particles are monodispersed. On the other hand, it is known that a suspension of hydrate fine particles can be obtained by hydrolyzing a hydrolyzable organometallic compound such as a metal alkoxide in an alcoholic solution. However, since this suspension contains catalyst components and water, and the type of alcohol is limited, the suspension cannot be used as is for various purposes. Therefore, it is recommended to separate the hydrate particles from this suspension by distilling off the alcohol solvent or by centrifugation, and then resuspending the particles in a desired organic solvent after drying and baking if necessary. However, the formation of agglomerated particles during the process was unavoidable. (Problems to be Solved by the Invention) The present invention provides a monodispersion of oxide fine particles in an organic solvent from a hydrate fine particle suspension obtained by hydrolyzing a hydrolyzable organometallic compound in an alcoholic solution. The present invention provides a method for producing a stable organic solvent monodispersion even at a high concentration of fine particles by modifying the surface of fine particles while preventing the formation of aggregated particles during the process. (Means and effects for solving the problems) As a result of intensive studies by the present inventors in order to solve the problems of the prior art described above, the present inventors have found that a hydrolyzable organometallic compound is hydrolyzed in an alcoholic solution. When producing an organic solvent monodispersion of inorganic oxide fine particles from the obtained hydrate fine particle suspension, at least the following steps are performed, namely the first step: A hydrolyzable organometallic compound is added to an aqueous alcohol solution. a step of obtaining a suspension of substantially amorphous hydrate fine particles (hereinafter referred to as hydrate fine particles (a)) in an alcoholic solution; second step; suspending the alcoholic solution; The third step is the step of adding a coupling agent into the body to perform coupling treatment; the alcoholic solvent of the alcoholic solution suspension subjected to coupling treatment is an organic solvent (hereinafter referred to as organic solvent (B)). By applying a manufacturing method including a step of replacing the solvent with the organic solvent to obtain a monodispersion of oxide fine particles in an organic solvent,
We have discovered that it is possible to suppress the agglomeration of fine particles in a dispersion and to create a fine particle surface that has a high affinity for organic substances, thereby producing a stable monodispersion of inorganic oxide fine particles in an organic solvent, which led to the present invention. It is. Hydrolyzable organometallic compounds that are raw materials for inorganic oxide fine particles (hereinafter referred to as oxide fine particles (c)) in an organic solvent monodisperse include silicon, titanium, and zirconium containing hydrolyzable organic groups. Any metal compound such as aluminum or the like that can be hydrolyzed to form a hydrate may be used, and alkoxides of the above metals are preferably used as they are industrially easily available and inexpensive. They have the general formula M(OR)
m (where M is a metal element, m is an integer corresponding to the valence of the element, and R is an alkyl group), preferably the alkyl group has 8 carbon atoms.
Lower alkyl groups up to are used. Specifically, tetramethyl silicate, tetraethyl silicate, tetraisopropyl silicate, tetrabutyl silicate, tetramethyl titanate, tetraethyl titanate, tetraisopropyl titanate, tetrabutyl titanate, tetramethyl zirconate, tetraethyl zirconate, tetraisopropyl zirconate, tetrabutyl. Examples include zirconate, tetra(2-ethylhexyl) titanate, trimethylaluminate, triethylaluminate, triisopropylaluminate, tributylaluminate, etc., but compounds with different alkyl groups such as dimethyldiethylsilicate, diethyldibutyltitanate, etc. It's okay to be. Other preferred organometallic compounds include derivatives of these alkoxides. An example is a compound in which some of the alkoxide groups (OR) in the general formula M(OR)m are substituted with a group capable of forming a chelate