JPH05338677A - Thermal extension-absorbing structure of vacuum heat-insulating box - Google Patents

Thermal extension-absorbing structure of vacuum heat-insulating box

Info

Publication number
JPH05338677A
JPH05338677A JP15174892A JP15174892A JPH05338677A JP H05338677 A JPH05338677 A JP H05338677A JP 15174892 A JP15174892 A JP 15174892A JP 15174892 A JP15174892 A JP 15174892A JP H05338677 A JPH05338677 A JP H05338677A
Authority
JP
Japan
Prior art keywords
membrane
vacuum heat
heat insulating
inner box
box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15174892A
Other languages
Japanese (ja)
Inventor
Tadao Yamaji
忠雄 山路
Hiroshi Yamazaki
洋 山崎
Masanobu Morimoto
眞布 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP15174892A priority Critical patent/JPH05338677A/en
Publication of JPH05338677A publication Critical patent/JPH05338677A/en
Pending legal-status Critical Current

Links

Landscapes

  • Packages (AREA)

Abstract

PURPOSE:To prevent an excess stress from being brought about in a membrane due to the thermal extension of the inner box of a vacuum heat-insulating box and increase the durability of vacuum heat-insulating box. CONSTITUTION:The end face of the opening side of a vacuum heat-insulating layer 13 between the outer box 11 and the inner box 12 is closely sealed with a membrane and a heat-insulating cover 17 is provided at the opening 16. A circular bend 18 is attached to be freely extensible to the superimposed part with the heat-insulating cover 17 at the wall body 15 of the opening in the inner box 12 in order to absorb the thermal expansion at the opening side of inner box 12 by means of the deformation of the membrane 14 and the bend 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内部の温度を一定に保
つ真空断熱箱体の熱伸縮吸収構造に関するもので、特に
内部が高温でその熱膨張が大きい場合の真空断熱箱体の
熱伸縮吸収構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal expansion / contraction structure for a vacuum insulation box which keeps the internal temperature constant, and in particular, the thermal expansion / contraction of a vacuum insulation box when the interior is hot and its thermal expansion is large. Regarding absorption structure.

【0002】[0002]

【従来の技術】従来のこの種の真空断熱箱体は、ステン
レスなどの金属製で、図6に示すように、外箱1と内箱
2との間に真空断熱層3を有し、この真空断熱層3の開
口部側端面をメンブレン4で密閉し、内箱2の開口部壁
体5が形成する開口部6内にフランジ付き断熱蓋7を設
けている。真空断熱層3は、真空状態の内部に繊維状、
粉末状などの断熱材を充填したもので、内箱2の内部温
度を一定に保つ。その際、たとえば内部の高温度により
内箱2に発生する熱伸縮は、その半分は内箱2の奥側部
分が伸縮することにより箱体の後側に吸収され、残りの
半分は内箱2の開口部側部分が伸縮してメンブレン4が
変形することにより吸収される。
2. Description of the Related Art A conventional vacuum heat insulating box of this type is made of metal such as stainless steel and has a vacuum heat insulating layer 3 between an outer box 1 and an inner box 2 as shown in FIG. The end surface of the vacuum heat insulating layer 3 on the opening side is sealed with a membrane 4, and a heat insulating lid 7 with a flange is provided in the opening 6 formed by the opening wall body 5 of the inner box 2. The vacuum heat insulating layer 3 has a fibrous shape inside the vacuum state,
It is filled with a heat insulating material such as powder and keeps the internal temperature of the inner box 2 constant. At that time, for example, the thermal expansion and contraction generated in the inner box 2 due to the high temperature inside is absorbed by the rear side of the box body by the expansion and contraction of the inner side portion of the inner box 2, and the other half is the inner box 2 Is absorbed by the expansion and contraction of the opening-side portion and deformation of the membrane 4.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の真
空断熱箱体においては、内部温度を高温にすると、内箱
2の開口部側部分の熱膨張によりメンブレン4が図7の
二点鎖線で示すように変形して、その隅部のA点に過大
な応力が発生する。そのため、加熱、冷却を繰り返す
と、メンブレン4が破損して真空断熱層3の真空を破壊
し、加熱、冷却サイクルに対する寿命が短くなるという
問題点がある。
However, in the conventional vacuum insulation box body described above, when the internal temperature is raised to a high temperature, the membrane 4 is formed by the two-dot chain line in FIG. 7 due to the thermal expansion of the opening side portion of the inner box 2. It deforms as shown, and excessive stress occurs at point A at the corner. Therefore, when heating and cooling are repeated, there is a problem that the membrane 4 is damaged and the vacuum of the vacuum heat insulating layer 3 is broken, and the life of the heating and cooling cycle is shortened.

