JPH05337635A - Molten metal holding vessel - Google Patents

Molten metal holding vessel

Info

Publication number
JPH05337635A
JPH05337635A JP14587392A JP14587392A JPH05337635A JP H05337635 A JPH05337635 A JP H05337635A JP 14587392 A JP14587392 A JP 14587392A JP 14587392 A JP14587392 A JP 14587392A JP H05337635 A JPH05337635 A JP H05337635A
Authority
JP
Japan
Prior art keywords
molten metal
heating element
passage
holding
exothermic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14587392A
Other languages
Japanese (ja)
Inventor
Yoichi Mizutani
洋一 水谷
Kikuo Ariga
喜久雄 有賀
Eizo Kojima
榮藏 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
TYK Corp
Original Assignee
Aichi Steel Corp
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp, TYK Corp filed Critical Aichi Steel Corp
Priority to JP14587392A priority Critical patent/JPH05337635A/en
Publication of JPH05337635A publication Critical patent/JPH05337635A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PURPOSE:To provide a molten metal holding vessel in which the clogging of a molten metal passage caused by solidified metal is prevented and the discharge of molten metal from the molten metal passage can be made to be excellent and the use of filling material contaminating the molten metal can be abolished. CONSTITUTION:This vessel is constituted of a vessel body 1 with bottom having the holding chamber 12 for holding the molten metal, a cylindrical exothermic body 2 forming the molten metal passage 20 for discharging the molten metal by inner wall surface 2a and a carbonaceous electrode part 3 fitted to the outside of the exothermic body 2 and supplying electric power in the exothermic body 2. The exothermic body 2 is constituted with the mixed body of magnesia, zirconia and alumina. The exothermic body 2 and the electrode part 3 are embedded into a refractory layer 11 in the vessel body 1 and electrically insulated. The electric power is supplied to the exothermic body 2 through the electrode part 3, thereby the exothermic body 2 is energized to heat the metal in the molten metal passage 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属溶湯保持容器に関す
る。この金属溶湯保持容器は、例えば、溶鋼を保持する
取鍋に利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molten metal holding container. This molten metal holding container can be used as, for example, a ladle holding molten steel.

【0002】[0002]

【従来の技術】金属溶湯保持容器例えば取鍋は、金属溶
湯を保持する保持室と、底部に設けられた出湯通路とを
もつ。ここで、出湯通路付近は温度が低くなるため、溶
湯が出湯通路付近で凝固することがある。この場合、出
湯通路が詰まって出湯通路の開口が困難となり、出湯で
きなくなる問題がある。
2. Description of the Related Art A molten metal holding container, such as a ladle, has a holding chamber for holding molten metal and a tapping passage provided at the bottom. Here, since the temperature becomes low in the vicinity of the tap passage, the molten metal may solidify near the tap passage. In this case, there is a problem that the hot water discharge passage is clogged and opening of the hot water discharge passage becomes difficult, and hot water cannot be discharged.

【0003】これを防止するため、粉粒状の充填材(挂
砂、クローム鉄鉱等又はこれらのカーボンコート材)を
出湯通路に予め詰めておくことが行われている。そし
て、出湯時に、出湯通路の開閉プレートを開き、出湯通
路内の充填材とともに保持室内の溶湯を出湯通路から落
下する。しかしこの場合には、出湯通路に詰められた充
填材が熱でしばしば焼結することがある。この場合、開
閉プレートを開いても、溶湯を出湯できなくなる。更
に、出湯通路から吐出される金属溶湯が充填材で汚染さ
れ、溶湯の清浄化、高品質化の面で好ましくない。
In order to prevent this, it has been practiced to previously fill the tapping passage with a powdery or granular filler material (such as sand sand, chrome iron ore, or a carbon coating material thereof). Then, at the time of tapping, the opening / closing plate of the tapping passage is opened, and the molten metal in the holding chamber is dropped from the tapping passage together with the filler in the tapping passage. However, in this case, the filler filled in the tap passage may often be sintered by heat. In this case, even if the opening / closing plate is opened, the molten metal cannot be discharged. Further, the molten metal discharged from the tapping passage is contaminated with the filler, which is not preferable in terms of cleaning the molten metal and improving its quality.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記した実情
に鑑み開発されたものであり、凝固金属による出湯通路
の詰まりを防止し、出湯通路からの出湯を良好にし得、
更に、溶湯を汚染する充填材の使用を廃止し得る金属溶
湯保持容器を提供することを目的とするにある。
SUMMARY OF THE INVENTION The present invention was developed in view of the above-mentioned circumstances, and it is possible to prevent clogging of a hot water discharge passage due to solidified metal and to improve hot water discharge from the hot water discharge passage.
It is another object of the present invention to provide a metal melt holding container capable of eliminating the use of a filler that contaminates the melt.