compound, such as a carboxyl group or a β-dicarbonyl group, or a compound substituted with these alkoxides or alkylcosides. These include low condensates obtained by partially hydrolyzing . Other organometallic compounds include titanium, zircon or aluminum acylate compounds such as zirconium acetate, zirconium oxalate, zirconium lactate, titanium lactate, aluminum lactate; titanium acetylacetonate, zircon acetylacetonate, titanium octyl glycolate; Examples include glycols of titanium, zircon, or aluminum, such as titanium triethanolaminate and aluminum acetylacetonate, and chelate compounds such as β-diketones, hydroxycarboxylic acids, ketoesters, ketoalcohols, aminoalcohols, and quinolines. The oxide fine particles (c) are mainly made from the above-mentioned organometallic compounds of silicon, titanium, zirconium and/or aluminum, but also contain sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, By coexisting organometallic compounds or inorganic salts such as barium, boron, gallium, indium, tin, iron, copper, etc., and hydrolyzing them, oxides of silicon, titanium, zirconium, and/or aluminum and oxides of the above metals can be combined. It can also be made into composite fine particles. At this time, the proportion of silicon, titanium, zirconium and/or aluminum oxide in the oxide fine particles is not particularly limited, but is preferably 70% or more. In the present invention, in order to obtain a monodispersion of inorganic oxide fine particles in an organic solvent, the above organometallic compound is first hydrolyzed and condensed in an alcoholic solution to obtain a suspension of hydrate fine particles in an alcoholic solution (hereinafter referred to as (referred to as the first step). At this time, there is no restriction on the final concentration of the organometallic compound in the solution, but if the concentration is 2 mol/less or less, aggregation of the generated hydrate fine particles is less likely to occur, and therefore, the final concentration disclosed in the present invention is When an organic solvent dispersion of oxide fine particles is prepared by the method described above, there are no agglomerated particles, which is preferable. The alcohol in the alcoholic solution is not particularly limited, and various types can be used. For example, methanol, ethanol, isopropanol, butanol, isoamyl alcohol, ethylene glycol, propylene glycol, etc. are used alone or in mixtures. Further, a portion of an organic solvent such as dioxane, diethyl ether, ethyl acetate, benzene, toluene, hexane, etc. can be mixed into the solution. Water necessary for hydrolysis is allowed to coexist in the alcoholic solution. This water content affects the shape and diameter of the particles, so it needs to be controlled to a preferable amount, but it changes depending on the type of metal and compound of the organometallic compound. This water can also be supplied by moisture in the gas phase. Hydrolysis can be carried out, for example, by adding the above-mentioned organometallic compound raw material or its alcoholic solution into the above-mentioned alcoholic solution and stirring at a temperature of 0 to 100°C, preferably 0 to 50°C for 10 minutes to 100 hours. It is done by folding. At that time, catalyst components such as cations such as NH 4 + and Na + and anions such as SO 4 2- and H 2 PO 4 - can be added in order to control the hydrolysis rate, but their presence or absence and amount varies depending on the raw material, and is appropriately selected in consideration of the influence on particle shape and particle size. By hydrolyzing the organometallic compound in an alcoholic solution under appropriate conditions in this way, a monodisperse suspension of hydrate fine particles (a) can be obtained. Furthermore, by selecting preferable conditions such as raw material concentration, reaction temperature, water concentration, type of alcohol and solvent, type and concentration of catalyst, etc., hydrate fine particles (a) are spherical and have an average particle size in the range of 0.05 to 5 μm. The particle size can be controlled to any desired size, and the standard deviation value of the particle size is 1 to 1.
In the range of 1.5, 1 to 1 depending on the selection of preferable conditions.
