JPH0533819B2 - - Google Patents

Info

Publication number
JPH0533819B2
JPH0533819B2 JP63009849A JP984988A JPH0533819B2 JP H0533819 B2 JPH0533819 B2 JP H0533819B2 JP 63009849 A JP63009849 A JP 63009849A JP 984988 A JP984988 A JP 984988A JP H0533819 B2 JPH0533819 B2 JP H0533819B2
Authority
JP
Japan
Prior art keywords
substrate
cleaning
substrates
holes
cleaned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63009849A
Other languages
Japanese (ja)
Other versions
JPH01184926A (en
Inventor
Juichi Hirofuji
Ichiro Nakao
Teruto Oonishi
Yoshitaka Dansui
Motomitsu Suzuki
Yoshuki Shimizu
Mitsuyasu Nagahama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP984988A priority Critical patent/JPH01184926A/en
Publication of JPH01184926A publication Critical patent/JPH01184926A/en
Publication of JPH0533819B2 publication Critical patent/JPH0533819B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は基板洗浄に関するものであつて、特に
半導体装置製造工程に於ける基板洗浄工程に用い
る洗浄槽の形状を改善し、洗浄時間を短縮するこ
とを目的とする。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to substrate cleaning, and in particular to improving the shape of a cleaning tank used in a substrate cleaning process in a semiconductor device manufacturing process to shorten the cleaning time. With the goal.

従来の技術 半導体装置の製造装置の自動化に伴い、薬液や
水を満たした容器にキヤリアに入つた半導体基板
を浸漬する基板洗浄装置も自動化が進んでいる。
薬液や純水を満たす為の容器(洗浄槽)の構造に
関しても、種々の機能を付加する為に、槽は大形
化し、工夫された形状のものが開発されている。
しかし、バツチ式の洗浄方式では、この槽の大型
化に伴なつて、最も重要な基板表面に於ける薬液
或は純水の流速は低下する傾向にある。
BACKGROUND ART With the automation of semiconductor device manufacturing equipment, automation of substrate cleaning equipment that immerses a semiconductor substrate in a carrier into a container filled with a chemical solution or water is also progressing.
Concerning the structure of containers (cleaning tanks) for filling chemical solutions and pure water, tanks with larger sizes and more creative shapes have been developed in order to add various functions.
However, in the batch cleaning method, as the size of the tank increases, the flow rate of the chemical solution or pure water on the most important substrate surface tends to decrease.

発明が解決しようとする課題 例えば、第11図に示すように直径150mmのシ
リコン基板5を、SEMI規格のキヤリア4にほぼ
垂直に挿入して水洗する場合、基板25枚入りキヤ
リア4の上面の寸法は、180mm×150mm程度(フロ
ロウエアA182−60シリーズの場合178mm×143mm)
である。多孔部材(多孔板)2は、基板5の並ん
でいる方向および基板面に平行な方向ともにピツ
チ10mmでほぼ全面に均等な密度の孔6を有してい
る。この槽は底部の純水供給管3より20/min
程度の純水を供給して槽上部から排出して基板5
の洗浄を行うものである。
Problems to be Solved by the Invention For example, when a silicon substrate 5 with a diameter of 150 mm is inserted almost perpendicularly into a SEMI standard carrier 4 and washed with water as shown in FIG. 11, the dimensions of the top surface of the carrier 4 containing 25 substrates is approximately 180mm x 150mm (178mm x 143mm for Fluoroair A182-60 series)
It is. The porous member (perforated plate) 2 has holes 6 with a pitch of 10 mm in both the direction in which the substrates 5 are lined up and in the direction parallel to the substrate surface, and the density of holes 6 is uniform over almost the entire surface. This tank is connected at 20/min from the pure water supply pipe 3 at the bottom.
The substrate 5 is supplied with pure water and discharged from the top of the tank.
It is used for cleaning.

しかしながら、このような槽では、キヤリア4
の形状に純水の流れが影響されて、基板5の中央
部近辺Cでは純水流速が大、キヤリアと基板の接
触する周辺Pでは流速が小となる。流速を実測し
た例を、第12図に示す。第12図は第11図中
Z−Z′線上、4.76mmピツチで並んだ基板と基板の
間隙の中央部をレーザドツプラ流速計を用いて測
定した結果を示している。実際の流速は、場所を
一定にしても、時間的に1秒以下の短い周期で変
動しているので数分間に渡つて測定した流速の平
均を示したものである。
However, in such a tank, carrier 4
The flow of pure water is influenced by the shape of the substrate 5, so that the flow velocity of pure water is high near the center C of the substrate 5, and the flow velocity is low at the periphery P where the carrier and the substrate are in contact. An example of actual measurement of flow velocity is shown in FIG. FIG. 12 shows the results of measurement using a laser Doppler current meter at the center of the gap between the substrates arranged at a pitch of 4.76 mm on the line Z--Z' in FIG. Even if the actual flow velocity is kept constant, the actual flow velocity fluctuates in a short period of one second or less, so the actual flow velocity is the average of the flow velocity measured over several minutes.