【0005】[0005]

【課題を解決するための手段】本発明の金属溶湯保持容
器は、金属溶湯を保持する保持室をもつ有底形状の容器
本体と、容器本体に装備され、保持室の金属溶湯を該保
持室外に吐出する出湯通路を内壁面で形成し給電に伴い
発熱する筒形状の発熱体と、発熱体に給電する少なくと
も2個の電極部とで構成されていることを特徴とするも
のである。
A container for holding molten metal of the present invention is equipped with a bottomed container body having a holding chamber for holding the molten metal, and the container body is equipped with the molten metal in the holding chamber outside the holding chamber. It is characterized in that the hot water discharge passage is formed by an inner wall surface and is composed of a cylindrical heating element that generates heat with power supply and at least two electrode portions that supply power to the heating element.

【0006】容器本体は、有底形状をなし、金属溶湯を
保持する保持室をもつ。発熱体は容器本体に装備されて
おり、その内壁面で出湯通路を形成する。発熱体は導電
性をもつセラミックスを主成分として形成できる。保持
室に保持される金属溶湯が溶鋼の場合においては、発熱
体は、一般的に、マグネシア(MgO)、ジルコニア
(ZrO2 )、アルミナ(Al2 3 )、あるいは、マ
グネシアとジルコニアとの混合体、マグネシアとジルコ
ニアとアルミナとの混合体で構成できる。なお、マグネ
シアは常温度域では電気絶縁材料であるが、鋼の融点付
近の1500°C付近では導電性をもち、所要の固有抵
抗値が得られる。
The container body has a bottomed shape and has a holding chamber for holding the molten metal. The heating element is mounted on the container body, and its inner wall surface forms a hot water outlet passage. The heating element can be formed mainly of conductive ceramics. When the molten metal held in the holding chamber is molten steel, the heating element is generally magnesia (MgO), zirconia (ZrO 2 ), alumina (Al 2 O 3 ), or a mixture of magnesia and zirconia. Body, a mixture of magnesia, zirconia and alumina. Although magnesia is an electrically insulating material in the normal temperature range, it has conductivity near 1500 ° C., which is near the melting point of steel, and a required specific resistance value can be obtained.

【0007】ここで、発熱体を形成するセラミックスと
して、マグネシアとジルコニアとアルミナとの混合体を
用いる場合には、アルミナは、発熱体の抵抗値を制御す
るのに有効であり、ジルコニアは発熱体の耐熱性、衝撃
性、熱間特性の向上に有効であり、また抵抗値の制御に
も有効である。この場合には、熱衝撃性、熱膨張性、固
有抵抗値等を考慮すると、その配合割合は例えば、重量
%で、マグネシアが60〜99%、特に85〜95%が
好ましく、ジルコニアが1〜40%。特に5〜2.5%
が好ましく、アルミナが1〜40%、特に2.5〜15
%が好ましい。
Here, when a mixture of magnesia, zirconia and alumina is used as the ceramic forming the heating element, alumina is effective for controlling the resistance value of the heating element, and zirconia is the heating element. It is effective in improving the heat resistance, impact resistance, and hot characteristics of the steel, and is also effective in controlling the resistance value. In this case, considering the thermal shock resistance, thermal expansion property, specific resistance value, etc., the mixing ratio is, for example, by weight, magnesia is preferably 60 to 99%, particularly preferably 85 to 95%, and zirconia is 1 to 1. 40%. Especially 5 to 2.5%
Is preferred, 1-40% alumina, especially 2.5-15
% Is preferred.