It is possible to obtain uniform particles in the range of 1.3. Hydrate fine particles controlled in this manner are particularly preferred when used as various fillers or surface treatment agents. A coupling agent is added to the thus produced suspension of hydrate fine particles (a) in an alcoholic solution to subject the surfaces of the fine particles to a coupling treatment (hereinafter referred to as the second step). On the surface of the hydrate fine particles (a) obtained in the first step, some of the organic groups derived from the raw materials remain and are bonded, and the catalyst components are adsorbed, so the particle surface is easily changed. It is active. When the alcoholic solvent is distilled from the suspension obtained in the first step without treatment, the formation of aggregated particles is observed, but the reason for this is that the hydrolysis reaction on the particle surface progresses. This is thought to be due to the surface condition changing to a form that makes aggregation more likely, such as desorption of adsorbed components. As a result of various studies on methods for controlling the activity of the particle surface, the present inventors found that the surface of hydrate fine particles (a) has a high reactivity with a coupling agent, and if coupling treatment is performed after the first step, the coupling agent can be used. They have discovered that even in small amounts, they have an excellent effect of preventing agglomeration of fine particles and can convert the surface of fine particles to have affinity for organic solvents. Coupling agents that can be used in the present invention are not particularly limited as long as they have one or more non-hydrolyzable organic groups and one or more hydrolyzable groups in the molecule, but those that are easily available can be used. Preferred examples include silane-based, titanate-based, and aluminum-based coupling agents. For example, methyltrimethoxysilane, phenyltrimethoxysilane, benzyltrimethoxysilane, methyltriisopropoxysilane, 3-chloropropyltrimethoxysilane, dimethoxydimethylsilane, diethoxymethylphenylsilane, ethoxytrimethylsilane, 3-amino One or more types of ( Alkoxysilanes having (substituted) alkyl group, (substituted) phenyl group, vinyl group, etc., trimethylchlorosilane,
Silane coupling agents such as chlorosilanes such as diethyldichlorosilane, acetoxysilanes such as acetoxytriethylsilane, diacetoxydiphenylsilane, and triacetoxyvinylsilane,
Examples include titanate coupling agents such as isopropyltriisosteroyl titanate and bis(dioctylpyrophosphate)oxyacetate titanate, and aluminum coupling agents such as acetalkoxyaluminum diisopropylate, but are not limited thereto. When an alkoxide or a derivative thereof is used as the organometallic compound in the first step, it is particularly preferable to use a coupling agent having an alkoxy group as a hydrolyzable group because of its high reactivity. The amount of coupling agent added is 0.1 to 10% by weight, preferably 0.1 to 10% by weight based on the weight of fine particles converted to oxide.
The range is 0.5 to 5% by weight. If it is below the lower limit, the effect will be small, and if it is above the upper limit, it will be effective but not economical. The temperature of the coupling treatment may be in the range of 0 to 100 DEG C. and is preferably carried out at the temperature in the first step. Next, the alcoholic solvent of the alcoholic solution suspension of the coupled hydrate fine particles (hereinafter referred to as hydrate fine particles (b)) is replaced with an organic solvent (B), and the oxide fine particles (c ) as an organic solvent dispersion.
(Hereinafter referred to as the third step.) The alcoholic solvent includes the alcohol used in the first step, the organic solvent, water added in excess of the hydrolysis equivalent, the catalyst, and the organic matter by-produced from the hydrolyzed organometallic compound. A solvent consisting of organic substances produced as a by-product from the reaction between a coupling agent and the particle surface. Specific methods for solvent replacement include, for example, (1) a method in which the coupled hydrate fine particles (c) are separated from the alcoholic solvent by sedimentation, centrifugation, etc., and then redispersed in the organic solvent (B). (2) A method of distilling off the alcoholic solvent from an alcoholic solution suspension of hydrate fine particles (b) in the coexistence of an organic solvent (B) to obtain an organic solvent dispersion. Any method can be used. After the third step, the organic solvent dispersion may be heat-treated to advance dehydration of the oxide fine particles (c), if necessary. The above solvent replacement method (2) does not involve solid-liquid separation,
Further, when heat treatment is performed after the third step, the same apparatus can be used, which is preferable. In that case, the boiling point of the organic solvent (B) is selected to be equal to or higher than that of the alcohol used in the first step. The operating conditions such as temperature and pressure for distilling the alcoholic solvent are not particularly limited and can be arbitrarily selected. The organic solvent (B) used includes saturated or unsaturated aliphatic hydrocarbons, aromatic hydrocarbons and their halides, monohydric and dihydric or higher alcohol compounds, ether compounds, ester compounds, amines, etc. It can be arbitrarily selected from organic compounds such as nitrogen-containing compounds, carbonyl compounds such as aldehydes and ketones, carboxylic acid compounds, and carbohydrates such as monosaccharides and polysaccharides, but those that are liquid at room temperature are preferred. Alternatively, the same alcohol as used in the first step may be used. When a monodispersion of oxide fine particles (c) in an organic solvent is used in a polymerization system, the organic solvent can be a polymerizable monomer or prepolymer depending on the purpose of use. The inorganic oxide fine particles as used in the present invention include particles that partially contain hydroxyl groups, coupling agent residues, adsorbed catalysts, and adsorbed water. In this way, a monodisperse of inorganic oxide fine particles in an organic solvent is finally obtained, but the dispersion stability is good even when the concentration of fine particles in the monodisperse is about 50% by weight in terms of oxide. be. In addition, alcoholic solvents other than the organic solvent (B) in the monodisperse are present in all solvents.