図から明らかなように、シリコン基板5の中央
部でのみ速く、周辺では非常に遅くなつているこ
とがわかる。特に周辺では、キヤリアの溝の影響
で流速は測定できないが、中央部の1/10程度の極
めて小さいものとなる。すなわち、中央付近は比
較的短時間で基板に付着したイオンやエツチング
材汚染物等が除去されるが、周辺やキヤリアが清
浄化されるには極めて遅い流速のため、長い時間
を要するのである。これを簡単なモデルを用いて
試算した。第10図Aは2枚の板の間の空間を
α:(1−α)に2分割し、1方の空間には平均
流速v1、他方には流速v2の純水が流れるものと仮
定する。第9図Bに示すように純水の入り口のイ
オン濃度C=O、出口の濃度をそれぞれCput1
Cput2時間t=0の時の基板間の平均濃度をCoと
する。tが充分大きく、Cput1/CoおよびCput2
Coがかなり小さい範囲では、 流速の速い部分で Cput1=Coexp(−kv1t) 流速の遅い部分で Cput2=Coexp(−kv2t) とできる。すると、Cput1とCput2の合流したもの
の平均濃度Cputは Cput =Cput1v1α+Cput2v2(1−α)/v1α+v2(1−α
) となる。kは定数である。
As is clear from the figure, the speed is fast only at the center of the silicon substrate 5, and it is extremely slow at the periphery. Especially in the periphery, the flow velocity cannot be measured due to the influence of the carrier groove, but it is extremely small, about 1/10 of that in the center. In other words, ions and etching agent contaminants adhering to the substrate are removed in a relatively short period of time near the center, but it takes a long time to clean the periphery and the carrier due to the extremely slow flow rate. We calculated this using a simple model. In Figure 10A, it is assumed that the space between the two plates is divided into two parts α: (1 - α), and that pure water flows in one space at an average flow velocity v 1 and in the other space at an average flow velocity v 2 . . As shown in Figure 9B, the ion concentration at the inlet of pure water is C=O, and the concentration at the outlet is C put1 , respectively.
C put2 Let the average concentration between the substrates at time t = 0 be Co. If t is large enough, C put1 /Co and C put2 /
In a range where Co is quite small, C put1 = Co exp (-kv 1 t) in the fast flow part and C put2 = Co exp (-kv 2 t) in the slow flow part. Then, the average concentration C put of the confluence of C put1 and C put2 is C put = C put1 v 1 α + C put2 v 2 (1 − α) / v 1 α + v 2 (1 − α
) becomes. k is a constant.

いま、α=0.9とし、 v1=10,v2=1 v1=10,v2=0.1 とし、さらにk=0.1と仮定する。計算結果は第
9図のとおりとなり、洗浄の初期は高流速部が、
後期は低流速部の洗浄特性が、全体の平均濃度に
直接影響しており、十分な洗浄効果を得るに要す
る時間を短縮するには、低流速部をなくすこと
(全体の速度を上げる。低流速域の領域を少くす
る。)が必要であることがわかる。
Assume now that α=0.9, v 1 =10, v 2 =1 v 1 =10, v 2 =0.1, and k=0.1. The calculation results are as shown in Figure 9. At the beginning of cleaning, the high flow rate section is
In the latter stage, the cleaning characteristics of the low flow rate section directly affect the overall average concentration, and in order to shorten the time required to obtain a sufficient cleaning effect, it is necessary to eliminate the low flow rate section (increase the overall speed. It can be seen that it is necessary to reduce the area of the flow velocity region.

すなわち基板のエツチング材等の洗浄におい
て、排出出口の純水は、流速の速い部分ではすぐ
にイオン濃度が低下し、基板表面の残留イオン濃
度も十分小さくなるが、流速の遅い部分でのイオ
ン濃度が十分低下するまで、流速の速い部分はむ
だに水を流し続けないといけないことになる。
In other words, when cleaning substrate etching materials, etc., the ion concentration of pure water at the discharge outlet immediately decreases in areas where the flow rate is high, and the residual ion concentration on the substrate surface becomes sufficiently small, but the ion concentration decreases in areas where the flow rate is slow. This means that water will have to continue to flow unnecessarily in areas where the flow velocity is high until the flow rate is sufficiently reduced.

そして従来の構成によると、この例に示したの
と同様に基板下部から、基板と基板の間に侵入し
た純水は、ほぼ直線的な軌動を通つて基板上部に
達し、排出されてしまうのである。従つて中央部
C付近の流速の大なる部分は短時間で清浄化さ
れ、この後この部分を通過する純水は、洗浄に寄
与することになる槽上部から排出される。一方周
辺部は流速が小である為、このような状況では、
シリコン基板表面およびキヤリア表面から不純物
イオンを完全に除去するまでに長い時間を要し、
高価な純水もムダに多量に必要とするので、半導
体装置等の製品のコスト上昇の原因となる。すな
わち、供給された大部分の純水は流速大なる部分
で集中し、残りのわずかな部分の流速小なる部分
を長時間かけて洗浄するのである。周辺部に於け
るこの様な状況は、流れの解折方法として広く用
いられている。例えばインク等の有色水溶性液体
を注射針のような細管から注入する実験によつて
も容易に確認することができる。
According to the conventional configuration, as shown in this example, pure water that enters between the substrates from the bottom of the substrate passes through a nearly linear trajectory, reaches the top of the substrate, and is discharged. It is. Therefore, the part near the central part C where the flow velocity is high is cleaned in a short time, and the pure water that passes through this part thereafter is discharged from the upper part of the tank, which contributes to the cleaning. On the other hand, the flow velocity is low in the peripheral area, so in this situation,
It takes a long time to completely remove impurity ions from the silicon substrate surface and carrier surface.
Since a large amount of expensive pure water is unnecessarily required, this causes an increase in the cost of products such as semiconductor devices. In other words, most of the supplied pure water is concentrated in the portion where the flow rate is high, and the remaining small portion where the flow rate is low is washed over a long period of time. Such a situation at the periphery is widely used as a method of breaking the flow. For example, this can be easily confirmed by an experiment in which a colored water-soluble liquid such as ink is injected through a thin tube such as a syringe needle.

