JPH0534041B2 - - Google Patents

Info

Publication number
JPH0534041B2
JPH0534041B2 JP61098951A JP9895186A JPH0534041B2 JP H0534041 B2 JPH0534041 B2 JP H0534041B2 JP 61098951 A JP61098951 A JP 61098951A JP 9895186 A JP9895186 A JP 9895186A JP H0534041 B2 JPH0534041 B2 JP H0534041B2
Authority
JP
Japan
Prior art keywords
oil
wastewater
emulsified
treatment
emulsified oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61098951A
Other languages
Japanese (ja)
Other versions
JPS62254810A (en
Inventor
Kazuo Terajima
Hirotsugu Ogawa
Shigeru Tomita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP9895186A priority Critical patent/JPS62254810A/en
Publication of JPS62254810A publication Critical patent/JPS62254810A/en
Publication of JPH0534041B2 publication Critical patent/JPH0534041B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は切削油、圧延油、脱脂油等の油分が乳
化状態で含まれる乳化油排水から電解によつて油
分を分離除去する方法である。 〔従来技術〕 機械、金属加工工場等から排出される含油排水
には切削油、圧延油等が含まれている。かかる含
油排水は乳化剤によつて高度に乳化しているの
で、油水分離、活性汚泥処理、吸着処理等、従来
の方法によつて油分を分離除去することは極めて
困難であつた。加えて機械、金属加工工場等は非
用水型産業であつて、排水の絶対量が少ないため
に、他の排水による乳化油排水の希釈効果は全く
期待できず、乳化油排水に対する早急な対策が要
望されていた。乳化油排水の処理が困難な原因
は、排水中の油分が乳化剤によつて乳化分散して
おり、油分粒型はほとんど10μ以下で極めて安定
な状態を保つており、油分が水相から分離しない
ためである。 従つて、油水分離や吸着処理等の通常の物理的
な手段では処理することができない。また、薬剤
を用いて乳化状態を破壊する方法は原理的には可
能であつても加えた薬剤の二次処理の問題、およ
び乳化油排水の組成が複雑であるために薬剤の選
定条件が複雑になる等の理由で実現は非常に困難
である。また、電極反応のみを利用した方法は二
次生成物の発生がなく、良い処理結果が得られる
が、処理に長時間を要し、電力の消費量が多い問
題がある。 〔発明の目的〕 本発明は上記従来の欠点を解消すべくなされた
ものであり、少ない電力で短時間に効果的な油分
を分離除去することができる方法を提供すること
を目的とするものである。 〔発明の構成〕 上記目的を達成する本発明の乳化油排水の処理
方法は、乳化油排水を電極間に置き、この乳化油
排水に難溶性多価金属化合物からなる添加剤を混
合した後、この電極間に通電して前記乳化油排水
中の油分を分離除去することを特徴とするもので
ある。 本発明において電解処理の対象となる乳化油排
水を形成する油分は、いかなる種類であつても良
く、前記した切削油、圧延油等を含めて乳化状態
にある油分を処理対象とすることができる。 本発明の方法は通常の電解の場合と同様に乳化
油排水を電極を備えた電解槽に入れ、これに難溶
性多価金属化合物からなる添加剤を加え、よく分
散させてた状態で、電極間に通電することにより
行なわれる。本発明の方法においては、電極は不
溶性の電導体であればいかなるものでも使用する
ことができるが、酸素過電圧の高い陽極、たとえ
ば白金、二酸化鉛(PbO2)、炭素、フエライト等
を使用することが好ましい。また、ここで使用す
る添加剤はカルシウム、マグネシウム、アルミニ
ウム及び亜鉛の中から選ばれた多価金属の酸化
物、水酸化物および珪化物等難溶性の化合物が有
効である。添加剤の粒径は、種類によつて異なる
が、一般には0.005〜3mm、好ましくは0.01〜0.5
mmであり、その添加量は、排水1中0.005〜5
g、好ましくは0.05〜0.5gである。実施に当つ
ては、乳化油排水にこれらの添加剤を加え、攪拌
して懸濁状態としてから一定時間、電解し、電解
後処理水を静置すると、添加剤の一部と反応した
油分はスカムとなつて水面上に浮上し分離する。
このスカムは水面をかきとるだけで容易に除去す
ることができ、脱水性、濾過性も良好である。 また、未反応の添加剤は底部に沈殿してくるの
で、分離後再使用することができる。また陽極の
消耗、電解生成物の付着はなく、長時間の安定し
た連続運転が可能である。電解処理温度は通常、
常温〜60℃であり、電解電圧は通常5〜20ボルト
である。また乳化油排水中の油分濃度は特に限定
されないが、一般には100〜5000ppm程度である。 〔発明の効果〕 本発明の方法は、従来の排水処理方法とは異な
り電解酸化、添加剤イオンによる凝集作用、発生
ガスによる浮上分離作用等が総合されて油分を分
離除去する方法である。すなわち、電解酸化によ
る乳化剤の界面活性の下、添加剤の電解酸化によ
つて溶出した多価金属イオンの凝集作用、電解に
よつて発生した酸素ガス、水素ガスによる油分の
浮上分離作用が総合され相乗効果を発揮して能率
よく乳化油排水から油分を分離することができ
る。電解酸化だけの処理と比較すると1/10〜1/10
00の処理時間または電力で同程度以上の除去率に
達する。また添加剤だけの処理と比較すると数倍
の除去率を示す。また本発明の方法によれば、前
記の効果が複合されているので、乳化剤の種類、
油分の種類にかかわらず実施することができる。
更に本発明によれば、処理によつて発生する油分
を含むスカムは濾過性、脱水性が良好で容易に分
離除去することができる。また添加剤は反応後攪
拌を停止すると底部に沈殿してくるので回収して
再利用することができる。更にまた、処理能力を
電圧および電流によつて自由に制御できるので、
処理中に排水量や排水中の油分が変化しても、予
め、設定した基準の処理が得られるように容易に
対応することができる。 〔実施例〕 以下、本発明を実施例により更に詳細に説明す
る。 実施例 1 水で希釈して0.2g/の乳化油分濃度にした
JIS1種1号水溶性切削油を乳化油排水として用
い、その100mlを電解槽に入れ、添加剤として
CaSi2の粉末(64メツシユ以下)50mgを加えた。
電極として、陽極、陰極共に2cm×2cmと白金板
を用い、攪拌しながら、0.2Aの直流を通電し、
2時間電解処理した。電解電圧は19.8〜16Vであ
つた。初め乳濁していた電解液は電解処理によつ
て次第に透明度を増し、反応終了後攪拌を停止す
ると、ただちに油分を含むスカムは電解液の表面
に浮上分離し、また未反応の添加剤は比重が大き
いので底部に沈降分離して電解液は完全に無色透
明になつた。この結果、水溶性切削油の油分およ
び界面活性剤等の全有機物に対応する全有機炭素
量(以下、TOCと記す)は電解前の159ppmか
ら、2時間電解処理後に19.4ppmとなり、その除
去率は87.8%であつた。この処理によつて発生し
たスカムは、その大部分が油分で一部Ca等の水
酸化物を含んでいるが、電解液の表面をかきとる