【0004】そこで本発明はこのような問題点を解決
し、メンブレンに発生する過大な応力を緩和させて、真
空断熱箱体の寿命を長くすることを目的とする。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to solve the above problems and to relieve the excessive stress generated in the membrane to prolong the life of the vacuum insulation box.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
本発明は、外箱と内箱との間に真空断熱層を有し、この
真空断熱層の開口部側端面をメンブレンで密閉し、開口
部に断熱蓋を設けた真空断熱箱体において、前記内箱の
開口部の壁体における前記断熱蓋と重なり合う部分に、
前記真空断熱層に向けて突出する環状の湾曲部を伸縮自
在に設けるとともに、この湾曲部の深さと幅との比を1
/4以上かつ1/2以下としたものである。
In order to achieve the above object, the present invention has a vacuum heat insulating layer between an outer box and an inner box, and the opening side end surface of this vacuum heat insulating layer is sealed with a membrane, In a vacuum heat insulation box body provided with a heat insulation lid in the opening, in the portion of the wall of the opening of the inner box that overlaps with the heat insulation lid,
An annular curved portion protruding toward the vacuum heat insulating layer is provided so as to be expandable and contractible, and the ratio of the depth to the width of the curved portion is 1
It is / 4 or more and 1/2 or less.

【0006】[0006]

【作用】このような構成によれば、内部温度を高温にす
ると、内箱の熱膨張の半分は内箱の奥側部分の変形によ
り吸収され、残りの半分は内箱の開口部側部分が熱膨張
してメンブレンと湾曲部との変形により吸収される。こ
のように、内箱の熱膨張の半分をメンブレンと湾曲部と
の2箇所で吸収し、しかも湾曲部の深さと幅との比を1
/4以上かつ1/2以下として、湾曲部に発生する応力
とメンブレンに発生する応力とがほぼバランスしてしか
も小さくなるようにしているため、両応力は従来のメン
ブレンの応力より大幅に減少し、繰り返し加熱に対する
寿命が延びる。なお、前記比が1/4に満たないと、湾
曲部による応力吸収効果が希薄になり、また1/2を超
えると、湾曲部にメンブレンよりも大きな応力が作用し
て、湾曲部が破損しやすくなる。湾曲部は内箱の開口部
の壁体における断熱蓋と重なり合う部分に設けられるた
め、湾曲部が真空断熱層の端熱特性に及ぼす影響は小さ
い。
With this structure, when the internal temperature is raised to a high temperature, half of the thermal expansion of the inner box is absorbed by the deformation of the inner side portion of the inner box, and the other half is absorbed by the opening side portion of the inner box. It is thermally expanded and absorbed by the deformation of the membrane and the curved portion. In this way, half of the thermal expansion of the inner box is absorbed by the membrane and the curved portion, and the ratio of the depth and width of the curved portion is 1
Since it is set to / 4 or more and 1/2 or less, the stress generated in the curved portion and the stress generated in the membrane are substantially balanced and small, so both stresses are significantly reduced from the stress of the conventional membrane. , The life for repeated heating is extended. If the ratio is less than 1/4, the stress absorbing effect of the bending portion becomes weak, and if it exceeds 1/2, a larger stress than the membrane acts on the bending portion, and the bending portion is damaged. It will be easier. Since the curved portion is provided in a portion of the wall of the opening of the inner box that overlaps with the heat insulating lid, the curved portion has little influence on the end heat characteristics of the vacuum heat insulating layer.