課題を解決するための手段 本発明は、洗浄槽内に、ほぼ平行に載置された
複数の被洗浄基板をほぼ垂直方向に保持し、下方
にたとえば孔が上記基板の載置されるべき巾、長
さの範囲にある上記基板間〓において局所的に配
置された多孔板と洗浄液給水部を形成し、前記給
水部から前記多孔板を介して前記基板表面に前記
洗浄液を供給して前記洗浄液流れを生成し、前記
洗浄液を前記洗浄槽の上部より排出するととも
に、前記基板表面において前記基板表面の一方の
端部から他方の端部に流れる洗浄液の流れと前記
基板表面で円状の流れを生じさせて前記基板表面
を洗浄するものである。前記多孔板は前記基板の
載置されるべき巾、長さの範囲において複数の孔
が形成された開口領域と孔が形成されていない未
開口領域とを有し、前記開口領域及び前記未開口
領域のそれぞれの前記基板間〓内部における基板
の載置される長さ方向の最大距離がどの被洗浄基
板間の領域においても前記基板の載置されるべき
長さの1/4程度以上である。
Means for Solving the Problems The present invention holds a plurality of substrates to be cleaned, which are placed substantially parallel to each other, in a cleaning tank in a substantially vertical direction, and a hole is formed in the lower part with a width on which the substrates are to be placed. , forming a cleaning liquid water supply section with a perforated plate locally disposed between the substrates in a length range, and supplying the cleaning liquid from the water supply section to the substrate surface via the perforated plate to supply the cleaning liquid. generating a flow and discharging the cleaning liquid from the upper part of the cleaning tank, and creating a flow of the cleaning liquid flowing from one end of the substrate surface to the other end on the substrate surface and a circular flow on the substrate surface. This is to clean the substrate surface. The perforated plate has an open area in which a plurality of holes are formed and an unopened area in which a plurality of holes are formed in a width and length range on which the substrate is to be placed, and the open area and the unopened area Between each of the substrates in the area: The maximum distance in the length direction within which the substrate is placed is approximately 1/4 or more of the length of the substrate to be placed in any area between the substrates to be cleaned. .

とくに円形状基板を用いた場合、円状の流れの
大きさが前記基板の外径の1/4より大きくなるよ
うに供給するのが望ましい。
In particular, when a circular substrate is used, it is desirable to supply the circular flow so that the size of the circular flow is larger than 1/4 of the outer diameter of the substrate.

さらに、半導体基板にエツチング処理を行つた
のち、ウエツトエツチングに用いた薬品成分(エ
ツチング材)やドライエツチング時に生じた不要
な表面異物の除去を目的として本発明を用いると
一層有効となる。
Furthermore, it will be even more effective if the present invention is used for the purpose of removing chemical components (etching material) used in wet etching and unnecessary surface foreign matter generated during dry etching after etching a semiconductor substrate.

作 用 このように、望ましくは基板径の1/4程度の径
を有する渦流(円状の流れ)が存在すれば、多孔
板の孔近傍の基板表面のイオンは短時間で除去さ
れ、その後、この部分を通過し、イオンを殆んど
含まない純水が渦流作用によつて基板全面の表面
(特に端部表面)イオン除去に貢献する。これは、
流速が大で、イオン濃度が短時間で低下した部分
から供給される水であるので、従来では排水され
ていた水を再利用していることに相当する。この
ように槽内で、純水を再利用できるように、槽構
造を最適化することによつて、純水使用効率を向
上させ、純水使用量を低減できる。従つて、コス
ト低減、洗浄時間の短縮が可能となる。
Effect As described above, if a vortex flow (circular flow) with a diameter preferably about 1/4 of the substrate diameter exists, ions on the substrate surface near the holes of the porous plate are removed in a short time, and then, The pure water that passes through this portion and contains almost no ions contributes to the removal of ions from the entire surface of the substrate (particularly from the edge surface) by the vortex action. this is,
Since the water is supplied from an area where the flow rate is high and the ion concentration has decreased in a short period of time, this corresponds to reusing water that would previously have been drained. In this way, by optimizing the structure of the tank so that the pure water can be reused within the tank, the efficiency of using pure water can be improved and the amount of pure water used can be reduced. Therefore, cost reduction and cleaning time can be reduced.