【0008】溶鋼を保持する場合において、発熱体の固
有抵抗値は1500℃付近で、20Ωcm以上であるこ
とが望ましく、特に200Ωcm以上であることが望ま
しい。なお、発熱体を形成するセラミックスの粒度は抵
抗値、電流の偏流化に影響を与えることがあり、そのた
めセラミックス粉末の最大粒径は0.5mm〜5mm程
度が望ましく、特に0.7mm〜3mm程度が望まし
い。
In the case of holding molten steel, the specific resistance value of the heating element is preferably 20 Ωcm or more at about 1500 ° C., and particularly preferably 200 Ωcm or more. Note that the particle size of the ceramics forming the heating element may affect the resistance value and the uneven distribution of current, so the maximum particle size of the ceramic powder is preferably about 0.5 mm to 5 mm, and particularly about 0.7 mm to 3 mm. Is desirable.

【0009】電極部は発熱体に給電するためのものであ
る。電極部の材質は導電率、熱伝達率等を考慮して選択
し、例えば、カーボンペーパー、固形アルミナグラファ
イト系材料、ポーラスな炭素系耐火物を採用できる。電
極部の配置、形状、強度は、発熱体の熱膨張の影響を回
避できる様にすることが好ましい。なお、発熱体の熱膨
張を吸収するためには、電極部の圧縮強度は弱いものが
よい。
The electrode portion is for supplying power to the heating element. The material of the electrode portion is selected in consideration of conductivity, heat transfer coefficient, etc., and, for example, carbon paper, solid alumina graphite-based material, or porous carbon-based refractory can be adopted. The arrangement, shape, and strength of the electrode parts are preferably such that the influence of thermal expansion of the heating element can be avoided. In order to absorb the thermal expansion of the heating element, it is preferable that the electrode part has a low compressive strength.

【0010】[0010]

【作用】電極部を介して発熱体に給電し、発熱体を発熱
させれば、出湯通路における金属は加熱され、出湯通路
における金属溶湯の凝固は回避される。
When the heating element is supplied with electricity through the electrode portion to generate heat, the metal in the tap passage is heated and solidification of the molten metal in the tap passage is avoided.

【0011】[0011]

【実施例】本発明にかかる金属溶湯保持容器の実施例に
ついて図1〜図3を参照して説明する。この例は、溶鋼
を300kg程度保持できる取鍋に適用した場合であ
る。本実施例にかかる金属溶湯保持容器の主要部を図1
に示す。この保持容器は、有底形状の容器本体1と、ノ
ズル型の発熱体2と、発熱体2に給電する炭素系の電極
部3とで構成されている。
EXAMPLE An example of the molten metal holding container according to the present invention will be described with reference to FIGS. This example is applied to a ladle capable of holding about 300 kg of molten steel. FIG. 1 shows the main part of the molten metal holding container according to this embodiment.
Shown in. This holding container includes a container body 1 having a bottomed shape, a nozzle-shaped heating element 2, and a carbon-based electrode portion 3 that supplies power to the heating element 2.

【0012】容器本体1は、底壁部に開口10aをもつ
鋼製の鉄皮10と、鉄皮10の内壁面に内張された所要
厚みの耐火物層11と、断熱と鉄皮10の保護のための
ロー石質レンガからなる裏張材15と、耐火物層11に
埋設されたマスレンガ14とで構成されている。耐火物
層11はマグネシアカーボンを主成分とし、その厚みは
100〜150mm程度である。耐火物層11は、溶湯
を保持する保持室12を形成している。マスレンガ14
は、マグネシアカーボンを主成分とし、ノズル型の発熱
体2を装着するために設けられている。容器本体1の開
口10aの下方にはスライド式の開閉プレート13が設
けられている。
The container body 1 comprises a steel iron shell 10 having an opening 10a in the bottom wall, a refractory layer 11 of a required thickness lined on the inner wall surface of the iron shell 10, heat insulation and the iron shell 10. It is composed of a backing material 15 made of low stone brick for protection and a mass brick 14 embedded in the refractory layer 11. The refractory layer 11 contains magnesia carbon as a main component, and the thickness thereof is about 100 to 150 mm. The refractory layer 11 forms a holding chamber 12 that holds the molten metal. Trout brick 14
Is mainly composed of magnesia carbon, and is provided for mounting the nozzle type heating element 2. A slide-type opening / closing plate 13 is provided below the opening 10 a of the container body 1.