【0007】[0007]

【実施例】図1〜図3は、本発明の一実施例を示す。図
1は、本発明の熱伸縮吸収構造を適用した真空断熱箱体
の断面図である。この図に示す真空断熱箱体は、図6に
示した従来のものと同種の構成で、ステンレスなどの金
属製の外箱11と内箱12との間に真空断熱層13を有し、こ
の真空断熱層13の開口部側端面をメンブレン14で密閉
し、内箱12の開口部壁体15が形成する開口部16内にフラ
ンジ付き断熱蓋17を設けている。
1 to 3 show an embodiment of the present invention. FIG. 1 is a cross-sectional view of a vacuum heat insulating box body to which the heat expansion and contraction absorbing structure of the present invention is applied. The vacuum heat insulation box body shown in this figure has the same kind of structure as the conventional one shown in FIG. 6, and has a vacuum heat insulation layer 13 between an outer box 11 and an inner box 12 made of metal such as stainless steel. An end face of the vacuum heat insulating layer 13 on the opening side is sealed with a membrane 14, and a flanged heat insulating lid 17 is provided in an opening 16 formed by an opening wall body 15 of the inner box 12.

【0008】内箱12の開口部の壁体15における断熱蓋17
と重なり合う部分には、真空断熱層13に向けて突出する
環状の湾曲部18が伸縮自在に設けられている。この湾曲
部18は、図2に示すように、深さDが真空断熱層13の厚
さTの1/2以下に形成されるとともに、深さDと幅W
との比が1/4〜1/2となるように形成されている。
また図3に示すように、箱体の横断面における内箱12の
隅角部には、開口部壁体15を含む全長にわたって半径が
少なくとも10mmのアール部19が形成されている。
A heat insulating lid 17 on the wall 15 at the opening of the inner box 12
An annular curved portion 18 projecting toward the vacuum heat insulating layer 13 is provided at an overlapping portion with the stretchable portion. As shown in FIG. 2, the curved portion 18 has a depth D formed to be 1/2 or less of the thickness T of the vacuum heat insulating layer 13, and has a depth D and a width W.
Is formed so that the ratio thereof to 1/4 to 1/2.
Further, as shown in FIG. 3, a rounded portion 19 having a radius of at least 10 mm is formed in the corner portion of the inner box 12 in the transverse section of the box body over the entire length including the opening wall body 15.

【0009】真空断熱層13は、真空状態にした内部に繊
維状、粉末状などの断熱材を充填したもので、断熱蓋17
とともに内箱12の内部温度を一定に保つ。このような構
成の真空断熱箱体において、内箱12の内部温度を高温に
すると、この内箱12の熱膨張の半分は内箱12の奥側部分
の変形により吸収される。残りの半分は、内箱12の開口
部側部分の熱膨張となって現われるが、これは、メンブ
レン14と湾曲部18との変形により吸収される。そして、
これらの変形によりメンブレン14の隅部のA点に生ずる
最大応力と湾曲部18の裾部のB点に生ずる最大応力と
は、湾曲部18の深さDと幅Wとの比を1/4〜 1/2
に限定することにより、バランスが取られている。この
ようにメンブレン14と湾曲部18とに生ずる両応力はバラ
ンスが取れているので、これら両応力は従来のメンブレ
ンの応力より著しく減少する。しかも、内箱12の隅角部
にはアール部19が形成されているので、この隅角部にお
ける応力集中の発生が防止される。したがって、真空断
熱箱体は、加熱、冷却サイクルに対する寿命が大幅に延
び、また隅角部のアール部19の半径が10mm以上であるの
で成形加工が容易である。
The vacuum heat insulating layer 13 is formed by filling a vacuumed inside with a heat insulating material such as fibrous or powdery material.
At the same time, the internal temperature of the inner box 12 is kept constant. In the vacuum insulation box body having such a structure, when the inner temperature of the inner box 12 is increased, half of the thermal expansion of the inner box 12 is absorbed by the deformation of the inner side portion of the inner box 12. The other half appears as thermal expansion of the opening side portion of the inner box 12, which is absorbed by the deformation of the membrane 14 and the curved portion 18. And
The maximum stress generated at the point A at the corner of the membrane 14 and the maximum stress generated at the point B at the skirt of the curved portion 18 due to these deformations is such that the ratio of the depth D of the curved portion 18 to the width W is 1/4. ~ 1/2
Balanced by limiting to. Since both stresses generated in the membrane 14 and the curved portion 18 are balanced as described above, both stresses are significantly reduced as compared with the stress of the conventional membrane. Moreover, since the rounded portions 19 are formed at the corners of the inner box 12, stress concentration at the corners is prevented. Therefore, the vacuum insulation box body has a significantly extended life for heating and cooling cycles, and the radius of the rounded portion 19 of the corner portion is 10 mm or more, which facilitates the forming process.

【0010】一方、湾曲部18はその最深部のP点におい
て真空断熱層13の厚さTを局部的に薄くするが、図5の
比較例におけるように湾曲部18を内箱12の中央部に設け
る場合よりもP点自体の温度が低いものであり、かつ湾
曲部18の深さDが真空断熱層13の厚さTの1/2以下で
あるので、この湾曲部18からの放熱損失は小さくてす
む。
On the other hand, the curved portion 18 locally thins the thickness T of the vacuum heat insulating layer 13 at the deepest point P, but the curved portion 18 is formed in the central portion of the inner box 12 as in the comparative example of FIG. Since the temperature at the point P itself is lower than that in the case where it is provided and the depth D of the curved portion 18 is 1/2 or less of the thickness T of the vacuum heat insulating layer 13, the heat radiation loss from the curved portion 18 is reduced. Can be small.

【0011】なお、本実施例では、メンブレン14を1層
に形成したが、他の実施例として、図4に示すように、
メンブレン14を複層の蛇腹状に伸縮自在に形成してもよ
い。これにより、メンブレン14の応力をさらに減らすこ
とができる。
In this embodiment, the membrane 14 is formed as one layer, but as another embodiment, as shown in FIG.
The membrane 14 may be formed to be expandable and contractible in a multi-layered bellows shape. Thereby, the stress of the membrane 14 can be further reduced.

【0012】以上の説明では、内箱12の内部温度を高温
にした場合について説明したが、内部温度を外気温より
も低温にした場合でも、熱膨張が熱収縮に変わるだけ
で、上記と同様の効果を奏する。
In the above description, the case where the inner temperature of the inner box 12 is set to a high temperature has been described. However, even when the inner temperature is set to be lower than the outside temperature, the thermal expansion only changes to the thermal contraction, and the same as above. Produce the effect of.

【0013】本発明者がFEM解析法により求めた本発
明と従来例および比較例との応力の比較結果を表1およ
び表2に示す。 解析条件( 表1、表2共通 ) 真空断熱箱体の材質 SUS304 内箱の内部寸法 幅1200×高さ550×奥行160
0mm メンブレンおよび開口部壁体の板厚 0.8mm 真空断熱層の厚さ 40mm 内箱隅角部のアール部の半径 30mm 内箱の内部温度 350℃ 外気温 20℃
Tables 1 and 2 show the results of comparison of stresses between the present invention and the conventional examples and the comparative examples, which were obtained by the present inventor by the FEM analysis method. Analysis conditions (common to Table 1 and Table 2) Material of vacuum insulation box SUS304 Internal size of inner box Width 1200 x Height 550 x Depth 160
0mm Membrane and wall thickness of opening 0.8mm Thickness of vacuum insulation layer 40mm Radius of radius of inner box corner 30mm Inner temperature of inner box 350 ℃ Outside temperature 20 ℃

【0014】[0014]

【表1】 表1は、メンブレンが1層の場合で、従来例のメンブレ
ンのA点(図7)における応力を1としたときの本発明
のメンブレンのA点および湾曲部のB点(図2)におけ
る比較応力を示す。表1から明らかなように、本発明で
は、D/Wが1/2のときにメンブレンの応力と湾曲部
の応力とがバランスし、これら両応力は従来例のメンブ
レンの応力の69%に減少している。なお、D/Wが1/
2より大きくなると、湾曲部の応力がメンブレンの応力
よりも大きくなり、湾曲部が破損しやすくなる。
[Table 1] Table 1 shows a case where the membrane has a single layer, and a comparison is made between point A of the membrane of the present invention and point B of the curved portion (FIG. 2) when the stress at point A (FIG. 7) of the conventional example is 1. Indicates stress. As is apparent from Table 1, in the present invention, the stress of the membrane and the stress of the curved portion are balanced when D / W is 1/2, and both of these stresses are reduced to 69% of the stress of the conventional membrane. is doing. D / W is 1 /
When it is larger than 2, the stress of the curved portion becomes larger than the stress of the membrane, and the curved portion is easily damaged.

【0015】[0015]

【表2】 表2は、本発明のメンブレンを3層の蛇腹状にし(図
4)、また比較例としてメンブレンは3層の蛇腹状であ
るが本発明の湾曲部を省略したものにつき解析した場合
を示す。この表2では、比較例のメンブレンのA点にお
ける応力を1としたときの本発明のメンブレンのA点お
よび湾曲部のB点における比較応力を示す。表2から判
るように、本発明では、D/Wが1/4のときにメンブ
レンの応力と湾曲部の応力とがバランスし、これら両応
力は比較例のメンブレンの応力の約70%に減少してい
る。なお、比較例のメンブレンの応力は従来例のメンブ
レンの応力の70%に減少している。
[Table 2] Table 2 shows a case in which the membrane of the present invention was formed into a three-layer bellows shape (FIG. 4), and as a comparative example, a membrane having a three-layered bellows shape but omitting the curved portion of the present invention was analyzed. This Table 2 shows the comparative stresses at the points A and B of the curved portion of the membrane of the present invention when the stress at the point A of the comparative example membrane is 1. As can be seen from Table 2, in the present invention, the stress of the membrane and the stress of the curved portion are balanced when D / W is 1/4, and both of these stresses are reduced to about 70% of the stress of the comparative membrane. is doing. The stress of the comparative example membrane is reduced to 70% of the stress of the conventional example membrane.

【0016】[0016]

【発明の効果】以上述べたように本発明によれば、内箱
の熱伸縮の半分をメンブレンと湾曲部との二個所の変形
により吸収することができ、さらに湾曲部の深さと幅と
の比を1/4以上かつ1/2以下として、湾曲部に発生
する応力とメンブレンに発生する応力とをほぼバランス
させてしかも小さくさせることができるため、両変形部
の応力を従来のメンブレンにおける応力よりも著しく減
少させることができる。したがって、真空断熱箱体の加
熱、冷却サイクルに対する寿命を大幅に延長させること
ができる。そして湾曲部を内箱の開口部の壁体における
断熱蓋と重なり合う部分に設けているので、湾曲部から
の放熱損失が少なく、真空断熱層の断熱特性に及ぼす影
響が小さくてすむ。
As described above, according to the present invention, half of the thermal expansion and contraction of the inner box can be absorbed by the deformation of the membrane and the curved portion, and the depth and width of the curved portion can be absorbed. By setting the ratio to be 1/4 or more and 1/2 or less, the stress generated in the curved portion and the stress generated in the membrane can be substantially balanced and reduced, so that the stress in both the deformed portions can be reduced in the conventional membrane. Can be significantly reduced. Therefore, the life of the vacuum insulation box body for heating and cooling cycles can be significantly extended. Since the curved portion is provided in a portion of the wall of the opening of the inner box that overlaps with the heat insulating lid, the heat radiation loss from the curved portion is small, and the influence on the heat insulating property of the vacuum heat insulating layer can be small.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱伸縮吸収構造を適用した真空断熱箱
体の断面図である。
FIG. 1 is a cross-sectional view of a vacuum heat insulating box body to which a heat expansion and contraction absorbing structure of the present invention is applied.

【図2】図1における要部の断面図である。FIG. 2 is a sectional view of a main part in FIG.

【図3】図1におけるIII −III 線に沿った断面図であ
る。
FIG. 3 is a sectional view taken along line III-III in FIG.

【図4】本発明の他の実施例の真空断熱箱体の要部の断
面図である。
FIG. 4 is a sectional view of a main part of a vacuum heat insulating box body according to another embodiment of the present invention.

【図5】湾曲部を内箱の中央部に設けた比較例の真空断
熱箱体を示す断面図である。
FIG. 5 is a cross-sectional view showing a vacuum heat-insulating box body of a comparative example in which a curved portion is provided in the central portion of the inner box.

【図6】従来の真空断熱箱体の一例を示す断面図であ
る。
FIG. 6 is a cross-sectional view showing an example of a conventional vacuum insulation box body.

【図7】従来の真空断熱箱体におけるメンブレンの作用
状態を示す部分断面図である。
FIG. 7 is a partial cross-sectional view showing a functioning state of a membrane in a conventional vacuum heat insulating box.

【符号の説明】[Explanation of symbols]

11 外箱 12 内箱 13 真空断熱層 14 メンブレン 15 開口部壁体 17 断熱蓋 18 湾曲部 11 Outer Box 12 Inner Box 13 Vacuum Insulation Layer 14 Membrane 15 Opening Wall 17 Heat Insulation Lid 18 Curved Section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 外箱と内箱との間に真空断熱層を有し、
この真空断熱層の開口部側端面をメンブレンで密閉し、
開口部に断熱蓋を設けた真空断熱箱体において、前記内
箱の開口部の壁体における前記断熱蓋と重なり合う部分
に、前記真空断熱層に向けて湾曲する環状の湾曲部を伸
縮自在に設けるとともに、この湾曲部の深さと幅との比
を1/4以上かつ1/2以下としたことを特徴とする真
空断熱箱体の熱伸縮吸収構造。
1. A vacuum heat insulating layer is provided between an outer box and an inner box,
The opening side end surface of this vacuum heat insulating layer is sealed with a membrane,
In a vacuum heat insulating box body having a heat insulating lid in an opening, an annular curved portion that bends toward the vacuum heat insulating layer is extendably provided at a portion of the wall of the opening of the inner box that overlaps with the heat insulating lid. At the same time, the heat expansion and contraction absorbing structure of the vacuum heat insulating box body, wherein the ratio of the depth to the width of the curved portion is set to 1/4 or more and 1/2 or less.
JP15174892A 1992-06-11 1992-06-11 Thermal extension-absorbing structure of vacuum heat-insulating box Pending JPH05338677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15174892A JPH05338677A (en) 1992-06-11 1992-06-11 Thermal extension-absorbing structure of vacuum heat-insulating box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15174892A JPH05338677A (en) 1992-06-11 1992-06-11 Thermal extension-absorbing structure of vacuum heat-insulating box

Publications (1)

Publication Number Publication Date
JPH05338677A true JPH05338677A (en) 1993-12-21

Family

ID=15525424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15174892A Pending JPH05338677A (en) 1992-06-11 1992-06-11 Thermal extension-absorbing structure of vacuum heat-insulating box

Country Status (1)

Country Link
JP (1) JPH05338677A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018130329A (en) * 2017-02-15 2018-08-23 象印マホービン株式会社 Double container
CN109422017A (en) * 2017-08-28 2019-03-05 丰田自动车株式会社 Vacuum insulated vessel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018130329A (en) * 2017-02-15 2018-08-23 象印マホービン株式会社 Double container
CN109422017A (en) * 2017-08-28 2019-03-05 丰田自动车株式会社 Vacuum insulated vessel

Similar Documents

Publication Publication Date Title
JP2776646B2 (en) Structure of vacuum insulation box
JPH05338677A (en) Thermal extension-absorbing structure of vacuum heat-insulating box
JPS6396395A (en) Joint insulating structure for vacuum-heat -insulating element
JPH0510494A (en) End portion structure of vacuum insulation box
JPH0771690A (en) Thermal extension/contraction absorbing structure for vacuum heat insulator
US20060096804A1 (en) Exhaust pipe with profiled inner tube, and method of making an exhaust pipe
JP2900960B2 (en) How to maintain the flatness of the wall surface of the vacuum insulation box
JPS6022286Y2 (en) Insulation cylinder of vacuum insulation container
JP2521332Y2 (en) Vacuum insulation container
JPS5952213B2 (en) Local annealing method for welded structures
JP2001295970A (en) Flange part structure
JPH08114296A (en) Heat insulated box body
JPH08114297A (en) Heat insulated box body
JPH06281090A (en) Structure of vacuum heat-insulating wall
JPS6329998Y2 (en)
JP3613837B2 (en) Metal vacuum insulated container
JPS5934867Y2 (en) insulation panels
JP2019027492A (en) Manufacturing method of double-heat insulation wall structure
JPH0596695U (en) Insulation panel
JP2022001771A (en) Heat insulation structure and manufacturing method of heat insulation structure
JPS5911335Y2 (en) solar collector
JPS5958268A (en) Flat lid for container for very high degree of vacuum
JPS5816337Y2 (en) heating container
JPS608564Y2 (en) heating chamber of heating cooker
JPH0229587A (en) Refrigerator door