It does not matter if about 20% by weight or less remains. (Effect of the invention) The organic solvent monodispersion of inorganic oxide fine particles obtained by the specified manufacturing method has almost no aggregated particles,
As a result of the fine particle surface being compatible with organic solvents and polymers, even dispersions with a high concentration of fine particles have high storage stability, and when used, the fine particles are in a highly dispersed state, making them suitable for use as fillers for polymers, surface treatment agents, and lubricants. It is suitable for uses such as materials. (Examples) Hereinafter, the present invention will be explained in more detail with reference to Examples, but the scope of the present invention is not limited by the Examples. In addition, the shape of the fine particles in the organic solvent dispersion sample of the inorganic oxide fine particles, the average particle diameter, the standard deviation value, the presence or absence of aggregated particles, the dispersion stability, the crystallinity of the fine particles produced in each process, and the adsorbed water content are It was analyzed and evaluated by the following method. ●Particle shape Determined by electron microscope observation at 50,000x magnification. ●Average particle diameter and standard deviation value: 100 arbitrary particles in an electron microscope image taken at 50,000 times magnification
The particle diameter of each particle was actually measured and calculated using the following formula. Standard deviation value = X + σ o-1 /X (However, ) ●Presence or absence of aggregated particles The sample was observed and evaluated in the slurry state using an optical microscope at 1000x magnification. ●Dispersion stability Place the sample in a tightly closed glass container and let it stand.
The presence or absence of a particle sedimentation layer at the bottom of the container and a supernatant layer at the top was observed and evaluated based on the following criteria. Items in which a sedimentation layer or supernatant layer was observed after standing for 1 day × Items in which a sedimentation layer or supernatant layer was observed after standing for 2 days to 1 month 〇A sedimentation layer or supernatant layer was observed even after 1 month What is not there
◎ ●Crystallinity of fine particles After repeating centrifugation, washing with absolute ethanol, and centrifugation of a part of the suspension or dispersion, vacuum dry at 50°C to obtain a powder sample. The crystallinity of the fine particles of the powder sample was evaluated by X-ray diffraction. ●Adsorbed water content A powder sample obtained in the same manner as above was weighed in a porcelain container (the weight of the sample at that time is Ag), and then placed in an oven at 200℃ with dry air flowing through it for 5 hours. Hold. After cooling, the container was weighed (the sample weight at that time was taken as Bg), and the adsorbed water content in the fine particles was measured using the following formula. Adsorbed water content = A-B/A x 100 (%) Example of manufacturing a suspension of hydrate fine particles in an alcoholic solution 1-(1) 30 glass reactors equipped with a stirrer, a dropping port, and a thermometer 16 kg of methanol and 1.5 kg of 28% aqueous ammonia solution were added and mixed. The mixture was heated to 20°C.
While adjusting the temperature to ±0.5°C and stirring, a solution of 1.0 kg of tetramethyl silicate diluted in 2 methanol was added dropwise from the dripping port over 1 hour. After dropping, stirring was continued for 2 hours to perform hydrolysis and form silica hydrate fine particles. An alcoholic solution suspension of (1a) was produced.
At this time, the concentrations of each raw material relative to the total amount of the final solution were 0.32 mol/tetramethylsilicate, 2.90 mol/water, and 1.19 mol/ammonia. Table 1 shows the reaction conditions and particle analysis results. Example 1-(2) to (7) Same as Example 1-(1) except that the type of organometallic compound, the type of alcohol, the concentration of each raw material with respect to the total amount of the final solution, and the reaction temperature are as shown in Table-1. Similarly, a suspension of Arica hydrate fine particles (2a) to (3a), a suspension of titania hydrate fine particles (4a),
A suspension of zirconia hydrate fine particles (5a), a suspension of alumina hydrate fine particles (6a), and a suspension of silica-alumina composite hydrate fine particles (7a) were produced. Table 1 shows the reaction conditions and analysis results.