【0013】発熱体2は、開口10a付近のマスレンガ
14内に装着されている。発熱体2の内壁面2aで出湯
通路20が形成されている。発熱体2は、重量%で、マ
グネシア90%、ジルコニア5%、アルミナ5%、不可
避の不純物を含有する混合セラミックスで形成されてい
る。ここで本実施例では、発熱体2は、軸長が120m
m程度、外径が70mm、内径が30mmである。
The heating element 2 is mounted in the mass brick 14 near the opening 10a. A hot water outlet passage 20 is formed on the inner wall surface 2 a of the heating element 2. The heating element 2 is made of mixed ceramics containing 90% of magnesia, 5% of zirconia, 5% of alumina, and inevitable impurities in weight%. Here, in this embodiment, the heating element 2 has an axial length of 120 m.
m, outer diameter is 70 mm, and inner diameter is 30 mm.

【0014】この発熱体2は次のように製造した。即
ち、原料をロールクラッシャー、インペラーブレーカー
等の粉砕により粗、中粒子とし、更にボールミルや振動
ミル等で粉砕し微粒子材料を得て、それぞれを適正な粒
度構成が得られるよう配合して混合し、その粉末に水を
加えてスラリーを形成する調整工程、スラリーを型のキ
ャビティに流し込んで成形する成形工程、成形した成形
体を型から外した後に養生し、乾燥する乾燥工程、乾燥
した成形体を焼結する焼結工程とを順に実施して製造し
た。
The heating element 2 was manufactured as follows. That is, the raw material is crushed by a roll crusher, an impeller breaker or the like to obtain coarse or medium particles, and further finely pulverized by a ball mill, a vibration mill or the like to obtain a fine particle material, and each is blended and mixed so as to obtain an appropriate particle size constitution, An adjusting step of adding water to the powder to form a slurry, a molding step of pouring the slurry into a cavity of a mold for molding, a drying step of curing and drying the molded body after the molded body is removed from the mold, and a dried molded body. This was manufactured by sequentially performing a sintering step of sintering.

【0015】電極部3は発熱体2の外周面に互いに背向
する様に装備されている。電極部3は給電線3aを介し
て容器外方に配置されている単相電源4に接続されてい
る。この電極部3及び給電線3aは耐火物層11に埋設
されて電気絶縁性が確保されている。なお、給電線3a
の電気絶縁性を高めるべく、給電線3aが挿通されたセ
ラミックスパイプを耐火物層11に埋設することにして
も良い。
The electrode portions 3 are mounted on the outer peripheral surface of the heating element 2 so as to face each other. The electrode unit 3 is connected to a single-phase power source 4 arranged outside the container via a power supply line 3a. The electrode portion 3 and the power supply line 3a are embedded in the refractory layer 11 to ensure electrical insulation. In addition, the power supply line 3a
In order to improve the electric insulation of the above, the ceramic pipe having the feed line 3a inserted therein may be embedded in the refractory layer 11.

【0016】次に使用する場合について説明する。開閉
プレート13を閉じた状態で、保持室12に高温度(1
550〜1600°C程度)の金属溶湯つまり溶鋼を保
持する。この状態で、単相電源4から給電線3a、電極
部3を介して発熱体2に給電する。この場合、一般的
に、電圧は200〜400V程度、電流は200〜80
0A程度に設定する。この結果、発熱体2が出湯通路2
0内の溶湯が凝固していた場合でも発熱体2が発熱して
適温に加熱することにより溶湯を溶解するため、発熱を
開始し、溶解に必要な時間経過した後に開閉プレート1
3を開くことにより、溶湯をスムーズに出湯することが
できる。なお、溶湯の吐出が終了するまで、発熱体2を
発熱させれば、溶湯の降温を防止できる。
Next, the case of use will be described. With the open / close plate 13 closed, high temperature (1
The molten metal of 550 to 1600 ° C, that is, molten steel is held. In this state, power is supplied from the single-phase power source 4 to the heating element 2 via the power supply line 3a and the electrode portion 3. In this case, generally, the voltage is about 200 to 400 V and the current is 200 to 80 V.
Set to about 0A. As a result, the heating element 2 is
Even if the molten metal in 0 is solidified, the heating element 2 generates heat and heats the molten metal to an appropriate temperature to melt the molten metal. Therefore, heat generation is started, and after the time required for melting has elapsed, the opening / closing plate 1
By opening 3, the molten metal can be discharged smoothly. If the heating element 2 is made to generate heat until the discharge of the molten metal is completed, the temperature drop of the molten metal can be prevented.