実施例 本発明の実施例として、6″φSi半導体基板(ウ
エハ)の水洗槽に関して説明する。第1図は第1
の実施例の洗浄装置の基本概念を示す概略構成断
面図であつて、1は洗浄槽、2は多孔板、3は給
水管、4はキヤリア、5はSi基板を示す。本明細
書中で多孔板上の基板の載置されるべき巾とは、
ほぼ垂直に保持され、ほぼ平行に載置された複数
のSi基板5のうち両端に置かれたSi基板間距離、
多孔板上の基板の載置されるべき長さとはSi基板
の直径の長さと定義する。ここで、洗浄すべきSi
基板5の載置されるべき巾、長さの範囲の1/4程
度の領域とその外周部における多孔板2の孔6の
開孔分布(平面図)を第3図に、第1図中X−X
線上の平均流速分布を第2図に示す。多孔板2は
シリコン基板5の載置されるべき巾、長さの範囲
において複数の孔6が形成された開口領域と孔6
が形成されていない未開口領域とを有している。
孔6の分布は、基板径方向ピツチ10mm、基板の並
び方向ピツチ4.76mmであつて、基板がほぼ平行に
並んでいるピツチと一致しており、基板間〓内で
基板径方向の中央付近に開口領域が設けられ、局
所的に孔6が分布されている。このような開孔率
分布の多孔板を用いると、供給された純水Wは第
1図に矢印で概要を示すように、例えば渦流7
は、基板直径の1/4程度以上の径Dを有する渦流
となり、基板中央近傍の流速は非常に大きく、か
つ周辺では下向きの速い流れが生じ、洗浄に使用
された水は槽上部より排出される。
Embodiment As an embodiment of the present invention, a washing tank for a 6″φSi semiconductor substrate (wafer) will be explained.
1 is a schematic cross-sectional view showing the basic concept of the cleaning device of the embodiment, in which 1 is a cleaning tank, 2 is a perforated plate, 3 is a water supply pipe, 4 is a carrier, and 5 is a Si substrate. In this specification, the width of the substrate to be placed on the perforated plate is
The distance between the Si substrates placed at both ends of the plurality of Si substrates 5 held almost vertically and placed almost in parallel,
The length of the substrate to be placed on the porous plate is defined as the length of the diameter of the Si substrate. Here, the Si to be cleaned
The aperture distribution (plan view) of the holes 6 of the perforated plate 2 in an area of about 1/4 of the width and length range on which the substrate 5 is to be placed and its outer periphery is shown in Fig. 3, and in Fig. 1. X-X
Figure 2 shows the average flow velocity distribution on the line. The porous plate 2 has an open area and holes 6 in which a plurality of holes 6 are formed in the range of width and length on which the silicon substrate 5 is to be placed.
It has an unopened area in which no is formed.
The distribution of the holes 6 is 10 mm in the board radial direction and 4.76 mm in the board arrangement direction, which corresponds to the pitch where the boards are arranged almost parallel to each other, and is located near the center of the board in the radial direction within the distance between the boards. Open areas are provided and holes 6 are locally distributed. If a perforated plate with such a porosity distribution is used, the supplied pure water W will flow, for example, into a vortex 7, as outlined by the arrows in FIG.
This is a vortex flow with a diameter D that is approximately 1/4 or more of the substrate diameter, the flow velocity near the center of the substrate is very high, and a fast downward flow occurs around the periphery, and the water used for cleaning is discharged from the top of the tank. Ru.

このように大きな渦流を生じせしめるには、渦
流の径と同程度に多孔板の孔6を基板間〓におい
て局所的に配すればよい。また第1の実施例にお
いて、1/4程度の径を有する大きな渦流が形成さ
れるのであれば、第3図に示すように多孔板2中
の孔が形成されていない未開口領域にわずかに孔
6が形成されていても良いことは言うまでもな
い。
In order to generate such a large eddy current, it is sufficient to locally arrange holes 6 in the perforated plate between the substrates to have the same diameter as the eddy current. In addition, in the first embodiment, if a large vortex having a diameter of about 1/4 is formed, a small amount of eddy current is formed in the unopened area of the perforated plate 2 where no holes are formed, as shown in FIG. It goes without saying that holes 6 may be formed.

第2の実施例について、第4図〜第6図を用い
て説明する。第4図は、第2の実施例の洗浄装置
の基本概念図、第5図は第4図に示す洗浄装置内
のY−Y′線上の流速分布を示す。この場合の洗
浄すべきSi基板5の載置されるべき巾、長さの範
囲の巾方向中央部の長さ方向全体にわたる領域と
その外周部における多孔板2の開孔分布(平面
図)を第6図に示す。多孔板2はシリコン基板5
の載置されるべき巾、長さの範囲において複数の
孔6が形成された開口領域と孔6が形成されてい
ない未開口領域とを有している。開孔分布は、基
板径方向ピツチ10mm、基板並び方向ピツチ4.76mm
であつて、基板径方向の中心より片側に開口領域
が設けられ、局所的に開孔6を有する。このよう
な開孔率分布の多孔板2を用いると、第4図に矢
印で示すように、基板直径にほぼ等しい径を有す
る渦流が生じ、基板径方向片側の流速は上向きで
速く、反対側の流速は下向きで速くなる。
A second embodiment will be described using FIGS. 4 to 6. FIG. 4 is a basic conceptual diagram of the cleaning device of the second embodiment, and FIG. 5 shows the flow velocity distribution on the Y-Y' line in the cleaning device shown in FIG. In this case, the perforation distribution (plan view) of the perforated plate 2 in the entire lengthwise central area of the width and length range on which the Si substrate 5 to be cleaned is to be placed and its outer periphery is shown. It is shown in FIG. The porous plate 2 is a silicon substrate 5
It has an open region in which a plurality of holes 6 are formed and an unopened region in which no holes 6 are formed in the range of width and length in which the device is to be placed. Opening hole distribution is 10mm pitch in the board radial direction and 4.76mm pitch in the board alignment direction.
An opening area is provided on one side from the center of the substrate in the radial direction, and local openings 6 are provided. When a perforated plate 2 with such a porosity distribution is used, a vortex flow having a diameter approximately equal to the substrate diameter is generated, as shown by the arrow in FIG. The flow velocity becomes faster in the downward direction.

この様に渦流を発生させると、単に層流のみを
用いる場合に比して、槽内の総流量は大となる
為、局所的に流速の極めて小さくなる部分が生じ
ることはなくなる。渦流を生じさせる手段として
は、他にも槽側面に純水噴出口を設置する等種々
の方法が考えられる。
When a vortex is generated in this way, the total flow rate in the tank becomes larger than when only a laminar flow is used, so there are no localized portions where the flow velocity is extremely low. Various other methods can be considered to generate the vortex, such as installing a pure water spout on the side of the tank.

