JPH0320590A - Melt container - Google Patents

Melt container

Info

Publication number
JPH0320590A
JPH0320590A JP1155533A JP15553389A JPH0320590A JP H0320590 A JPH0320590 A JP H0320590A JP 1155533 A JP1155533 A JP 1155533A JP 15553389 A JP15553389 A JP 15553389A JP H0320590 A JPH0320590 A JP H0320590A
Authority
JP
Japan
Prior art keywords
container body
molten metal
holding
electrode part
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1155533A
Other languages
Japanese (ja)
Inventor
Yoichi Mizutani
洋一 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP1155533A priority Critical patent/JPH0320590A/en
Publication of JPH0320590A publication Critical patent/JPH0320590A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Furnace Details (AREA)

Abstract

PURPOSE:To keep a melt in a predetermined temperature region by providing an electrode part on at least part of an outer surface part of a container body formed with a conductive ceramics, and applying voltage across the metal melt and the electrode part to drive a current in the thickness direction of the container body for heating of the container body. CONSTITUTION:A melt holding furnace 1 comprises a container body 12 having a holding space for holding a 3-6kg steel melt and an electrode part 14. The container body 12 is formed with a conductive ceramics. The iron steel melt is melted to about 1550 deg.C and is transferred into the holding space 10. Further, a conductive wire 26 is connected to a power supply and a conductor wire 30 which is fixed to a rod-shaped electrode part 16 with a band 28 is connected to the power supply. Additionally, a thermocouple 20 is set to a control device. In this situation, a predetermined voltage (about 120V) is applied between the electrode part 14 and the electrode part 16 to drive a current (50A) in the thickness direction of the container body 12. Thus, the entire of the container body 12 is gradually heated to keep the melt in a predetermined temperature region.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は溶湯保持容器に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a molten metal holding container.

[従来の技術] 従来より溶湯保持容器、例えば、溶解炉で溶解した高温
の溶湯を後工程に送る前に所定温度域に維持しておくた
めの溶湯保持炉が用いられている。
[Prior Art] Molten metal holding containers, for example, molten metal holding furnaces, have been used to maintain high temperature molten metal melted in a melting furnace in a predetermined temperature range before sending it to a subsequent process.

この溶湯保持炉は、鉄!l8!製の炉殻と、炉殻に内張
リされ保持空間を形成する耐火物製の耐火物層と、耐火
物層に埋設されたコイルとで形成されている。
This molten metal holding furnace is made of iron! l8! A refractory layer made of a refractory material is lined with the furnace shell to form a holding space, and a coil is embedded in the refractory layer.

そして使用に際しては、溶解炉で溶解した高温の溶潟を
溶湯保持炉の保持空間に一旦保持し、その状態でコイル
に高周波電流を流して溶湯に二次誘S電流を発生させ、
その抵抗熱で溶潟を所定の温度域に維持する。
In use, the high-temperature molten lagoon melted in the melting furnace is temporarily held in the holding space of the molten metal holding furnace, and in that state, a high frequency current is passed through the coil to generate a secondary induced S current in the molten metal.
This resistance heat maintains the melt lagoon within a predetermined temperature range.

[発明が解決しようとする課題] 本発明は、上記した溶楊保持炉とは異なる方式を採用し
た溶湯保持容器、即ち、容器本体の全体を導電性セラミ
ックスで形成した方式の溶湯保持容器を提供することを
課題とする。
[Problems to be Solved by the Invention] The present invention provides a molten metal holding container that adopts a method different from the above-described molten metal holding furnace, that is, a molten metal holding container whose entire container body is made of conductive ceramics. The task is to do so.

[課題を解決するための手段] 本発明者は、溶湯に浸漬されて溶湯を加熱する加熱装置
について長年にわたり鋭意研究を重ねた。
[Means for Solving the Problems] The present inventor has spent many years intensively researching a heating device that is immersed in molten metal to heat the molten metal.

その結果、近年、導電性セラミックスで形成された筒状
の発熱体と発熱体の内周部に装備された棒状電極部とか
らなる溶湯浸漬用のhO熱装置を開発した。この加熱装
置は棒状電極部と溶湯との間に電圧を印加して、発熱体
の厚み方向に電流を流し、これにより発熱体の導電性セ
ラミックスを発熱させるものである。
As a result, we have recently developed an hO heating device for immersion in molten metal, which consists of a cylindrical heating element made of conductive ceramics and a rod-shaped electrode section mounted on the inner periphery of the heating element. This heating device applies a voltage between a rod-shaped electrode portion and the molten metal to flow a current in the thickness direction of the heating element, thereby causing the conductive ceramic of the heating element to generate heat.