ことによつて大部分を分離除去することができ、
さらに濾過等通常の分離操作を行なえば容易かつ
完全に油分を分離除去することができた。また底
部に沈降分離した添加剤は、回収して再使用する
ことができ、電極には電極反応を阻害する物質は
全く付着せず、連続して電解処理に使用すること
ができた。なお、添加剤を加えず他は全く同一試
料、同一条件で2時間電解処理をした場合は
TOC除去率は28.2%であり、また通電せずに添
加剤を加えて2時間攪拌して処理した場合の
TOC除去率は36.0%であつて、充分な処理効果
をあげることはできない。 実施例 2 実施例1において、陽極を二酸化鉛、陰極をス
テンレス板に代えた以外は同一試料、同一条件で
2時間電解処理を行なつた。この結果、TOCは
電解前の159ppmから、2時間電解処理後は
22.1ppmとなり、その除去率は86.1%で、実施例
1とほぼ同等な処理結果が得られた。油分の分
離、電解液の透明化等、全般的な反応の状況は実
施例1の場合とほぼ同等で、電解電圧は16.3〜
12Vであつた。 実施例 3 実施例1と同一試料で添加剤と電極を代えて電
解処理した結果をまとめて第1表に示す。 試料:JIS1種1号水溶性切削油0.2g/、
TOC159ppm 処理量:100ml 添加剤量:50mg 電極面積:2cm×2cm 電流:0.2A 電解時間:2時間
[Technical Field of the Invention] The present invention is a method for separating and removing oil by electrolysis from emulsified oil waste water containing oil such as cutting oil, rolling oil, degreased oil, etc. in an emulsified state. [Prior Art] Oil-containing wastewater discharged from machinery, metal processing factories, etc. contains cutting oil, rolling oil, etc. Since such oil-containing wastewater is highly emulsified by an emulsifier, it has been extremely difficult to separate and remove the oil by conventional methods such as oil-water separation, activated sludge treatment, and adsorption treatment. In addition, machinery, metal processing factories, etc. are industries that do not use water, and the absolute amount of wastewater is small, so we cannot expect any effect of diluting emulsified oil wastewater with other wastewater, and urgent measures are needed to prevent emulsified oil wastewater. It was requested. The reason why it is difficult to treat emulsified oil wastewater is that the oil in the wastewater is emulsified and dispersed by an emulsifier, and most of the oil particles are less than 10μ and remain extremely stable, so the oil does not separate from the aqueous phase. It's for a reason. Therefore, it cannot be treated by ordinary physical means such as oil/water separation or adsorption treatment. In addition, although it is possible in principle to destroy the emulsified state using chemicals, there are problems with secondary treatment of the added chemicals, and the composition of emulsified oil wastewater is complex, making the conditions for selecting chemicals complicated. It is extremely difficult to realize this for several reasons. Furthermore, methods using only electrode reactions do not generate secondary products and can provide good treatment results, but they have the problem of requiring a long time for treatment and consuming a large amount of power. [Object of the Invention] The present invention has been made in order to eliminate the above-mentioned conventional drawbacks, and its purpose is to provide a method that can effectively separate and remove oil in a short time with less electric power. be. [Structure of the Invention] The method for treating emulsified oil wastewater of the present invention that achieves the above object includes placing emulsified oil wastewater between electrodes, mixing an additive made of a poorly soluble polyvalent metal compound with the emulsified oil wastewater, and then The present invention is characterized in that electricity is applied between the electrodes to separate and remove oil in the emulsified oil waste water. In the present invention, the oil forming the emulsified oil wastewater to be subjected to electrolytic treatment may be of any type, and oil in an emulsified state, including the above-mentioned cutting