【0017】なお、溶湯を保持室12に保持する前に、
発熱体2に通電して予熱しておけば、溶湯との接触によ
る発熱体2の急熱を防止でき、急熱に起因する発熱体2
の亀裂を防止するのに有利である。また、上記した予熱
により、マグネシアを主成分とし高温度領域で導電性を
帯びる発熱体2の導電性を確保できる。以上説明した様
に本実施例では、発熱体2で出湯通路20内の金属を加
熱できるので、出湯通路20内の詰まりを防止できる。
従って、従来より使用していた充填材を廃止できる。
Before holding the molten metal in the holding chamber 12,
If the heating element 2 is energized and preheated, the heating element 2 can be prevented from being rapidly heated due to contact with the molten metal, and the heating element 2 caused by the rapid heating can be prevented.
It is advantageous to prevent cracking of the. Further, by the above-mentioned preheating, it is possible to secure the conductivity of the heating element 2 which has magnesia as a main component and has conductivity in a high temperature region. As described above, in the present embodiment, the heating element 2 can heat the metal in the hot water outlet passage 20, so that clogging of the hot water outlet passage 20 can be prevented.
Therefore, the filler used conventionally can be eliminated.

【0018】(他の例)上記した実施例において、保持
室12内の溶湯を出湯通路20から出湯する際に、出湯
通路20に不活性ガスまたは酸素ガスをバブリングして
出湯通路20の開口を助けるようにしても良い。また上
記した実施例において、保持室12に溶湯を保持する前
の状態で、発熱体2の出湯通路20内に粒状銑鉄(融点
1200°C程度)を詰めておき、その後、保持室12
に溶湯を保持し、出湯直前に発熱体2で粒状銑鉄を加熱
溶融して出湯通路20を開口するようにしても良い。な
お、粒状銑鉄の融点は鋼よりも低いので、出湯通路20
の開口の際における発熱体2の発熱を抑え得る。
(Other Example) In the above embodiment, when the molten metal in the holding chamber 12 is discharged from the tapping passage 20, an inert gas or oxygen gas is bubbled through the tapping passage 20 to open the opening of the tapping passage 20. You may try to help. Further, in the above-described embodiment, granular pig iron (melting point: 1200 ° C.) is packed in the tap passage 20 of the heating element 2 before the molten metal is held in the holding chamber 12, and then the holding chamber 12 is held.
Alternatively, the molten metal may be held in place, and the hot metal 2 may heat and melt the granular pig iron immediately before tapping to open the tapping passage 20. Since the melting point of granular pig iron is lower than that of steel, the tap water passage 20
It is possible to suppress heat generation of the heating element 2 at the time of opening.

【0019】また上記した実施例において、出湯通路2
0の下部は温度がアルミの融点以下であるので、酸化鉄
とアルミ粉末とを混合した混合粉末を発熱体2の出湯通
路20の下部に予め詰めておき、発熱体2の発熱の他に
テルミット反応による発熱も利用して、出湯通路20内
の金属を加熱溶融する様にしても良い。本発明の第2実
施例を図4、図5に示す。この場合には、2個1組の電
極部3と2個1組の電極部5を用い、電極部3を発熱体
2の外周面に互いに背向する様に装備するとともに、電
極部5を発熱体2の外周面に位相をずらせて互いに背向
する様に装備している。そして、2個1組の電極部3を
給電線3aを介して単相電源4に接続し、残りの2個1
組の電極部5を給電線5aを介して単相電源6に接続し
ている。この例では、発熱体2の全体加熱に有利であ
る。
In the above embodiment, the hot water outlet passage 2
Since the temperature in the lower part of 0 is lower than the melting point of aluminum, a mixed powder of iron oxide and aluminum powder is packed in the lower part of the hot water passage 20 of the heating element 2 in advance to generate heat in the heating element 2 and the thermite. The heat generated by the reaction may also be used to heat and melt the metal in the tap water passage 20. A second embodiment of the present invention is shown in FIGS. In this case, a pair of electrodes 3 and a pair of electrodes 5 are used, and the electrodes 3 are mounted on the outer peripheral surface of the heating element 2 so as to face each other, and The heating element 2 is equipped so that the outer peripheral surface of the heating element 2 is offset from each other and faces each other. Then, the pair of two electrode parts 3 is connected to the single-phase power source 4 via the power supply line 3a, and the remaining two
The pair of electrode portions 5 are connected to the single-phase power source 6 via the power supply line 5a. In this example, it is advantageous to heat the entire heating element 2.