【表】 無機酸化物微粒子の有機溶媒単分散体の製造 例 2−(1)′ 例1−(1)で製造されたシリカ水和物微粒子
(1a)の懸濁体16.7Kgにシランカツプリング剤と
してフエニルトリメトキシシラン2.0g(シリカ
水和物微粒子を酸化物に換算した重量に対し0.5
重量%)を添加し室温で30分間撹拌を行ないシラ
ンカツプリング処理を施した後、有機溶媒として
エチレングリコール1.2Kgを混合し有機溶媒含有
懸濁体とした。 次に、外部より熱媒加熱しうる撹拌機、滴下
口、温度計、溜出ガス出口を備えた5のガラス
製蒸発釜と、溜出ガス出口に続き溜出ガス凝縮
器、減圧吸引口、凝縮液受器からなる蒸発装置の
蒸発釜に、該有機溶媒含有懸濁体のうち2を最
初に仕込み、系内の圧力を200Torrに維持して加
熱しアルコール性溶媒を溜出させると共に該懸濁
体の残分を連続的に供給し、供給終了後も加熱を
続け内温が100℃の時に溶媒溜出を停止した。こ
のようにしてシリカ微粒子(1c)の有機溶媒(エ
チレングリコール)分散体を製造した。この分散
体中には微粒子を除いた溶媒中にアルコール性溶
媒(主にメタノール及び水)が11重量%含まれて
いた。 シランカツプリング処理条件、溶媒置換の条件
を表−2に、分散体の性状及び微粒子の分析値を
表−3に示す。 例 2−(2)〜(7) 例1−(2)〜(7)で製造した各水和物微粒子(2a)
〜(7a)のアルコール性溶液懸濁体を用い、例
2−(1)の方法において、カツプリング剤の種類、
量、有機溶媒の種類、溶媒置換の条件を変えた以
外は同様の操作を行ない、酸化物微粒子(2c)〜
(7c)の有機溶媒分散体を製造した。結果を表−
2及び表−3に示す。 比較例 例2−(2)においてカツプリング処理を行なわな
い以外は例2−(2)と同様に溶媒置換を行なつた。
その時の結果を表−3に示す。
[Table] Production example of organic solvent monodispersion of inorganic oxide fine particles 2-(1)' Silane coupling to 16.7 kg of suspension of silica hydrate fine particles (1a) produced in Example 1-(1) 2.0 g of phenyltrimethoxysilane (0.5 g based on the weight of silica hydrate fine particles converted to oxide) as an agent.
% by weight) and stirred at room temperature for 30 minutes to perform a silane coupling treatment, and then 1.2 kg of ethylene glycol was mixed as an organic solvent to obtain an organic solvent-containing suspension. Next, there is a glass evaporator (5) equipped with a stirrer that can heat the heat medium from the outside, a dripping port, a thermometer, and a distilled gas outlet, and following the distilled gas outlet, a distilled gas condenser, a vacuum suction port, First, two of the organic solvent-containing suspensions are charged into an evaporation pot of an evaporation device consisting of a condensate receiver, and heated while maintaining the pressure in the system at 200 Torr to distill out the alcoholic solvent and to remove the suspension. The remainder of the turbidity was continuously supplied, heating was continued even after the supply was completed, and solvent distillation was stopped when the internal temperature reached 100°C. In this way, an organic solvent (ethylene glycol) dispersion of silica fine particles (1c) was produced. This dispersion contained 11% by weight of an alcoholic solvent (mainly methanol and water) in the solvent excluding the fine particles. Table 2 shows the silane coupling treatment conditions and solvent replacement conditions, and Table 3 shows the properties of the dispersion and the analysis values of the fine particles. Example 2-(2) to (7) Each hydrate fine particle (2a) produced in Example 1-(2) to (7)
In the method of Example 2-(1) using the alcoholic solution suspension of ~(7a), the type of coupling agent,
Oxide fine particles (2c) ~
An organic solvent dispersion of (7c) was produced. Display the results -
2 and Table 3. Comparative Example Solvent replacement was carried out in the same manner as in Example 2-(2) except that the coupling treatment was not performed in Example 2-(2).