oil, rolling oil, etc., can be treated. . In the method of the present invention, emulsified oil waste water is placed in an electrolytic tank equipped with electrodes, and an additive consisting of a poorly soluble polyvalent metal compound is added thereto, and in a well-dispersed state, emulsified oil waste water is placed in an electrolytic tank equipped with an electrode. This is done by passing electricity between them. In the method of the present invention, any insoluble conductor can be used as the electrode, but it is preferable to use an anode with a high oxygen overvoltage, such as platinum, lead dioxide (PbO 2 ), carbon, ferrite, etc. is preferred. Also, effective additives used here include poorly soluble compounds such as oxides, hydroxides, and silicides of polyvalent metals selected from calcium, magnesium, aluminum, and zinc. The particle size of the additive varies depending on the type, but is generally 0.005 to 3 mm, preferably 0.01 to 0.5 mm.
mm, and the amount added is 0.005 to 5 mm in wastewater 1.
g, preferably 0.05 to 0.5 g. In practice, these additives are added to emulsified oil wastewater, stirred to form a suspension, and then electrolyzed for a certain period of time. When the treated water is allowed to stand after electrolysis, the oil that has reacted with some of the additives is removed. It becomes scum and floats to the surface of the water and separates.
This scum can be easily removed by simply scraping the water surface, and has good dehydration and filtration properties. In addition, since unreacted additives settle to the bottom, they can be reused after separation. Furthermore, there is no wear of the anode or adhesion of electrolytic products, and stable continuous operation for long periods of time is possible. The electrolytic treatment temperature is usually
The temperature is room temperature to 60°C, and the electrolytic voltage is usually 5 to 20 volts. Further, the oil concentration in the emulsified oil wastewater is not particularly limited, but is generally about 100 to 5000 ppm. [Effects of the Invention] Unlike conventional wastewater treatment methods, the method of the present invention separates and removes oil by integrating electrolytic oxidation, coagulation action by additive ions, flotation action by generated gas, etc. In other words, under the surface activity of the emulsifier caused by electrolytic oxidation, the aggregation effect of polyvalent metal ions eluted by electrolytic oxidation of additives, and the flotation and separation effect of oil by oxygen gas and hydrogen gas generated by electrolysis are integrated. A synergistic effect can be exerted to efficiently separate oil from emulsified oil wastewater. 1/10 to 1/10 compared to electrolytic oxidation alone
A removal rate of the same level or higher is achieved with 0.00 processing time or power. Furthermore, compared to treatment using only additives, the removal rate is several times higher. Further, according to the method of the present invention, the above-mentioned effects are combined, so the type of emulsifier,
It can be carried out regardless of the type of oil content.
Further, according to the present invention, the scum containing oil produced by the treatment has good filterability and dehydration properties and can be easily separated and removed. Further, when the stirring is stopped after the reaction, the additive will precipitate at the bottom, so it can be recovered and reused. Furthermore, since the processing capacity can be freely controlled by voltage and current,