本発明を実施した場合、第1に洗浄に要する時
間が短縮される。第7図に本発明の第1の実施例
を適用した場合と従来の洗浄槽を用いた場合の、
比抵抗回復時間を示す。実験は、規格品のウエハ
キヤリア(フロロウエアA182MJ)に直径150mm
のシリコン基板を25枚挿てんし、このキヤリアを
1規定濃度の硫酸に浸漬した後空中で約30秒間液
切りをして、水洗槽に投入した。純水の供給量は
20/minである。投入した時からの時間を横軸
に、槽の上からオーバフローした水を集めた水の
相対比抵抗を縦軸に示す。図中曲線イ○は従来の水
洗槽の場合曲線ロ○は、本発明の第1の実施例の水
洗槽の場合の比抵抗回復特性である。図より明ら
かなように、従来の1/2程度の時間で比抵抗が回
復し、洗浄時間を短かくすることができる。
When the present invention is implemented, firstly, the time required for cleaning is shortened. FIG. 7 shows the case where the first embodiment of the present invention is applied and the case where a conventional cleaning tank is used.
Shows resistivity recovery time. The experiment was carried out using a standard wafer carrier (Fluoroair A182MJ) with a diameter of 150 mm.
25 silicon substrates were inserted into the carrier, the carrier was immersed in 1N sulfuric acid, the liquid was drained in the air for about 30 seconds, and the carrier was placed in a washing tank. The amount of pure water supplied is
20/min. The horizontal axis shows the time from the time of filling the tank, and the vertical axis shows the relative resistivity of the water collected from the top of the tank. In the figure, curve I indicates the resistivity recovery characteristic of the conventional washing tank, and curve B indicates the resistivity recovery characteristic of the washing tank according to the first embodiment of the present invention. As is clear from the figure, the specific resistance recovers in about half the time compared to conventional methods, making it possible to shorten the cleaning time.

第2に、以上のように水洗時間が短かいと、純
水使用量を削減できる。先の実験では、20/
minの給水量に対して約8分短縮されたとすれ
ば、20×8=160/minの削減になる。純水1
tの価格を1000円と仮定すると、 1000円/t×160/1000=160円になる。1枚
当り160/25=6.4円の削減となる。これは半導体
装置の大量製造において大きく寄与する。
Second, if the washing time is short as described above, the amount of pure water used can be reduced. In the previous experiment, 20/
If the time is reduced by approximately 8 minutes compared to the min water supply amount, the reduction is 20 x 8 = 160/min. Pure water 1
Assuming that the price of t is 1000 yen, it becomes 1000 yen/t x 160/1000 = 160 yen. The reduction is 160/25 = 6.4 yen per ticket. This greatly contributes to the mass production of semiconductor devices.

さらに、従来の洗浄槽では、たとえばシリコン
基板に、通常よく行われる弗化水素酸等による除
去材にて薬液処理を施して基板表面の酸化膜を除
去する工程を行つた後薬液を基板表面から除去す
る場合、基板中央付近では純水の流速が大きいの
で、薬液成分は2〜3分程度で除去できるのに対
し、キヤリアと接触している部分では極端に流速
が遅いので15分程度要した。この場合、弗化水素
酸により基板表面の酸化膜を除去しても基板5の
中央部は弗素イオンが除去されてから10分以上純
水で洗われるので、純水により表面に第8図Aに
示すように酸化膜20が形成される。厚さは純水
温度に依存し、23℃前後ではエリプソメーターで
測定すると10Å程度となる。一方、基板のキヤリ
アに近い部分では、弗素イオンが除去された後1
〜2分程度しか純水に爆されないので酸化はほと
んどされない。超高密度MOSLSIのゲート酸化
膜のように、基板表面に30〜40Åの熱酸化膜を均
一性良く形成する必要のある場合、このように初
期酸化膜の不均一があると、例えばMOSトラン
ジスタを形成した場合のしきい値電圧の大きなバ
ラツキを引き起こす。
Furthermore, in conventional cleaning tanks, for example, a silicon substrate is treated with a chemical solution using a removal agent such as hydrofluoric acid, which is commonly used, to remove an oxide film on the substrate surface, and then the chemical solution is removed from the substrate surface. When removing it, the flow rate of pure water is high near the center of the substrate, so the chemical component can be removed in about 2 to 3 minutes, whereas the flow rate is extremely slow in the area that is in contact with the carrier, so it takes about 15 minutes. . In this case, even if the oxide film on the surface of the substrate is removed using hydrofluoric acid, the central part of the substrate 5 is washed with pure water for at least 10 minutes after the fluorine ions are removed. An oxide film 20 is formed as shown in FIG. The thickness depends on the pure water temperature, and at around 23°C it is about 10 Å when measured with an ellipsometer. On the other hand, in the part of the substrate near the carrier, after the fluorine ions are removed,
Since it is exposed to pure water for only about 2 minutes, almost no oxidation occurs. When it is necessary to form a thermal oxide film of 30 to 40 Å with good uniformity on the substrate surface, such as the gate oxide film of an ultra-high-density MOSLSI, if the initial oxide film is uneven, This causes large variations in threshold voltage when formed.

本発明を用いると、洗浄時間の短縮が可能であ
り、このような酸化膜等の不要な被膜20が形成
されにくく、均一なトランジスタ等の形成が可能
となる。
By using the present invention, cleaning time can be shortened, unnecessary films 20 such as such oxide films are less likely to be formed, and uniform transistors and the like can be formed.