The results are shown in Table 3.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 加水分解可能な有機金属化合物をアルコール
性溶液中で加水分解してえられる水和物微粒子懸
濁体より無機酸化物微粒子の有機溶媒単分散体を
製造するに際し、少くとも下記の工程、即ち第一
の工程;加水分解可能な有機金属化合物をアルコ
ールの含水溶液中で加水分解して、水和物微粒子
のアルコール性溶液懸濁体をうる工程、第二の工
程;該アルコール性溶液懸濁体中にカツプリング
剤を添加してカツプリング処理を施す工程、第三
の工程;カツプリング処理を施されたアルコール
性溶液懸濁体のアルコール性溶媒を有機溶媒に溶
媒置換して酸化物微粒子の有機溶媒単分散体をう
る工程を含むことを特徴とする無機酸化物微粒子
の有機溶媒単分散体の製法。 2 有機金属化合物がシリコン、チタン、ジルコ
ニウムおよび/またはアルミニウムの化合物を主
成分とし、無機酸化物微粒子がシリカ、チタニ
ア、ジルコニア、アルミナまたはそれらの複合酸
化物を主成分とすることを特徴とする特許請求の
範囲1記載の方法。 3 有機金属化合物がアルコキシドまたはその誘
導体であることを特徴とする特許請求の範囲1ま
たは2記載の方法。 4 カツプリング剤がシラン系、チタネート系お
よび/またはアルミニウム系カツプリング剤であ
ることを特徴とする特許請求の範囲1、2または
3記載の方法。 5 無機酸化物微粒子が球状で、平均粒子径が
0.05〜5μmの範囲にあり、粒子径の標準偏差値が
1〜1.5の範囲であることを特徴とする特許請求
の範囲1、2、3または4記載の方法。
[Claims] 1. When producing an organic solvent monodispersion of inorganic oxide fine particles from a hydrate fine particle suspension obtained by hydrolyzing a hydrolyzable organometallic compound in an alcoholic solution, Both of the following steps, namely the first step; a step of hydrolyzing a hydrolyzable organometallic compound in an aqueous solution of alcohol to obtain a suspension of hydrate fine particles in an alcoholic solution; a second step; A step of adding a coupling agent to the alcoholic solution suspension to perform a coupling treatment; a third step; replacing the alcoholic solvent of the alcoholic solution suspension subjected to the coupling treatment with an organic solvent; 1. A method for producing a monodisperse of inorganic oxide particles in an organic solvent, the method comprising the step of obtaining a monodisperse of oxide particles in an organic solvent. 2. A patent characterized in that the organometallic compound is mainly composed of a compound of silicon, titanium, zirconium, and/or aluminum, and the inorganic oxide fine particles are mainly composed of silica, titania, zirconia, alumina, or a composite oxide thereof. The method according to claim 1. 3. The method according to claim 1 or 2, wherein the organometallic compound is an alkoxide or a derivative thereof. 4. The method according to claim 1, 2 or 3, wherein the coupling agent is a silane-based, titanate-based and/or aluminum-based coupling agent. 5 The inorganic oxide fine particles are spherical and the average particle size is
5. The method according to claim 1, wherein the particle diameter is in the range of 0.05 to 5 μm and the standard deviation value of the particle diameter is in the range of 1 to 1.5.
JP62011248A 1986-03-07 1987-01-22 Production of monodisperse body of fine inorganic oxide particle in organic solvent Granted JPS63182204A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP62011248A JPS63182204A (en) 1987-01-22 1987-01-22 Production of monodisperse body of fine inorganic oxide particle in organic solvent
EP87103111A EP0236945B1 (en) 1986-03-07 1987-03-05 Monodispersed glycol suspension of fine inorganic oxide particles having excellent dispersion stability and method of improving the slipperiness of polyester film using the monodispersed suspension
DE3751849T DE3751849T2 (en) 1986-03-07 1987-03-05 Process for improving the lubricity of polyester film
DE8787103111T DE3784357T2 (en) 1986-03-07 1987-03-05 MONODISPERSE GLYCOL SUSPENSION OF FEI INORGANIC OXIDE PARTICLES WITH EXCELLENT DISPERSION STABILITY AND METHOD FOR IMPROVING THE SLIP RESISTANCE OF POLYESTER FILM USING THE MONODISPERS SUSPENSION.