本発明者はかかる加熱装置について更に研究を進めた結
果、筒状の発熱体の内周部ほど単位体積あたりの発熱量
が高いことを知見した。その理由は次のようであると推
察ざれる。即ち、第6図において発熱体Qは厚み方向へ
分割した多数のシェル層(R1〜Rn)から形戒されて
いると考える。
As a result of further research into such a heating device, the present inventor found that the inner circumference of the cylindrical heating element has a higher calorific value per unit volume. The reason is presumed to be as follows. That is, in FIG. 6, the heating element Q is considered to be formed from a large number of shell layers (R1 to Rn) divided in the thickness direction.

ここで各シエル層(Rl〜Rn>の厚みをΔYとし、発
熱体Qを形成する材料の固有抵抗値をρとし、発熱体Q
の高さを父とすると、電流工は内側から外側に向けて厚
み方向へ流れるので各シエル層の抵抗Rnは基本的には
(1〉式であらわされる。
Here, the thickness of each shell layer (Rl to Rn> is ΔY, the specific resistance value of the material forming the heating element Q is ρ, and the heating element Q
The resistance Rn of each shell layer is basically expressed by the formula (1>) since the electric current flows in the thickness direction from the inside to the outside.

Rn=(ρ−ΔY)/ (2π−Yn−父)=(1)従
って半径Ynの小さな内側のシェル層ほど抵抗が高いも
のとなると考えられる。
Rn=(ρ-ΔY)/(2π-Yn-father)=(1) Therefore, it is considered that the smaller the radius Yn of the inner shell layer, the higher the resistance.

また全抵抗は(1〉式を内径Yiから外径Toまで積分
すると得られ(2〉式となる。
Further, the total resistance can be obtained by integrating the equation (1) from the inner diameter Yi to the outer diameter To.

R− (ρ/2π父)  ・Qn (To/Y i )
− (2)本発明者は、かかる知見を更に進めて、筒状
の発熱体のうち発熱量の高い内周部を有効に利用せんと
、本発明の溶湯保持容器を完或したものである。
R- (ρ/2π father) ・Qn (To/Y i )
- (2) The present inventor further advanced this knowledge and completed the molten metal holding container of the present invention in order to effectively utilize the inner circumferential portion of the cylindrical heating element which has a high calorific value. .

即ち、本発明にがかる溶湯保持容器は、金属溶湯を保持
する保持空間をもち全体が導電性セラミックスで形成さ
れた有底状の容器本体と、容器本体の外面部の少なくと
も一部に装備された電極部とで形成ざれ、金属溶湯と電
極部との間に電圧を印加して容器本体の厚み方向に電流
を流し、容器本体を発熱させる構成としたことを特徴と
するものである。
That is, the molten metal holding container according to the present invention includes a bottomed container body that has a holding space for holding molten metal and is entirely made of conductive ceramics, and a container that is provided on at least a part of the outer surface of the container body. It is characterized by having a structure in which a voltage is applied between the molten metal and the electrode part to flow a current in the thickness direction of the container body, thereby causing the container body to generate heat.

尚、保持空間の容積は容器本体の強度等を考慮して小型
用、中型用、大型用と必要に応じて設定できるが、一般
的には鉄鋼の溶湯を1〜50kg、特に3〜6kg程度
保持できる容積とすることができる。
The volume of the holding space can be set as necessary for small, medium, or large containers, taking into account the strength of the container body, etc., but generally the molten steel is 1 to 50 kg, especially 3 to 6 kg. The volume can be set to a capacity that can be held.

容器本体は導電性セラミックスで形成されている。導電
性セラミックスは使用温度域で導電性をもつものである
。導電性セラミックスの種類またはその配合割合は、発
熱特性の他に金属溶瀉に対する耐溶損性、耐熱衝撃性、
耐酸化性、耐腐蝕性、耐経年性等の種々の要因を考慮し
て選択する必要があり、酸化物系、窒化物系、ホウ化物
系等のうちから採用できる。導電性セラミックスとして
は、金属溶湯の抵抗が低いために所要の発熱量を確保す
るには固有抵抗値が高いものが望ましく、この場合、固
有抵抗値は1500℃付近で、10cm以上とすること
ができ、特に200Ωcm以上、中でもその固有抵抗値
が360Ωcm程度のものを採用することができる。な
お、導電性セラミックスの固有抵抗値は導電性セラミッ
クスに非導電性セラミックスまたは111導電性セラミ
ックスを配合し、配合割合を調節することにより変える
ことができる。
The container body is made of conductive ceramics. Conductive ceramics are electrically conductive in the operating temperature range. The type of conductive ceramics and their blending ratio are determined not only by their heat generation properties but also by their resistance to metal melting, thermal shock resistance,
It is necessary to select the material in consideration of various factors such as oxidation resistance, corrosion resistance, aging resistance, etc., and it can be selected from among oxide-based, nitride-based, boride-based, etc. As conductive ceramics, it is desirable to have a high specific resistance value in order to secure the required calorific value because the resistance of molten metal is low, and in this case, the specific resistance value should be 10 cm or more at around 1500 ° C. In particular, one having a specific resistance value of 200 Ωcm or more, especially about 360 Ωcm, can be used. Note that the specific resistance value of the conductive ceramic can be changed by blending a non-conductive ceramic or a 111 conductive ceramic with the conductive ceramic and adjusting the blending ratio.