また、例えば基板5の表面に深い溝30,31
や穴を選択エツチングにて多数形成した場合、溝
や穴内部のエツチング材である薬液成分の洗浄に
おいて、薬液成分は主に拡散機構により除去され
る。第8図Bに示すように、基板5の中央部のよ
うに表面の純水流速が大きい場合、穴や溝から拡
散して出て来た薬品成分40は速やかに流れ去つ
てしまうので、穴や溝30の入口付近と、底部と
の間の薬液成分の濃度差は大となり拡散が促進さ
れる。しかし、基板5のキヤリア付近の端部で
は、従来の洗浄のように表面流速が小さければ、
端部では穴や溝31の入口付近に拡散して出て来
た薬液成分は停滞し、穴や溝底部からの拡散速度
は非常に小さくなる。従つてこのような場合、水
洗時間の基板中央部と、キヤリアに近い部分との
差はさらに大となつてしまう。
Further, for example, deep grooves 30, 31 on the surface of the substrate 5.
When a large number of grooves and holes are formed by selective etching, the chemical component that is the etching material inside the grooves and holes is removed mainly by a diffusion mechanism. As shown in FIG. 8B, when the flow rate of pure water on the surface is high, such as in the center of the substrate 5, the chemical component 40 that has diffused out from the holes and grooves quickly flows away. The difference in concentration of the chemical liquid component between the vicinity of the entrance of the groove 30 and the bottom becomes large, and diffusion is promoted. However, at the edge of the substrate 5 near the carrier, if the surface flow velocity is low as in conventional cleaning,
At the ends, the chemical components that have diffused and come out near the entrances of the holes and grooves 31 stagnate, and the rate of diffusion from the bottoms of the holes and grooves becomes extremely low. Therefore, in such a case, the difference in washing time between the central part of the substrate and the part near the carrier becomes even larger.

本発明を用いればこのような深い溝や穴を有す
る基板の洗浄にも、中央から周辺まで完全に薬品
成分を除去する時間差が少ないので、このような
現象は生じにくく均一に薬液成分が除去され、ま
たこうしたことにもとづく不要な酸化膜が基板5
の表面あるいは溝に生じることも少なくなる。し
たがつて、このようなエツチング加工の施された
基板の洗浄にとつても、本発明は好都合である。
With the present invention, even when cleaning substrates with such deep grooves and holes, there is little time difference to completely remove chemical components from the center to the periphery, so this phenomenon is unlikely to occur and the chemical components can be removed uniformly. , and an unnecessary oxide film based on these factors is formed on the substrate 5.
It is also less likely to occur on the surface or in the grooves. Therefore, the present invention is also advantageous for cleaning substrates that have been subjected to such etching processing.

本発明がこのような効果を発生するのは、多孔
板の孔から噴出した純水が、孔近傍の基板表面の
薬液成分等を除去した後、清浄化された表面を通
過し、しかるのち、まだ薬液成分の残溜した部分
に到達することによる。しかも、従来孔から噴出
した純水が、槽上部から排出されるまでの平均工
程長がたかだか基板の直径或は槽の高さ程度であ
つたのに対し、本発明では大きな渦流を作つてこ
の工程長を基板面内で長くすることにより達成さ
れるものである。
The reason why the present invention produces such an effect is that the pure water ejected from the holes of the perforated plate removes chemical components, etc. on the substrate surface near the holes, passes through the cleaned surface, and then, This is due to reaching the area where the chemical components still remain. Furthermore, whereas in the past, the average length of the process for pure water ejected from the hole until it was discharged from the top of the tank was at most the diameter of the substrate or the height of the tank, in the present invention, a large vortex is created. This is achieved by increasing the process length within the substrate plane.

また、たとえキヤリアがなくてこれによつて純
水の流れが制限されなくてもこのことは同様で、
従来の例に示したように、純水は層流状にするよ
りも、渦流にした方が効果があり、本発明はキヤ
リアのない場合にも有効である。
This is also true even if there is no carrier and this does not restrict the flow of pure water.
As shown in the conventional example, it is more effective to make pure water into a vortex flow than into a laminar flow, and the present invention is also effective when there is no carrier.

そして、渦流効果を最大限に利用する場合、小
さな渦流が発生しても効果は小さく、基板の大き
さの1/4程度の径を有する大きな渦流があること
が望ましい。
In order to make the most of the eddy current effect, even if a small eddy current occurs, the effect is small, and it is desirable to have a large eddy current with a diameter of about 1/4 of the size of the substrate.

なお、本発明は半導体基板に限らず、金属、絶
縁物等の他の基板の洗浄に適用できることはいう
までもない。
It goes without saying that the present invention is applicable to cleaning not only semiconductor substrates but also other substrates such as metals and insulators.

発明の効果 以上のように、本発明を用いることにより、洗
浄速度の向上ならびに純水等の使用量を減らすこ
とが可能となり、洗浄作業の能率向上、洗浄効果
の向上にすぐれた工業的効果を発揮するものであ
る。特に、本発明は、エツチング処理の施された
半導体基板表面の均一な洗浄が可能となり、高密
度な半導体集積回路装置の均一な製造に大きく寄
与するものである。
Effects of the Invention As described above, by using the present invention, it is possible to improve the cleaning speed and reduce the amount of pure water used, and it has an excellent industrial effect in improving the efficiency of cleaning work and improving the cleaning effect. It is something that can be demonstrated. In particular, the present invention makes it possible to uniformly clean the surface of a semiconductor substrate that has been subjected to an etching process, thereby greatly contributing to the uniform manufacture of high-density semiconductor integrated circuit devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の洗浄装置の概
略構成断面と流速ベクトルを示す図、第2図は本
発明第1の実施例における基板間中央付近の平均
流速の実測値を示す図、第3図は第1の実施例の
多孔板付近の要部平面図、第4図は第2の実施例
の洗浄装置の概略構成断面図、第5図は第2の実
施例における基板間中央付近の平均流速の実測値
を示す図、第6図は第2の実施例に於ける多孔板
付近の要部平面図、第7図は従来例と本発明第1
の実施例を適用した場合の薬液除去速度を比較す
る為の比抵抗回復特性図、第8図は洗浄における
半導体基板の断面図、第9図は基板と基板の間を
2分割し、一方の流速が大、他方が小である場合
の薬液等の濃度低下特性を見積つた計算結果を示
す図、第10図は第9図を得る計算の仮定の説明
図、第11図は従来の洗浄槽の概略構成断面図、
第12図は従来の洗浄槽内の平均流速の実測結果
を示す図である。 1……洗浄槽外壁、2……多孔板、3……純水
供給管、4……キヤリア、5……Si基板、6……
孔、7……渦流。
FIG. 1 is a cross-sectional diagram showing a schematic cross-section of the cleaning device according to the first embodiment of the present invention and flow velocity vectors, and FIG. 2 is a diagram showing the actual measured value of the average flow velocity near the center between the substrates in the first embodiment of the present invention. 3 is a plan view of essential parts near the perforated plate of the first embodiment, FIG. 4 is a schematic cross-sectional view of the cleaning device of the second embodiment, and FIG. 5 is a diagram of the substrate in the second embodiment. Fig. 6 is a plan view of the main part near the perforated plate in the second embodiment, and Fig. 7 shows the conventional example and the first embodiment of the present invention.
Fig. 8 is a cross-sectional view of a semiconductor substrate during cleaning, and Fig. 9 is a diagram of resistivity recovery characteristics for comparing the chemical removal speed when applying the embodiment. A diagram showing the calculation results for estimating the concentration reduction characteristics of chemical liquids when one flow rate is high and the other is low. Figure 10 is an explanatory diagram of the assumptions for calculation to obtain Figure 9. Figure 11 is a conventional cleaning tank. Schematic cross-sectional diagram of the configuration,
FIG. 12 is a diagram showing actual measurement results of the average flow velocity in a conventional cleaning tank. 1...Cleaning tank outer wall, 2...Porous plate, 3...Pure water supply pipe, 4...Carrier, 5...Si substrate, 6...
Hole, 7... vortex.

Claims (1)

【特許請求の範囲】 1 洗浄液を蓄える洗浄槽と、上記洗浄槽内部に
ほぼ垂直に保持されほぼ平行に載置された複数の
被洗浄基板と、上記洗浄液の上記洗浄槽内部での
流速分布を制御する多孔板と、上記多孔板の下方
より上記洗浄槽内部に上記洗浄液を導入する給水
部とを有し、上記洗浄液を上記給水部より供給し
た時、上記洗浄槽内の上記洗浄液が上記基板間〓
内部で基板表面に沿つて大きな渦流を形成するよ
うに、上記多孔板は上記基板の載置されるべき
巾、長さの範囲において複数の孔が形成された開
口領域と孔が形成されていない未開口領域とを有
し、上記開口領域及び上記未開口領域のそれぞれ
の上記基板間〓内部における基板の載置される長
さ方向の最大距離がどの被洗浄基板間の領域にお
いても上記基板の載置されるべき長さの1/4程度
以上であることを特徴とする洗浄装置。 2 被洗浄基板が、前記基板を保持するためのキ
ヤリアに載置され、表面の被膜が除去された半導
体基板叉はエツチングにより溝もしくは穴の形成
された半導体基板よりなり、洗浄液にて、前記被
膜の除去材叉は前記溝もしくは穴に残存したエツ
チング材を洗浄除去することを特徴とする特許請
求の範囲第1項記載の洗浄装置。 3 洗浄液を蓄える洗浄槽内部にほぼ平行に載置
された複数の被洗浄基板をほぼ垂直に保持し、上
記洗浄液の上記洗浄槽内部での流速分布を制御す
る多孔板より下方に設けられた給水部より上記洗
浄槽内部に上記洗浄液を導入し、上記多孔板は上
記基板の載置されるべき巾、長さの範囲において
複数の孔が形成された開口領域と孔が形成されて
いない未開口領域とを有し、上記開口領域及び上
記未開口領域のそれぞれの上記基板間〓内部にお
ける基板の載置される長さ方向の最大距離がどの
被洗浄基板間の領域においても上記基板の載置さ
れるべき長さの1/4程度以上にすることにより上
記基板間〓内部で基板表面に沿つて形成される上
記洗浄槽内の上記洗浄液の大きな渦流によつて上
記基板表面を清浄化することを特徴とする洗浄方
法。 4 基板が円形状をなし、円状の流れの大きさが
前記基板の外径の1/4より大きいことを特徴とす
る特許請求の範囲第3項記載の洗浄方法。 5 被洗浄基板が、表面の被膜が除去された半導
体基板叉はエツチングにより溝もしくは穴の形成
された半導体基板よりなり、洗浄液にて、前記被
膜の除去材叉は前記溝もしくは穴に残存したエツ
チング材を洗浄除去することを特徴とする特許請
求の範囲第3項記載の洗浄方法。
[Scope of Claims] 1. A cleaning tank for storing a cleaning liquid, a plurality of substrates to be cleaned held substantially perpendicularly inside the cleaning tank and mounted almost in parallel, and a flow velocity distribution of the cleaning liquid inside the cleaning tank. a perforated plate for controlling, and a water supply section for introducing the cleaning liquid into the cleaning tank from below the perforated plate; Between
In order to form a large vortex flow along the surface of the substrate inside, the perforated plate has an open area with a plurality of holes and no holes in the width and length range on which the substrate is to be placed. and an unopened area, and the maximum distance between the substrates in the open area and the unopened area in the length direction on which the substrate is placed is the same in any area between the substrates to be cleaned. A cleaning device characterized in that the length is about 1/4 or more of the length to be placed. 2. A substrate to be cleaned is placed on a carrier for holding the substrate, and is made of a semiconductor substrate from which a surface coating has been removed or a semiconductor substrate with grooves or holes formed by etching, and the coating is removed using a cleaning liquid. 2. The cleaning device according to claim 1, wherein the removal material or the etching material remaining in the groove or hole is removed by cleaning. 3. A water supply provided below a perforated plate that holds a plurality of substrates to be cleaned, which are placed substantially parallel inside a cleaning tank that stores cleaning liquid, almost vertically, and controls the flow velocity distribution of the cleaning liquid inside the cleaning tank. The cleaning solution is introduced into the cleaning tank through the opening section, and the perforated plate has an open area with a plurality of holes formed therein and an unopened area with no holes formed in the width and length range on which the substrate is to be placed. between the substrates in each of the open area and the unopened area. By making the length between the substrates approximately 1/4 or more of the length to be cleaned, the surfaces of the substrates are cleaned by a large vortex of the cleaning liquid in the cleaning tank that is formed along the surfaces of the substrates inside the cleaning tank. A cleaning method characterized by: 4. The cleaning method according to claim 3, wherein the substrate has a circular shape, and the size of the circular flow is larger than 1/4 of the outer diameter of the substrate. 5. The substrate to be cleaned is a semiconductor substrate from which a surface coating has been removed or a semiconductor substrate in which grooves or holes have been formed by etching, and the cleaning liquid is used to remove the coating removal material or the etching remaining in the grooves or holes. 4. The cleaning method according to claim 3, further comprising washing and removing the material.
JP984988A 1988-01-20 1988-01-20 Cleaning device and cleaning method Granted JPH01184926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP984988A JPH01184926A (en) 1988-01-20 1988-01-20 Cleaning device and cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP984988A JPH01184926A (en) 1988-01-20 1988-01-20 Cleaning device and cleaning method