EP92100741A EP0479774B1 (en) 1986-03-07 1987-03-05 Method of improving the slipperiness of polyester film
KR1019870002058A KR910008721B1 (en) 1986-03-07 1987-03-07 Monodispersed glycol sospension of fine inorganic oxide particles having excellent dispersion stability and method of improving the slipperiness of polyester film using the monodispersed suspension
US07/322,185 US5316714A (en) 1986-03-07 1989-03-13 Method of improving slipperiness of polyester film using a monodispersed glycol suspension of inorganic oxide particles
US07/731,259 US5236622A (en) 1986-03-07 1991-07-17 Process for producing a monodispersed glycol suspension of fine inorganic oxide particles having excellent dispersion stability
US07/925,424 US5304324A (en) 1986-03-07 1992-08-10 Monodispersed glycol suspension of fine inorganic oxide particles having excellent dispersion stability
US08/201,406 US5863647A (en) 1986-03-07 1994-02-24 Monodispersed glycol suspension of fine inorganic oxide particles having excellent dispersion stability and a polyester film containing said particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62011248A JPS63182204A (en) 1987-01-22 1987-01-22 Production of monodisperse body of fine inorganic oxide particle in organic solvent

Publications (2)

Publication Number Publication Date
JPS63182204A JPS63182204A (en) 1988-07-27
JPH053407B2 true JPH053407B2 (en) 1993-01-14

Family

ID=11772637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62011248A Granted JPS63182204A (en) 1986-03-07 1987-01-22 Production of monodisperse body of fine inorganic oxide particle in organic solvent

Country Status (1)

Country Link
JP (1) JPS63182204A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031010A (en) * 2006-07-31 2008-02-14 Kawaken Fine Chem Co Ltd Method for producing alumina organic solvent dispersed liquid

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129008A (en) * 1988-11-08 1990-05-17 Sekisui Plastics Co Ltd Production of cellular inorganic sphere
JPH0662284B2 (en) * 1989-04-07 1994-08-17 株式会社日本触媒 Method for producing inorganic oxide particles
JP2855442B2 (en) * 1989-04-18 1999-02-10 株式会社資生堂 Manufacturing method of fine particle titanium hydroxide powder
JPH0764544B2 (en) * 1989-12-15 1995-07-12 信越化学工業株式会社 Method for producing silica powder
US6495709B1 (en) * 2000-03-16 2002-12-17 Symetrix Corporation Liquid precursors for aluminum oxide and method making same
JP2003073122A (en) * 2001-09-04 2003-03-12 Mitsui Chemicals Inc Inorganic microparticle dispersion and composite material composition produced by using the same
JP2003210970A (en) * 2002-01-17 2003-07-29 Tokuyama Corp Method for manufacturing colloidal fine particle slurry
JP4458396B2 (en) * 2002-08-29 2010-04-28 扶桑化学工業株式会社 Method for producing high-purity hydrophilic organic solvent-dispersed silica sol, high-purity hydrophilic organic solvent-dispersed silica sol obtained by the method, method for producing high-purity organic solvent-dispersed silica sol, and high-purity organic solvent-dispersed silica sol obtained by the method
WO2004058639A1 (en) * 2002-12-25 2004-07-15 E-Tec Co., Ltd. Fine metal oxide particle, metal oxide microcapsule, fine metal hydroxide particle, metal hydroxide microcapsule, and processes for producing these
JP4803630B2 (en) * 2003-05-21 2011-10-26 扶桑化学工業株式会社 Method for producing high purity hydrophobic organic solvent-dispersed silica sol
JP4577755B2 (en) * 2003-12-02 2010-11-10 扶桑化学工業株式会社 Process for producing modified colloidal silica
JP2005298226A (en) * 2004-04-06 2005-10-27 Mitsubishi Chemicals Corp Silica sol and its manufacturing method
JP2005298717A (en) * 2004-04-14 2005-10-27 Konica Minolta Opto Inc Thermoplastic resin material, its production method and optical element using the same
JP2007154159A (en) * 2005-11-09 2007-06-21 Konica Minolta Opto Inc Organic inorganic composite material and optical element
JP5335184B2 (en) * 2006-09-21 2013-11-06 株式会社アドマテックス Active silica fine particles, method for producing the same, and resin composition
MX337770B (en) * 2006-11-10 2016-03-18 Servicios Administrativos Peñoles S A de C V Process for the preparation of a flame retardant additive for coatings and resulting products.