【0020】本発明の第3実施例を図6、図7に示す。
この場合には、3個1組の電極部3を用い、各電極部3
を発熱体2の外周面にほぼ均等間隔で装備している。そ
して、各電極部3を給電線3aを介して三相電源4に接
続している。この例では、発熱体2の全体加熱に有利で
ある。本発明の第4実施例を図8、図9に示す。この場
合には、発熱体2の外周面に筒形の電極部60を配置
し、発熱体2の出湯通路20内に棒状の電極部61を配
置している。そして、電極部60、61を給電線3aを
介して単相電源4に接続している。この例では、電極部
60は発熱体2の全周に配置されているので、発熱体2
の全体加熱に有利である。
A third embodiment of the present invention is shown in FIGS.
In this case, a set of three electrode parts 3 is used, and each electrode part 3
Are provided on the outer peripheral surface of the heating element 2 at substantially equal intervals. And each electrode part 3 is connected to the three-phase power source 4 via the power supply line 3a. In this example, it is advantageous to heat the entire heating element 2. A fourth embodiment of the present invention is shown in FIGS. In this case, a cylindrical electrode portion 60 is arranged on the outer peripheral surface of the heating element 2, and a rod-shaped electrode portion 61 is arranged inside the tap passage 20 of the heating element 2. Then, the electrode parts 60, 61 are connected to the single-phase power source 4 via the power supply line 3a. In this example, since the electrode portion 60 is arranged around the entire circumference of the heating element 2, the heating element 2
It is advantageous for the overall heating of.

【0021】本発明の第5実施例を図10に示す。この
場合には、発熱体2の上部の外周面に電極部70を配置
し、発熱体2の中央の外周面に電極部71を配置し、発
熱体2の下部の外周面に電極部72を配置している。そ
して、電極部70を給電線70aを介して単相電源40
に接続し、電極部71を給電線71aを介して単相電源
41に接続し、電極部72を給電線72aを介して単相
電源42に接続していている。この例では、発熱体2の
上部、中央、下部の発熱を独立して調整できる。例え
ば、電極70、71、72の順に給電を開始すれば、発
熱体2の上部、中央、下部の順に発熱できる。この場合
には、出湯通路20における凝固金属をその上部から順
に加熱溶融できるので、出湯通路20内における凝固金
属の熱膨張に起因する発熱体2の割れを回避できる。
A fifth embodiment of the present invention is shown in FIG. In this case, the electrode portion 70 is arranged on the outer peripheral surface of the upper portion of the heating element 2, the electrode portion 71 is arranged on the outer peripheral surface of the center of the heating element 2, and the electrode portion 72 is arranged on the outer peripheral surface of the lower portion of the heating element 2. It is arranged. Then, the electrode unit 70 is connected to the single-phase power source 40 via the power supply line 70a.
, The electrode part 71 is connected to the single-phase power supply 41 via the power supply line 71a, and the electrode part 72 is connected to the single-phase power supply 42 via the power supply line 72a. In this example, the heat generation of the upper part, the center, and the lower part of the heating element 2 can be adjusted independently. For example, if power supply is started in the order of the electrodes 70, 71, 72, heat can be generated in the order of the upper part, the center, and the lower part of the heating element 2. In this case, since the solidified metal in the tap water passage 20 can be heated and melted sequentially from the upper portion thereof, cracking of the heating element 2 due to thermal expansion of the solidified metal in the tap water passage 20 can be avoided.

【0022】本発明の第6実施例を図11に示す。この
場合には、発熱体2と電極部3との間には、炭素粉末等
を装填して形成した導電層80が介在している。導電層
80は、発熱体2と電極部3との間において電気的接触
性、熱的接触性を確保するのに役立つ。炭素粉末は例え
ば平均粒径が40μm〜60μmのものを採用できる。
本発明の第7実施例を図12に示す。この場合には、発
熱体2は筒形の外層25と筒形の内層26とからなり、
外層25と内層26との間には導電層80が介在し、電
気的接触性、熱的接触性を向上させている。この例の場
合には、外層25と内層26との材質、組成を異なるも
のにできる。例えば、外層25、内層26との材質、組
成を調整し、溶湯に直接触れる内層26の発熱性、耐溶
損性等を、外層25よりも高めることができる。
The sixth embodiment of the present invention is shown in FIG. In this case, a conductive layer 80 formed by loading carbon powder or the like is interposed between the heating element 2 and the electrode portion 3. The conductive layer 80 serves to secure electrical contact and thermal contact between the heating element 2 and the electrode portion 3. As the carbon powder, for example, one having an average particle size of 40 μm to 60 μm can be adopted.
A seventh embodiment of the present invention is shown in FIG. In this case, the heating element 2 is composed of a cylindrical outer layer 25 and a cylindrical inner layer 26,
A conductive layer 80 is interposed between the outer layer 25 and the inner layer 26 to improve electrical contact properties and thermal contact properties. In the case of this example, the material and composition of the outer layer 25 and the inner layer 26 can be different. For example, the materials and compositions of the outer layer 25 and the inner layer 26 can be adjusted so that the inner layer 26, which comes into direct contact with the molten metal, has higher heat generation properties, erosion resistance, etc. than the outer layer 25.