Publications (2)

Publication Number Publication Date
JPH01184926A JPH01184926A (en) 1989-07-24
JPH0533819B2 true JPH0533819B2 (en) 1993-05-20

Family

ID=11731582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP984988A Granted JPH01184926A (en) 1988-01-20 1988-01-20 Cleaning device and cleaning method

Country Status (1)

Country Link
JP (1) JPH01184926A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503171A (en) * 1992-12-26 1996-04-02 Tokyo Electron Limited Substrates-washing apparatus
JP3183123B2 (en) * 1995-08-30 2001-07-03 信越半導体株式会社 Etching equipment
DE19644253A1 (en) * 1996-10-24 1998-05-07 Steag Micro Tech Gmbh Device for treating substrates
JP3320640B2 (en) * 1997-07-23 2002-09-03 東京エレクトロン株式会社 Cleaning equipment
JPH1154471A (en) 1997-08-05 1999-02-26 Tokyo Electron Ltd Treatment device and treatment method
DE69835988T2 (en) 1997-08-18 2007-06-21 Tokyo Electron Ltd. Double side cleaning machine for a substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848423A (en) * 1981-09-17 1983-03-22 Matsushita Electric Ind Co Ltd Washing tank
JPS6159838A (en) * 1984-08-31 1986-03-27 Toshiba Ceramics Co Ltd Washer for wafer
JPS62213257A (en) * 1986-03-14 1987-09-19 Mitsubishi Electric Corp Wet type processing bath

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848423A (en) * 1981-09-17 1983-03-22 Matsushita Electric Ind Co Ltd Washing tank
JPS6159838A (en) * 1984-08-31 1986-03-27 Toshiba Ceramics Co Ltd Washer for wafer
JPS62213257A (en) * 1986-03-14 1987-09-19 Mitsubishi Electric Corp Wet type processing bath

Also Published As

Publication number Publication date
JPH01184926A (en) 1989-07-24

Similar Documents

Publication Publication Date Title
JP3502947B2 (en) Semiconductor ultra-fine particle cleaning equipment
US4092176A (en) Apparatus for washing semiconductor wafers
JPS6347137B2 (en)
US6004399A (en) Ultra-low particle semiconductor cleaner for removal of particle contamination and residues from surface oxide formation on semiconductor wafers
JP3146841B2 (en) Wafer rinse equipment
JPH0533819B2 (en)
US6372051B1 (en) Positive flow, positive displacement rinse tank
US6273107B1 (en) Positive flow, positive displacement rinse tank
US6045621A (en) Method for cleaning objects using a fluid charge
US6752897B2 (en) Wet etch system with overflow particle removing feature
US6360756B1 (en) Wafer rinse tank for metal etching and method for using
JPS61166134A (en) Processor
US20020104556A1 (en) Controlled fluid flow and fluid mix system for treating objects
JPH11111663A (en) Equipment and method for chemical liquid treatment
KR100591706B1 (en) Apparatus for Plating Treatment
JP3223020B2 (en) Cleaning / etching apparatus and method
JP4232336B2 (en) Semiconductor wafer surface treatment method
JPH08195372A (en) Cleaning device and its method
JPH0448629A (en) Liquid processor for semiconductor wafer
JP5271060B2 (en) Substrate processing method and substrate processing apparatus
JPH0435900B2 (en)
JPH04124824A (en) Washing method of semiconductor wafer
JP2002134459A (en) Cleaning apparatus and method of controlling the same
JPS6347258B2 (en)
JPH10172947A (en) Single tank-type cleaning method and device therefor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 15