JP2008184371A (en) * 2007-01-31 2008-08-14 Ube Nitto Kasei Co Ltd Method for manufacturing metal oxide particles, metal oxide particles and resin composition
JP5176380B2 (en) * 2007-05-07 2013-04-03 住友大阪セメント株式会社 Surface-modified zirconia particles, surface-modified zirconia particle dispersion and composite, and method for producing surface-modified zirconia particles
JP4895229B2 (en) * 2008-03-06 2012-03-14 日東電工株式会社 Modified polyaluminosiloxane
US9637639B2 (en) * 2009-11-05 2017-05-02 Akzo Nobel Chemicals International B.V. Aqueous silica dispersion
JP5537986B2 (en) * 2010-02-18 2014-07-02 住友化学株式会社 Amorphous titanium oxide dispersion and method for producing the same
JP6028529B2 (en) * 2012-11-08 2016-11-16 住友大阪セメント株式会社 Surface-modified metal oxide fine particles, dispersion containing the same, resin composition, composite, and optical member
CN109071238B (en) 2016-03-30 2023-04-04 福吉米株式会社 Method for producing cationically modified silica and cationically modified silica dispersion
US10941318B2 (en) 2016-09-30 2021-03-09 Fujimi Incorporated Method for producing cationically modified silica, cationically modified silica dispersion, method for producing polishing composition using cationically modified silica, and polishing composition using cationically modified silica

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031010A (en) * 2006-07-31 2008-02-14 Kawaken Fine Chem Co Ltd Method for producing alumina organic solvent dispersed liquid

Also Published As

Publication number Publication date
JPS63182204A (en) 1988-07-27

Similar Documents

Publication Publication Date Title
JPH053407B2 (en)
KR910008721B1 (en) Monodispersed glycol sospension of fine inorganic oxide particles having excellent dispersion stability and method of improving the slipperiness of polyester film using the monodispersed suspension
KR950001660B1 (en) Method for production of inorganic oxide particles
US5338353A (en) Method for production of powder of fine inorganic particles
JP5870040B2 (en) High-purity metal oxide particles and method for producing materials produced thereby
CA2125176A1 (en) Surface-modified oxide particles and their use as fillers and modifying agents in polymer materials
US5236622A (en) Process for producing a monodispersed glycol suspension of fine inorganic oxide particles having excellent dispersion stability
US5304324A (en) Monodispersed glycol suspension of fine inorganic oxide particles having excellent dispersion stability
JPS62207356A (en) Method of improving slipperiness
JP3585834B2 (en) Dispersion of titanium dioxide particles containing a polyorganosiloxane-based binder
WO2011045223A1 (en) Re-dispersible metal oxide nanoparticles and method of making them
KR20010102236A (en) Organic Sol And Solid Compound Based on Titanium Oxide And An Amphiphilic Compound And Preparation Methods
JPH03288538A (en) Production of inorganic fine particle powder
JPH01317155A (en) Production of ceramic compact
JPH0515746B2 (en)
JPH0657317B2 (en) Glycol monodisperse of inorganic oxide fine particles and method for producing the same
JPWO2020110183A1 (en) Surface-modified barium titanate particle material, barium titanate-containing resin composition, and barium titanate dispersion
JPH0474379B2 (en)
KR102019698B1 (en) Reformed zirconia fine particle, dispersion sol of reformed zirconia fine particle and its preparation method
JP7429137B2 (en) Method for producing silica-titania composite oxide particles and silica-titania composite oxide particles
JPH0625262B2 (en) Sliding method
JPH0524857B2 (en)
JPH0350105A (en) Production of inorganic oxide grains
TWI829896B (en) Silicon dioxide-titanium dioxide composite oxide powder
JPH01144423A (en) Method for improving slipperiness

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees