JPH05337610A - Heating mold for continuous casting - Google Patents

Heating mold for continuous casting

Info

Publication number
JPH05337610A
JPH05337610A JP14734392A JP14734392A JPH05337610A JP H05337610 A JPH05337610 A JP H05337610A JP 14734392 A JP14734392 A JP 14734392A JP 14734392 A JP14734392 A JP 14734392A JP H05337610 A JPH05337610 A JP H05337610A
Authority
JP
Japan
Prior art keywords
heating element
mold
heating
molten metal
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14734392A
Other languages
Japanese (ja)
Inventor
Yoichi Mizutani
洋一 水谷
Kikuo Ariga
喜久雄 有賀
Eizo Kojima
榮藏 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
TYK Corp
Original Assignee
Aichi Steel Corp
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp, TYK Corp filed Critical Aichi Steel Corp
Priority to JP14734392A priority Critical patent/JPH05337610A/en
Publication of JPH05337610A publication Critical patent/JPH05337610A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a heating mold for continuous casting heating molten metal in a molten metal discharging passage in the different type to an induction heating type. CONSTITUTION:This mold is constituted with a mold body 1 arranged near a tundish, a cylindrical exothermic body 2 provided in the mold body 1 and forming the molten metal passage 20 passing through the molten metal with an inner wall surface 20a and an electrode part 3 arranged by contacting with the outer peripheral surface of the exothermic body 2.The electrode part 3 is composed of electrodes 31-35 arranged in a prescribed interval along the direction of the molten metal discharging passage 20. The exothermic body 2 is formed with a mixed ceramic containing 90wt.% magnesia, 5% zirconia and 5% alumina and the heat is generated by Joule heat.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は連続鋳造用加熱鋳型に関
する。この連続鋳造用加熱鋳型は、水平式連続鋳造及び
垂直式連続鋳造のいずれにも適用できる。
FIELD OF THE INVENTION The present invention relates to a heating mold for continuous casting. This heating mold for continuous casting can be applied to both horizontal continuous casting and vertical continuous casting.

【0002】[0002]

【従来の技術】従来より、連続鋳造用加熱鋳型として銅
鋳型が用いられている。この場合、銅鋳型と鋳片との間
の焼付きを防止するため、パウダーが用いられる。この
パウダーは、銅鋳型と鋳片との間に流入し、鋳片表面に
オシレーションマークを形成し、鋳片の表面性状を低下
させたり、鋳片内部に捕獲されて介在物となる。
2. Description of the Related Art Conventionally, a copper mold has been used as a heating mold for continuous casting. In this case, powder is used to prevent seizure between the copper mold and the slab. This powder flows between the copper mold and the slab, forms an oscillation mark on the surface of the slab, deteriorates the surface properties of the slab, and is trapped inside the slab to become inclusions.

【0003】そこで、上記した問題を解消する連続鋳造
用加熱鋳型が開発されている。この連続鋳造用加熱鋳型
は、グラファイトを含む筒状の上部加熱部と、筒状の下
部冷却部と、上部加熱部の回りに同軸的に配置された誘
導コイルとをもち、誘導コイルに通電することにより、
上部加熱部を誘導加熱によって加熱するものである(特
開平1−278944号公報、特開平2−37943号
公報)。
Therefore, a heating mold for continuous casting has been developed which solves the above problems. This heating mold for continuous casting has a cylindrical upper heating part containing graphite, a cylindrical lower cooling part, and an induction coil coaxially arranged around the upper heating part, and energizes the induction coil. By
The upper heating part is heated by induction heating (JP-A-1-278944 and JP-A-2-37943).

【0004】また、連続鋳造用加熱鋳型として、鋳型本
体と、鋳型本体の回りに同軸的に配置された誘導コイル
とをもち、誘導コイルに通電して磁界を発生させ、これ
により鋳片の凝固界面に電磁力を作用させるものが知ら
れている(特開平2−205240号公報)。ところ
で、上記した特開平1−278944号公報、特開平2
−37943号公報に係る連続鋳造用加熱鋳型では、誘
導加熱で上部加熱部を加熱する方式が採用されているの
で、誘導コイルの冷却装置、大電源装置を必要とする。
また、連続鋳造では、凝固シェルの外表面の凝固の制御
が重要であるが、誘導加熱方式では、凝固シェルの外表
面の内部も誘導加熱の影響を受けやすく、凝固シェルの
制御が容易でない。
Further, as a heating mold for continuous casting, it has a mold body and an induction coil coaxially arranged around the mold body, and the induction coil is energized to generate a magnetic field, thereby solidifying the slab. It is known to apply an electromagnetic force to the interface (Japanese Patent Laid-Open No. 2-205240). By the way, the above-mentioned JP-A-1-278944 and JP-A-2
In the continuous casting heating mold according to Japanese Patent Publication No. 37943, since a method of heating the upper heating portion by induction heating is adopted, a cooling device for the induction coil and a large power supply device are required.
Further, in continuous casting, it is important to control the solidification of the outer surface of the solidified shell, but in the induction heating method, the inside of the outer surface of the solidified shell is also easily affected by induction heating, and the control of the solidified shell is not easy.

【0005】また、上記した特開平2−205240号
公報に係る連続鋳造用加熱鋳型は、鋳片を加熱鋳型の内
壁面から離すことを目的とするものである。
Further, the heating mold for continuous casting according to the above-mentioned Japanese Patent Application Laid-Open No. 2-205240 is intended to separate the slab from the inner wall surface of the heating mold.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記した実情
に鑑み開発されたものであり、誘導加熱方式とは異なる
方式で、出湯通路の金属溶湯を加熱する連続鋳造用加熱
鋳型を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been developed in view of the above-mentioned circumstances, and provides a heating mold for continuous casting for heating the molten metal in the tap passage by a method different from the induction heating method. With the goal.

【0007】[0007]

【発明が解決しようとする手段】本発明の係る連続鋳造
用加熱鋳型は、タンデッシュの出湯口近傍に設けられる
鋳型本体と、鋳型本体に装備され、金属溶湯が通過する
出湯通路を内壁面で形成し通電に伴い発熱する筒形状の
発熱体と、発熱体の外周面側に設けられ発熱体に通電す
る少なくとも2個の電極部とで構成されていることを特
徴とするものである。
The heating mold for continuous casting according to the present invention has a mold body provided in the vicinity of the tap opening of the tundish, and a tap hole which is provided in the mold body and through which the metal melt passes, on the inner wall surface. It is characterized in that it is composed of a cylindrical heating element that generates heat with energization and at least two electrode portions that are provided on the outer peripheral surface side of the heating element and that conduct current to the heating element.

【0008】鋳型本体は、発熱体を保持する部位であ
る。発熱体は鋳型本体に装備されており、その内壁面で
出湯通路を形成する。発熱体は導電性をもつセラミック
スを主成分として形成できる。発熱体は、一般的に、マ
グネシア(MgO)、ジルコニア(ZrO2 )、アルミ
ナ(Al2 3 )、あるいは、マグネシアとジルコニア
との混合体、マグネシアとジルコニアとアルミナとの混
合体で構成できる。なお、マグネシアは常温度域では電
気絶縁材料であるが、鋼の融点付近の1500°C付近
では導電性をもち、所要の固有抵抗値が得られる。ここ
で、アルミナは、発熱体の抵抗値を制御するのに有効で
あり、ジルコニアは発熱体の耐熱性、衝撃性、熱間特性
の向上に有効であり、また抵抗値の制御にも有効であ
る。この場合には、熱衝撃性、熱膨張性、固有抵抗値等
を考慮すると、その配合割合は例えば、重量%で、マグ
ネシアが60〜99%、特に85〜95%が好ましく、
ジルコニアが1〜40%。特に5〜25%が好ましく、
アルミナが1〜40%、特に2.5〜15%が好まし
い。
The mold body is a part for holding a heating element. The heating element is mounted on the mold body, and its inner wall surface forms a hot water outlet passage. The heating element can be formed mainly of conductive ceramics. The heating element can be generally composed of magnesia (MgO), zirconia (ZrO 2 ), alumina (Al 2 O 3 ), a mixture of magnesia and zirconia, or a mixture of magnesia, zirconia and alumina. Although magnesia is an electrically insulating material in the normal temperature range, it has conductivity near 1500 ° C., which is near the melting point of steel, and a required specific resistance value can be obtained. Here, alumina is effective in controlling the resistance value of the heating element, and zirconia is effective in improving the heat resistance, impact resistance, and hot characteristics of the heating element, and is also effective in controlling the resistance value. is there. In this case, considering the thermal shock resistance, the thermal expansion property, the specific resistance value, etc., the mixing ratio thereof is, for example, by weight, magnesia is preferably 60 to 99%, and particularly preferably 85 to 95%.
Zirconia is 1-40%. 5 to 25% is particularly preferable,
Alumina is preferably 1 to 40%, particularly preferably 2.5 to 15%.

【0009】金属溶湯が溶鋼またはステンレス系の溶鋼
である場合において、発熱体の固有抵抗値は1500℃
付近で、20Ωcm以上であることが望ましく、特に2
00Ωcm以上であることが望ましい。なお、発熱体を
形成するセラミックスの粒度は抵抗値、電流の偏流化に
影響を与えることがあり、そのためセラミックス粉末の
最大粒径は0.5mm〜5mm程度が望ましく、特に
0.7mm〜3mm程度が望ましい。
When the molten metal is molten steel or stainless type molten steel, the specific resistance value of the heating element is 1500 ° C.
20Ωcm or more is desirable in the vicinity, especially 2
It is desirable that it is at least 00 Ωcm. Note that the particle size of the ceramics forming the heating element may affect the resistance value and the uneven distribution of current, so the maximum particle size of the ceramic powder is preferably about 0.5 mm to 5 mm, and particularly about 0.7 mm to 3 mm. Is desirable.

【0010】電極部は発熱体に接触して設けられ、発熱
体に通電するためのものである。電極部の材質は導電
率、熱伝達率等を考慮して選択し、例えば、カーボンペ
ーパー、固形アルミナグラファイト系材料、ポーラスな
炭素系耐火物を採用できる。電極部の配置、形状、強度
は、発熱体の熱膨張の影響を回避できる様にすることが
好ましい。
The electrode portion is provided in contact with the heating element and is for supplying electricity to the heating element. The material of the electrode portion is selected in consideration of conductivity, heat transfer coefficient, etc., and, for example, carbon paper, solid alumina graphite-based material, or porous carbon-based refractory can be adopted. The arrangement, shape, and strength of the electrode parts are preferably such that the influence of thermal expansion of the heating element can be avoided.

【0011】[0011]

【作用】電極部を電源に接続した状態で、電極部から発
熱体に通電して発熱体を発熱させれば、出湯通路におけ
る金属は加熱される。発熱体の発熱形態を調整すれば、
出湯通路における金属溶湯の凝固は調整される。
The metal in the hot water passage is heated by energizing the heating element from the electrode section to heat the heating element while the electrode section is connected to the power source. By adjusting the heat generation form of the heating element,
The solidification of the molten metal in the tap passage is adjusted.

【0012】[0012]

【実施例】本発明にかかる連続鋳造用加熱鋳型の実施例
について図1〜図3を参照して説明する。本実施例にか
かる連続鋳造用加熱鋳型の主要部を図1に示す。この加
熱鋳型は、鋳型本体1と、筒状の発熱体2と、発熱体2
に通電する炭素系の電極部3とで構成されている。
EXAMPLE An example of a heating mold for continuous casting according to the present invention will be described with reference to FIGS. The main part of the heating mold for continuous casting according to this example is shown in FIG. This heating mold includes a mold body 1, a cylindrical heating element 2, and a heating element 2
It is composed of a carbon-based electrode portion 3 that conducts electricity.

【0013】鋳型本体1は、鉄皮10と、鉄皮10の内
壁面に内張された所要厚みの耐火物層11とで構成され
ている。耐火物層11は多孔質マグネシアを主成分とし
ている。発熱体2は耐火物層11に埋設されている。発
熱体2の内壁面20aで出湯通路20が形成されてい
る。発熱体2は、重量%で、マグネシア90%、ジルコ
ニア5%、アルミナ5%、不可避の不純物を含有する混
合セラミックスで形成されている。ここで本実施例で
は、発熱体2は、軸長Lが200mm程度、外径D1が
80mm、内径D2が60mmである。
The mold main body 1 is composed of an iron skin 10 and a refractory layer 11 having a required thickness, which is lined on the inner wall surface of the iron skin 10. The refractory layer 11 contains porous magnesia as a main component. The heating element 2 is embedded in the refractory layer 11. The hot water outlet passage 20 is formed by the inner wall surface 20 a of the heating element 2. The heating element 2 is made of mixed ceramics containing 90% of magnesia, 5% of zirconia, 5% of alumina, and inevitable impurities in weight%. In this embodiment, the heating element 2 has an axial length L of about 200 mm, an outer diameter D1 of 80 mm, and an inner diameter D2 of 60 mm.

【0014】この発熱体2は次のように製造した。即
ち、原料をロールクラッシャー、インペラブレーカー等
の粗砕機で粉砕して粗、中粒子とし、更にボールミルや
振動ミル等で粉砕して微粒子を造り、それぞれの粒子を
適正な粒度構成が得られるよう配合して混合し、その粉
末に水を加えてスラリーを形成する調整工程、スラリー
を型のキャビティに流し込んで成形する成形工程、成形
した成形体を型から外した後に養生し、乾燥する乾燥工
程、乾燥した成形体を焼結する焼結工程とを順に実施し
て製造した。
The heating element 2 was manufactured as follows. That is, the raw material is crushed by a crusher such as a roll crusher or an impeller breaker into coarse and medium particles, and further crushed by a ball mill, a vibration mill or the like to make fine particles, and each particle is blended so as to obtain an appropriate particle size constitution. And mixing, adjusting step of adding water to the powder to form a slurry, molding step of pouring the slurry into the cavity of the mold to mold, curing after molding the molded body from the mold, a drying step of drying, It was manufactured by sequentially performing a sintering step of sintering the dried compact.

【0015】電極部3は発熱体2の外周面に接触して装
備されている。電極部3は、発熱体2の軸長方向の一端
側から順に配置された第1電極部31、第2電極部3
2、第3電極部33、第4電極部34、第5電極部35
で構成されている。ここで、発熱体2の一端から第1電
極部31までの距離をL1とし、第1電極部31と第2
電極部32との間の距離をL2とし、第2電極部32と
第3電極部33との間の距離をL3とし、第3電極部3
3と第4電極部34との間の距離をL4とし、第4電極
部34と第5電極部35との間の距離をL5とし、発熱
体2の他端から第5電極部35までの距離をL6とする
と、L1及びL6は15mm程度、L2〜L5は5mm
程度である。また各電極部31〜35の幅Mは30mm
程度である。
The electrode portion 3 is provided in contact with the outer peripheral surface of the heating element 2. The electrode part 3 includes a first electrode part 31 and a second electrode part 3 which are sequentially arranged from one end side in the axial direction of the heating element 2.
2, third electrode portion 33, fourth electrode portion 34, fifth electrode portion 35
It is composed of. Here, the distance from one end of the heating element 2 to the first electrode portion 31 is L1, and the first electrode portion 31 and the second electrode portion 31 are
The distance between the electrode portion 32 and the second electrode portion 32 is L2, the distance between the second electrode portion 32 and the third electrode portion 33 is L3, the third electrode portion 3
The distance between the third electrode portion 34 and the fourth electrode portion 34 is L4, the distance between the fourth electrode portion 34 and the fifth electrode portion 35 is L5, and the distance from the other end of the heating element 2 to the fifth electrode portion 35 is When the distance is L6, L1 and L6 are about 15 mm, and L2 to L5 are 5 mm.
It is a degree. The width M of each electrode portion 31 to 35 is 30 mm.
It is a degree.

【0016】さて本実施例では、図2に示す様に互いに
対面する2個の第1電極部31は通電線31aを介して
電源41に接続されている。互いに対面する2個の第2
電極部32は通電線32aを介して電源42に接続され
ている。互いに対面する2個の第3電極部33は通電線
33aを介して電源43に接続されている。互いに対面
する2個の第4電極部34は通電線34aを介して電源
44に接続されている。互いに対面する2個の第5電極
部35は通電線35aを介して電源45に接続されてい
る。なお、通電線31a〜35aは耐火物層11に埋設
されて電気絶縁性が確保されている。通電線31a〜3
5aの電気絶縁性を高めるべく、通電線31a〜35a
が挿通されたセラミックスパイプを耐火物層11に埋設
することにしても良い。
In the present embodiment, as shown in FIG. 2, the two first electrode portions 31 facing each other are connected to the power source 41 via the conducting wire 31a. Two second facing each other
The electrode portion 32 is connected to the power source 42 via the conducting wire 32a. The two third electrode portions 33 facing each other are connected to the power supply 43 via the conducting wire 33a. The two fourth electrode portions 34 facing each other are connected to the power supply 44 via the conducting wire 34a. The two fifth electrode portions 35 facing each other are connected to the power supply 45 via the conducting wire 35a. The conducting wires 31a to 35a are embedded in the refractory layer 11 to ensure electrical insulation. Current-carrying lines 31a-3
In order to improve the electric insulation of 5a, the conducting wires 31a to 35a
It is also possible to embed the ceramics pipe through which is inserted into the refractory layer 11.

【0017】次に使用する場合について説明する。本実
施例ではタンデッシュにはオーステナイト系のステンレ
ス鋼(SUS304)の溶湯が保持されている。連続鋳
造の際には、タンデッシュの溶湯が発熱体2の出湯通路
20を入口2aから出口2bにかけて通過し、冷却装置
5側で冷却されて凝固が進行し、鋳片Wが形成され、鋳
片Wはピンチローラ6で引き抜かれる。
Next, the case of use will be described. In this embodiment, the tundish holds molten metal of austenitic stainless steel (SUS304). During continuous casting, the molten metal in the tundish passes through the outlet passage 20 of the heating element 2 from the inlet 2a to the outlet 2b, is cooled on the cooling device 5 side and solidification proceeds, and the slab W is formed. W is pulled out by the pinch roller 6.

【0018】連続鋳造の操業条件は、注入温度が151
0°C、鋳造速度が1.5m/分、鋳造時間が120分
/回であり、本実施例では、鋳片Wを一定量引き抜き、
一定時間保持し、その後、少し戻すという工程を繰返す
『間欠引き抜き法』で行った。本実施例では、連続鋳造
の際には、各電源41〜45から各電極部31〜35を
介して発熱体2に通電されており、発熱体2がジュール
熱で発熱している。この結果、発熱体2の出湯通路20
内の溶湯が加熱される。この場合、発熱体2の発熱形態
は入口2a側ほど大きくする。すなわち、投入電力量
は、第1電極部31及び第2電極部32には4KW、第
3電極部32には2KW、第4電極部34には1KW、
第5電極部35には0KWとする。
The operating condition of continuous casting is that the injection temperature is 151
At 0 ° C., the casting speed is 1.5 m / min, the casting time is 120 min / time, and in this embodiment, a certain amount of the cast slab W is drawn,
It was carried out by the "intermittent drawing method" in which the process of holding for a certain period of time and then returning a little was repeated. In the present embodiment, during continuous casting, the heating element 2 is energized from each of the power sources 41 to 45 through each of the electrode portions 31 to 35, and the heating element 2 generates Joule heat. As a result, the hot water outlet passage 20 of the heating element 2
The molten metal inside is heated. In this case, the heat generation form of the heating element 2 is made larger toward the inlet 2a side. That is, the input power amount is 4 KW for the first electrode portion 31 and the second electrode portion 32, 2 KW for the third electrode portion 32, and 1 KW for the fourth electrode portion 34.
The fifth electrode portion 35 has 0 kW.

【0019】上記した実施例では、20回以上の操業に
耐えることが確認された。なお、連続鋳造の操業の前
に、発熱体2に通電してこれを予熱しておけば、溶湯と
の接触による発熱体2の急熱を防止でき、急熱に起因す
る発熱体2の亀裂を防止するのに有利である。また、上
記した予熱により、マグネシアを主成分とし高温度領域
で導電性を帯びる発熱体2の導電性を確保できる。
It has been confirmed that the above-mentioned examples can withstand 20 or more operations. If the heating element 2 is energized and preheated before the operation of continuous casting, rapid heating of the heating element 2 due to contact with the molten metal can be prevented, and cracks in the heating element 2 due to rapid heating can be prevented. It is advantageous to prevent. Further, by the above-mentioned preheating, it is possible to secure the conductivity of the heating element 2 which has magnesia as a main component and has conductivity in a high temperature region.

【0020】以上説明した様に本実施例では、大電源装
置や誘導コイルの冷却装置を必要とする誘導加熱方式を
採用することなく、発熱体2に通電した際の発熱で、出
湯通路20内の金属溶湯を加熱できる。更に本実施例で
は、電極部3は、発熱体2の出湯通路20の方向にそっ
て分割されている。換言すれば、発熱体2の出湯通路2
0の方向にそって第1電極部31〜第5電極部35が配
置され、第1電極部31〜第5電極部35が個別に独立
して加熱されるので、発熱体2の出湯通路20の方向に
おける発熱分布、発熱形態を調整できる。そのため、溶
湯の凝固開始点の位置を発熱体2の出湯通路20の方向
にそって調整し易い。その調整により、凝固開始点を湯
面から離すこともでき、その結果、良好な表面性状をも
つ鋳片が得られる。この様に良好な表面性状をもつ鋳片
が得られるので、無手入れのままの状態で、鋳片を圧延
しても、圧延した後の製品に生じる欠陥を軽減または回
避できる。
As described above, in the present embodiment, the inside of the hot water passage 20 is generated by the heat generated when the heating element 2 is energized without adopting the induction heating method which requires the large power supply device and the cooling device for the induction coil. The metal melt can be heated. Further, in this embodiment, the electrode portion 3 is divided along the direction of the hot water discharge passage 20 of the heating element 2. In other words, the hot water outlet passage 2 of the heating element 2
The first electrode portion 31 to the fifth electrode portion 35 are arranged along the direction of 0, and the first electrode portion 31 to the fifth electrode portion 35 are individually and independently heated. The heat generation distribution and heat generation form in the direction can be adjusted. Therefore, it is easy to adjust the position of the solidification start point of the molten metal along the direction of the tap passage 20 of the heating element 2. By the adjustment, the solidification starting point can be separated from the molten metal surface, and as a result, a slab having good surface properties can be obtained. Since a slab having good surface properties can be obtained in this way, even if the slab is rolled in an unmaintained state, defects occurring in the rolled product can be reduced or avoided.

【0021】ところで、凝固開始点では発熱体2の内壁
面20aが損耗し易いが、この場合であっても、発熱体
2の発熱分布、発熱形態の調整により、損耗部位を避け
て凝固開始点を設定することもでき、この意味で、本実
施例に係る加熱鋳型の耐用回数の増加を期待できる。一
方、誘導コイルによる誘導加熱方式を採用した従来で
は、発熱体2の出湯通路20の方向にそって分割された
誘導コイルを設け、各誘導コイルに個別に通電したとし
ても、各コイルの磁界が影響し合うので、凝固開始点の
位置の精度よい調整は期待できない。
By the way, the inner wall surface 20a of the heating element 2 is easily worn at the solidification starting point. Even in this case, the solidification starting point is avoided by avoiding the worn portion by adjusting the heat distribution and the heating pattern of the heating element 2. Can be set, and in this sense, an increase in the number of times of service of the heating mold according to the present embodiment can be expected. On the other hand, in the conventional case where the induction heating system using the induction coil is adopted, even if the induction coil divided along the direction of the hot water passage 20 of the heating element 2 is provided and each induction coil is individually energized, the magnetic field of each coil is Since they affect each other, accurate adjustment of the position of the solidification start point cannot be expected.

【0022】また、本実施例では、発熱体2の出湯通路
20の方向にそって配置された第1電極部31〜第5電
極部35を個別に独立して発熱できるので、発熱体2の
入口2aから出口2bに向かうにつれて、凝固シェルの
厚みを順次大きくでき、適正な凝固シェルを生成させる
のに有利である。更に本実施例では、発熱体2はマグネ
シア−ジルコニア−アルミナ系であるため、出湯通路2
0を通過する溶湯への炭素成分の侵入を回避でき、溶湯
材質の維持に有利であり、しかも耐溶損性が良好であ
る。
In addition, in the present embodiment, the first electrode portion 31 to the fifth electrode portion 35 arranged along the hot water discharge passage 20 of the heating element 2 can individually and independently generate heat. The thickness of the solidified shell can be gradually increased from the inlet 2a to the outlet 2b, which is advantageous for producing an appropriate solidified shell. Further, in this embodiment, since the heating element 2 is a magnesia-zirconia-alumina system, the tapping passage 2
It is possible to avoid invasion of a carbon component into the molten metal passing through 0, which is advantageous for maintaining the material quality of the molten metal, and is also excellent in erosion resistance.

【0023】(他の例)上記した実施例において、発熱
体2は円筒形状であるが、図4にその横断面を示す他の
例の様に、出湯通路70をもつ角筒形状の発熱体7を用
いてもよい。この場合には、発熱体7の互いに背向する
側面に設けた電極部70、70同志を通電線70aで電
源71に接続し、発熱体7の互いに背向する側面に設け
た電極部73、73同志を通電線73aで電源74に接
続する。
(Other Example) In the above-mentioned embodiment, the heating element 2 has a cylindrical shape, but like the other example whose cross section is shown in FIG. 7 may be used. In this case, the electrode portions 70, 70 provided on the opposite side surfaces of the heating element 7 are connected to the power source 71 by the electric wire 70a, and the electrode portions 73 provided on the opposite side surfaces of the heating element 7, 73 are connected to the power supply 74 by the electric wire 73a.

【0024】ところで本実施例の様なセラミックスから
なる連続鋳造用加熱鋳型は従来の銅鋳型に比べ抜熱の点
では劣るので、大断面の場合、鋳型下部で加熱パワーを
0にしても、凝固シェルが十分に形成されない場合が考
えられる。その場合は、従来の加熱鋳型と同様に、本実
施例に係る加熱鋳型の下部に銅鋳型等の冷却部を設ける
ことができる。
By the way, the heating mold for continuous casting made of ceramics as in this embodiment is inferior to the conventional copper mold in terms of heat removal. Therefore, in the case of a large cross section, even if the heating power is set to 0 at the lower part of the mold, solidification occurs. It is possible that the shell is not well formed. In that case, like the conventional heating mold, a cooling unit such as a copper mold can be provided below the heating mold according to the present embodiment.

【0025】[0025]

【発明の効果】本発明にかかる連続鋳造用加熱鋳型によ
れば、大電源装置や誘導コイルの冷却装置を必要とする
誘導加熱方式を採用することなく、発熱体に通電した際
の発熱で、出湯通路内の金属溶湯を加熱できる。更に本
発明にかかる連続鋳造用加熱鋳型によれば、電極部を発
熱体の出湯通路の方向にそって分割し、分割した各電極
部を個別に制御すれば、発熱体の発熱分布、発熱形態を
調整できる。そのため、溶湯の凝固開始点の位置を発熱
体の出湯通路の方向において調整できる効果が得られ
る。
According to the heating mold for continuous casting of the present invention, the heat generated when the heating element is energized without adopting the induction heating method that requires the large power supply device and the cooling device for the induction coil, The molten metal in the tap passage can be heated. Further, according to the heating mold for continuous casting according to the present invention, if the electrode portion is divided along the direction of the hot water discharge passage of the heating element and each divided electrode portion is individually controlled, the heat generation distribution of the heating element, the heat generation form Can be adjusted. Therefore, the effect of adjusting the position of the solidification start point of the molten metal in the direction of the hot water discharge passage of the heating element is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】連続鋳造用加熱鋳型の要部の斜視図である。FIG. 1 is a perspective view of a main part of a heating mold for continuous casting.

【図2】電極部をもつ発熱体の縦断面図である。FIG. 2 is a vertical sectional view of a heating element having an electrode portion.

【図3】電極部をもつ発熱体の横断面図である。FIG. 3 is a cross-sectional view of a heating element having an electrode portion.

【図4】他の例に係る電極部をもつ発熱体の横断面図で
ある。
FIG. 4 is a cross-sectional view of a heating element having an electrode portion according to another example.

【符号の説明】[Explanation of symbols]

図中、1は鋳型本体、2は発熱体、20は出湯通路、3
は電極部、6はピンチローラを示す。
In the figure, 1 is a mold body, 2 is a heating element, 20 is a hot water outlet passage, 3
Is an electrode part, and 6 is a pinch roller.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小島 榮藏 愛知県東海市加木屋町小家ノ脇4−11 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Eizo Kojima 4-11 Koya no Waki, Kagiya Town, Tokai City, Aichi Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】タンデッシュの出湯口近傍に設けられる鋳
型本体と、 該鋳型本体に装備され、金属溶湯が通過する出湯通路を
内壁面で形成し通電に伴い発熱する筒形状の発熱体と、 該発熱体の外周面側に設けられ該発熱体に通電する少な
くとも2個の電極部とで構成されていることを特徴とす
る連続鋳造用加熱鋳型。
1. A mold body provided in the vicinity of a tap opening of a tundish, a tubular heating element that is provided in the mold body, forms a tap passage through which a molten metal passes through with an inner wall surface, and generates heat with energization, A heating mold for continuous casting, comprising: at least two electrode portions provided on the outer peripheral surface side of the heating element and energized to the heating element.
JP14734392A 1992-06-08 1992-06-08 Heating mold for continuous casting Pending JPH05337610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14734392A JPH05337610A (en) 1992-06-08 1992-06-08 Heating mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14734392A JPH05337610A (en) 1992-06-08 1992-06-08 Heating mold for continuous casting

Publications (1)

Publication Number Publication Date
JPH05337610A true JPH05337610A (en) 1993-12-21

Family

ID=15428041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14734392A Pending JPH05337610A (en) 1992-06-08 1992-06-08 Heating mold for continuous casting

Country Status (1)

Country Link
JP (1) JPH05337610A (en)

Similar Documents

Publication Publication Date Title
JP3049648B2 (en) Pressure molding method and pressure molding machine
EP3159074A1 (en) Nozzle tip for a continuous strip caster
CN113061741B (en) Electroslag remelting composite device and method for improving temperature distribution of slag bath by external magnetic field
JP4660343B2 (en) Nozzle heating device for molten metal injection
US5201359A (en) Rapid solidification apparatus
JPH05337610A (en) Heating mold for continuous casting
CA1198157A (en) Casting technique for lead storage battery grids
EP0296562B1 (en) A casting system
JPH0683888B2 (en) Pressure casting equipment
JPS5813449A (en) Immersion nozzle for electrical heating
JPH0639503A (en) Method for control-heating molten steel in continuous casting process
JPH05257U (en) Heater device for immersion of molten metal
JPH11104804A (en) Method for adjusting material
JPH02263544A (en) Heater device for submerging into molten metal
JPH0667540B2 (en) Heater device
JPS619943A (en) Casting method of holding single or plural areas of mold under state of heating
JPS63168258A (en) Channel refractory for intermediate channel type induction heating tundish
JPH05121148A (en) Manufacture of ceramic heater device
JPH05337635A (en) Molten metal holding vessel
JPH09174219A (en) Sleeve for die casting and press-forming method
JPH074653B2 (en) Molten metal immersion type heater device
JPH05258U (en) Heater device for immersion of molten metal
KR200223393Y1 (en) Tun-dish Appratus for the casting process of copper-alloy and oxygen-free copper product using the electrical resistance heat
JP2001191154A (en) Molten metal continuous casting apparatus
JPH07178528A (en) Pressure-forming method and pressure-forming machine