Even if the amount of wastewater or the oil content in the wastewater changes during the treatment, it can be easily handled so that the treatment meets the preset standards. [Example] Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 Diluted with water to give an emulsified oil concentration of 0.2g/
Use JIS Class 1 No. 1 water-soluble cutting oil as emulsified oil drainage, put 100ml of it into an electrolytic tank, and use it as an additive.
Added 50 mg of CaSi 2 powder (less than 64 mesh).
As electrodes, platinum plates measuring 2 cm x 2 cm were used for both the anode and cathode, and a direct current of 0.2 A was applied while stirring.
Electrolytic treatment was performed for 2 hours. The electrolysis voltage was 19.8-16V. The electrolyte, which was initially emulsified, gradually becomes more transparent through the electrolytic treatment, and when stirring is stopped after the reaction is complete, the oil-containing scum immediately floats to the surface of the electrolyte, and the unreacted additives lose their specific gravity. Since it was large, it settled and separated at the bottom, and the electrolyte became completely colorless and transparent. As a result, the amount of total organic carbon (hereinafter referred to as TOC), which corresponds to all organic substances such as oil and surfactants in water-soluble cutting oil, increased from 159 ppm before electrolysis to 19.4 ppm after 2 hours of electrolysis treatment, and its removal rate was 87.8%. The scum generated by this process is mostly oil and contains some hydroxides such as Ca, but most of it can be separated and removed by scraping the surface of the electrolyte. ,
Further, by performing ordinary separation operations such as filtration, it was possible to easily and completely separate and remove the oil. Furthermore, the additives that had settled and separated at the bottom could be recovered and reused, and the electrodes could be used continuously for electrolytic treatment without any substances that would inhibit electrode reactions attached to them. In addition, when the same sample was electrolyzed for 2 hours under the same conditions without adding any additives,
The TOC removal rate was 28.2%, and when treated by adding additives and stirring for 2 hours without applying electricity,
The TOC removal rate was 36.0%, which does not provide a sufficient treatment effect. Example 2 The same sample was electrolyzed for 2 hours under the same conditions as in Example 1, except that the anode was replaced with lead dioxide and the cathode was replaced with a stainless steel plate. As a result, the TOC was 159 ppm before electrolysis, and after 2 hours of electrolysis treatment.
The removal rate was 22.1 ppm, and the removal rate was 86.1%, and almost the same treatment results as in Example 1 were obtained. The overall reaction situation, such as oil separation and electrolyte transparency, was almost the same as in Example 1, and the electrolysis voltage was 16.3~
It was 12V. Example 3 Table 1 summarizes the results of electrolytic treatment of the same sample as in Example 1 using different additives and electrodes. Sample: JIS Class 1 No. 1 water-soluble cutting oil 0.2g/,
TOC159ppm Processing amount: 100ml Additive amount: 50mg Electrode area: 2cm x 2cm Current: 0.2A Electrolysis time: 2 hours

【表】 上記第1表に示すように、CaSi2とMgSiFeを
添加剤に用いた場合は、白金と二酸化鉛の電極の
違いによる処理効果の差はほとんどないが、
AlSiを添加剤に用いた場合は、二酸化鉛電極の
方がやや処理効果がよかつた。その他スカムの発
生、油分の分離、未反応の添加剤の沈降分離等全
般的な反応の情況は実施例1の場合とほぼ同等で
効果的に油分を分離除去することができた。 実施例 4 水で希釈して1.0g/の乳化油分濃度にした
JIS1種1号水溶性切削油を乳化油排水として用い
その100mlを電解槽に入れ、添加剤として酸化マ
グネシウム(MgO)粉末5mgまたは10mgを加え
た。電極として陽極陰極共に白金板を用い電解液
を攪拌しながら0.2Aの直流を通電し、10〜30分
電解処理した。その結果を第2表に示す。 試料: JIS1種1号水溶性切削油1.0g/、
TOC867ppm 処理量:100ml 添加剤:酸化マグネシウム(MgO) 電極:陽極、陰極共に白金板 電極面積:2cm×2cm 電流:0.2A
[Table] As shown in Table 1 above, when CaSi 2 and MgSiFe are used as additives, there is almost no difference in treatment effect due to the difference between platinum and lead dioxide electrodes.
When AlSi was used as an additive, the lead dioxide electrode had a slightly better treatment effect. Other general reaction conditions such as generation of scum, oil separation, and sedimentation of unreacted additives were almost the same as in Example 1, and oil could be effectively separated and removed. Example 4 Diluted with water to give emulsified oil concentration of 1.0g/
JIS Class 1 No. 1 water-soluble cutting oil was used as emulsified oil waste water, 100 ml of which was placed in an electrolytic bath, and 5 mg or 10 mg of magnesium oxide (MgO) powder was added as an additive. Using platinum plates as electrodes for both the anode and cathode, a direct current of 0.2 A was applied while stirring the electrolytic solution, and electrolytic treatment was performed for 10 to 30 minutes. The results are shown in Table 2. Sample: JIS Class 1 No. 1 water-soluble cutting oil 1.0g/,
TOC867ppm Processing amount: 100ml Additive: Magnesium oxide (MgO) Electrode: Platinum plate electrode area for both anode and cathode: 2cm x 2cm Current: 0.2A

【表】【table】

【表】 果を示す。
上記第2表に示すようにMgOを添加剤に用い
た場合は、5mgの添加量、10minの電解時間で充
分に油分を分離除去することができた。反応終了
後攪拌を停止すると、油分を含むスカムは電解液
の表面に浮上分離し、未反応のMgOは沈降する
が、珪化物を用いた場合より分離が不完全である
ので、通常の濾過等の分離操作を行なう必要があ
る。スカム等の脱水性は良好であつて、濾過によ
つて容易に油分を分離除去することができた。
[Table] Shows the results.
As shown in Table 2 above, when MgO was used as an additive, oil could be sufficiently separated and removed with an addition amount of 5 mg and an electrolysis time of 10 minutes. When stirring is stopped after the reaction is complete, the scum containing oil floats to the surface of the electrolyte and unreacted MgO settles, but the separation is more incomplete than when using silicide, so normal filtration etc. It is necessary to perform a separation operation. The dewaterability of the scum and the like was good, and the oil content could be easily separated and removed by filtration.

Claims (1)

【特許請求の範囲】[Claims] 1 乳化油排水を電極間に置き、該乳化油排水に
カルシウム、マグネシウム、アルミニウム及び亜
鉛の中から選ばれた多価金属の酸化物、水酸化物
又は珪化物からなる難溶性多価金属化合物の粉末
を1当り0.005〜5gの割合で加えた後、該電
極間に通電して前記乳化油排水中の油分を分離除
去することを特徴とする乳化油排水の処理方法。
1 Emulsified oil wastewater is placed between the electrodes, and a sparingly soluble polyvalent metal compound consisting of an oxide, hydroxide or silicide of a polyvalent metal selected from calcium, magnesium, aluminum and zinc is added to the emulsified oil wastewater. A method for treating emulsified oil wastewater, which comprises adding powder at a rate of 0.005 to 5 g per powder, and then applying electricity between the electrodes to separate and remove oil in the emulsified oil wastewater.
JP9895186A 1986-04-28 1986-04-28 Treatment of emulsifying oil waste water Granted JPS62254810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9895186A JPS62254810A (en) 1986-04-28 1986-04-28 Treatment of emulsifying oil waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9895186A JPS62254810A (en) 1986-04-28 1986-04-28 Treatment of emulsifying oil waste water

Publications (2)

Publication Number Publication Date
JPS62254810A JPS62254810A (en) 1987-11-06
JPH0534041B2 true JPH0534041B2 (en) 1993-05-21

Family

ID=14233403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9895186A Granted JPS62254810A (en) 1986-04-28 1986-04-28 Treatment of emulsifying oil waste water

Country Status (1)

Country Link
JP (1) JPS62254810A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827565A (en) * 1971-08-13 1973-04-11
JPS4933469A (en) * 1972-07-28 1974-03-27
JPS4936582A (en) * 1972-08-08 1974-04-04

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827565A (en) * 1971-08-13 1973-04-11
JPS4933469A (en) * 1972-07-28 1974-03-27
JPS4936582A (en) * 1972-08-08 1974-04-04

Also Published As

Publication number Publication date
JPS62254810A (en) 1987-11-06

Similar Documents

Publication Publication Date Title
US5698107A (en) Treatment for acid mine drainage
Jotin et al. Electro coagulation for removal of chemical oxygen demand in sanitary landfill leachate
US3816276A (en) Method for the treatment of water
Bow et al. Reduction of metal contents in coal stockpile wastewater using electrocoagulation
US3809631A (en) Method for treating oil-containing wastes
IE43862B1 (en) Removal of mercury
Drondina et al. Electrochemical technology of fluorine removal from underground and waste waters
US6254783B1 (en) Treatment of contaminated waste water
JPH0534041B2 (en)
US3926753A (en) Electrochemical removal of fluoride ion from aqueous media
JP3657401B2 (en) Heavy metal dissociation method from heavy metal contaminated bottom mud using electrolysis
RU2093474C1 (en) Method of purification of sewage containing emulsified petroleum products
Al Anbari et al. Removal of some heavy metals by electrocoagulation
SU952756A1 (en) Method for purifying effluents
RU2307797C2 (en) Method of the electrochemical purification of the industrial waste waters from the suspended articles and the oil products
Zaharia et al. ELECTROCOAGULATION/ELECTROFLOTATION--METHODS APPLIED FOR WASTEWATER TREATMENT.
JPS6283087A (en) Treatment of waste water containing emulsified oil
JPS5923875B2 (en) Processing method for chemical cleaning waste liquid
KR100328497B1 (en) Media for electrolysis of waste water
JPH0475797B2 (en)
SU812737A1 (en) Method of waste water purification from arsenic
RU2165892C1 (en) Method of cleaning waste water from sulfides
RU2102333C1 (en) Water purification method
SU1011549A1 (en) Process for purifying effluents
JPS62227413A (en) Oil-water separation method of emulsified oil drain containing nonionic surface-active agent

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term