【0023】[0023]

【発明の効果】本発明にかかる金属溶湯保持容器によれ
ば、出湯通路内の金属を発熱体で加熱できるので、凝固
金属による出湯通路の詰まりを防止でき、出湯通路から
の出湯を良好にし得る。また、出湯終了まで加熱するこ
とにより、出湯中の溶湯の温度低下を防止することもで
きる。
According to the metal melt holding container of the present invention, the metal in the tap passage can be heated by the heating element, so that clogging of the tap passage due to solidified metal can be prevented and tapping from the tap passage can be improved. .. Further, by heating until the completion of tapping, it is possible to prevent the temperature of the molten metal during tapping from decreasing.

【0024】従って、溶湯を汚染するおそれがある従来
の充填材の使用を廃止でき、溶湯の清浄化、高品質化に
有利である。
Therefore, it is possible to eliminate the use of conventional fillers that may contaminate the molten metal, which is advantageous for cleaning the molten metal and improving its quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】金属溶湯保持容器の主要部の縦断面図である。FIG. 1 is a vertical cross-sectional view of a main part of a molten metal holding container.

【図2】電極部を備えた発熱体を模式的に示す縦断面図
である。
FIG. 2 is a vertical cross-sectional view schematically showing a heating element provided with an electrode portion.

【図3】電極部を備えた発熱体を模式的に示す横断面図
である。
FIG. 3 is a cross-sectional view schematically showing a heating element provided with an electrode portion.

【図4】電極部を備えた発熱体を模式的に示す第2実施
例に係る縦断面図である。
FIG. 4 is a vertical cross-sectional view according to a second embodiment schematically showing a heating element having an electrode portion.

【図5】電極部を備えた発熱体を模式的に示す第2実施
例に係る横断面図である。
FIG. 5 is a transverse cross-sectional view according to a second embodiment schematically showing a heating element having an electrode portion.

【図6】電極部を備えた発熱体を模式的に示す第3実施
例に係る縦断面図である。
FIG. 6 is a vertical sectional view according to a third embodiment, which schematically shows a heating element having an electrode portion.

【図7】電極部を備えた発熱体を模式的に示す第3実施
例に係る横断面図である。
FIG. 7 is a transverse cross-sectional view according to a third embodiment schematically showing a heating element having an electrode portion.

【図8】電極部を備えた発熱体を模式的に示す第4実施
例に係る縦断面図である。
FIG. 8 is a vertical cross-sectional view according to a fourth embodiment that schematically shows a heating element having an electrode portion.

【図9】電極部を備えた発熱体を模式的に示す第4実施
例に係る横断面図である。
FIG. 9 is a transverse cross-sectional view according to a fourth example schematically showing a heating element having an electrode portion.

【図10】電極部を備えた発熱体を模式的に示す第5実
施例に係る縦断面図である。
FIG. 10 is a vertical cross-sectional view according to a fifth embodiment schematically showing a heating element having an electrode portion.

【図11】電極部を備えた発熱体を模式的に示す第6実
施例に係る縦断面図である。
FIG. 11 is a vertical cross-sectional view according to a sixth embodiment schematically showing a heating element having an electrode portion.

【図12】電極部を備えた発熱体を模式的に示す第7実
施例に係る縦断面図である。
FIG. 12 is a vertical cross-sectional view of a seventh embodiment schematically showing a heating element having an electrode portion.

【符号の説明】[Explanation of symbols]

図中、1は容器本体、2は発熱体、20は出湯通路、3
は電極部を示す。
In the figure, 1 is a container body, 2 is a heating element, 20 is a hot water outlet passage, 3
Indicates an electrode part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小島 榮藏 愛知県東海市加木屋町小家ノ脇4−11 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Eizo Kojima 4-11 Koya no Waki, Kagiya Town, Tokai City, Aichi Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属溶湯を保持する保持室をもつ有底形状
の容器本体と、 該容器本体に装備され、該保持室の金属溶湯を該保持室
外に吐出する出湯通路を内壁面で形成し給電に伴い発熱
する筒形状の発熱体と、 該発熱体に給電する少なくとも2個の電極部とで構成さ
れていることを特徴とする金属溶湯保持容器。
1. A bottomed container body having a holding chamber for holding molten metal, and a tapping passage provided in the container body for discharging the molten metal of the holding chamber to the outside of the holding chamber is formed by an inner wall surface. A molten metal holding container comprising a cylindrical heating element that generates heat with power supply and at least two electrode portions that supply power to the heating element.
JP14587392A 1992-06-05 1992-06-05 Molten metal holding vessel Pending JPH05337635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14587392A JPH05337635A (en) 1992-06-05 1992-06-05 Molten metal holding vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14587392A JPH05337635A (en) 1992-06-05 1992-06-05 Molten metal holding vessel

Publications (1)

Publication Number Publication Date
JPH05337635A true JPH05337635A (en) 1993-12-21

Family

ID=15395028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14587392A Pending JPH05337635A (en) 1992-06-05 1992-06-05 Molten metal holding vessel

Country Status (1)

Country Link
JP (1) JPH05337635A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1332813A2 (en) * 2002-02-01 2003-08-06 Heraeus Electro-Nite International N.V. Refractory nozzle for a metallurgical vessel
CN108290211A (en) * 2015-12-01 2018-07-17 里弗雷克特里知识产权两合公司 Sliding closure member on the spout of metallurgical tank

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1332813A2 (en) * 2002-02-01 2003-08-06 Heraeus Electro-Nite International N.V. Refractory nozzle for a metallurgical vessel
EP1332813A3 (en) * 2002-02-01 2003-11-26 Heraeus Electro-Nite International N.V. Refractory nozzle for a metallurgical vessel
US6832707B2 (en) 2002-02-01 2004-12-21 Heraeus Electro-Nite International N.V. Refractory nozzle for a metallurgical vessel
CN108290211A (en) * 2015-12-01 2018-07-17 里弗雷克特里知识产权两合公司 Sliding closure member on the spout of metallurgical tank
CN108290211B (en) * 2015-12-01 2021-07-06 里弗雷克特里知识产权两合公司 Sliding closure on spout of metallurgical vessel

Similar Documents

Publication Publication Date Title
JPS5823349B2 (en) Tai Kabutunoshiyouketsuhouhou
CN107555970A (en) One kind utilizes discarded Al2O3C production fish torpedo ladles Al2O3SiC C refractory brick and preparation method thereof
JPH05337635A (en) Molten metal holding vessel
US1816006A (en) Manufacture of zirconium compound refractories
US4060692A (en) Induction melting furnace
EP0296562B1 (en) A casting system
JP3489868B2 (en) Crucible for high frequency induction furnace
JP2720110B2 (en) Refractory ceramic mixture lining the bottom of a DC electric furnace and method for repairing this lining
US1615750A (en) Cast refractory article and method of making the same
US2768887A (en) Abrasives
JP2004083361A (en) Regenerated castable refractory
JP2019117045A (en) Hot repair material for DC electric furnace
US2021221A (en) Method of and apparatus for producing fused refractory and abrasive materials
JP2548878B2 (en) Unshaped refractory for burner nozzle
JPH012768A (en) How to heat molten metal
JP6735064B2 (en) Hot repair material for DC electric furnace
JPH03159967A (en) Lining material of container for molten metal
JPH02263544A (en) Heater device for submerging into molten metal
JPH068223B2 (en) Casting refractory material for blast furnace tappipe
JPH0667540B2 (en) Heater device
JPH074653B2 (en) Molten metal immersion type heater device
JPH0323059A (en) Molten metal supplying member
JPH0320590A (en) Melt container
JP2000191364A (en) Shaped magnesia-chrome refractory
JPH0578178A (en) Electrically conductive monolithic refractory