導電性セラミックスとしては、鉄鋼の溶湯を加熱する場
合には、マグネシア(MgO)、ジルコニア(ZrOz
>、アルミナ(A52203)、マグネシアとジルコニ
アとの混合体、マグネシアとジルコニアとアルミナとの
混合体を使用することができる。ここで、マグネシアは
常温付近では、通常、導電性をもたないが、鉄鋼の溶湯
の加熱温度域である1500〜1650℃付近では所要
の導電性を帯びる。
When heating molten steel, magnesia (MgO) and zirconia (ZrOz) are used as conductive ceramics.
>, alumina (A52203), a mixture of magnesia and zirconia, and a mixture of magnesia, zirconia, and alumina can be used. Here, magnesia usually does not have electrical conductivity at around room temperature, but takes on the required electrical conductivity at around 1,500 to 1,650° C., which is the heating temperature range of molten steel.

導電性セラミックスとしてマグネシアとジルコニアとの
混合体を用いた場合には、その配合割合は、必要とする
抵抗値等を考慮して適宜選択されるが、例えば、重量%
で、マグネシアが60〜100%特に85〜95%が好
ましく、ジルコニアがO〜40%特に5〜25%が好ま
しく、アルミナがO〜40%特に2.5〜15%が好ま
しく、カルシア(Cab) 、クロミア、ベリリア、ト
リア、セリアを主或分とする材料を1種又は2種以上、
含有量で30〜60%以上配合することもできる。なお
セラミックス量を減らすために、炭素粉末、黒鉛等を添
加し炭素量として重量%で例えば1〜5%適宜含有する
こともできる。
When a mixture of magnesia and zirconia is used as the conductive ceramic, the blending ratio is appropriately selected taking into consideration the required resistance value, etc.
Magnesia is preferably 60 to 100%, particularly preferably 85 to 95%, zirconia is preferably O to 40%, particularly 5 to 25%, alumina is preferably O to 40%, particularly 2.5 to 15%, calcia (Cab) , one or more materials mainly containing chromia, beryllia, toria, ceria,
It can also be blended in a content of 30 to 60% or more. In order to reduce the amount of ceramics, carbon powder, graphite, etc. may be added to suitably contain the carbon amount, for example, 1 to 5% by weight.

更には、金属溶瀉の溶融点によっては、導電性セラミッ
クスとして、例えば、炭化けい素(SiC〉、ランタン
クロメート(LaCr03 ) 、m化ベリリウム(B
ed) 、酸化トリウム(ThO2)、ケイ化モリブデ
ン(MoSi2)、更に、窒化チタニウム(TiN)、
炭化チタニウム(TiC)等を主成分としたものも使用
することができる。
Furthermore, depending on the melting point of the metal, conductive ceramics such as silicon carbide (SiC), lanthanum chromate (LaCr03), and beryllium mide (B
ed), thorium oxide (ThO2), molybdenum silicide (MoSi2), and titanium nitride (TiN),
Materials containing titanium carbide (TiC) or the like as a main component can also be used.

なお参考として、導電性セラミックスの使用温度と固有
抵抗との関係を第4図、第5図に示す。
For reference, the relationship between the operating temperature and specific resistance of conductive ceramics is shown in FIGS. 4 and 5.

なお、鉄鋼の溶湯の場合には、セラミックスの固有抵抗
値は、目標値としては使用温度域で200Ωcm以上が
望ましい。
In addition, in the case of molten steel, the target value of the specific resistance value of the ceramic is preferably 200 Ωcm or more in the operating temperature range.

導電性セラミックスの粒径は抵抗値に影響を与えること
があり、そのためその最大粒径は1〜5mm程度が望ま
しく、特に1.5〜3mm程度が望ましい。その主たる
理由は、粒径があまり大きいと、電流が偏流化する傾向
にあるからである。
The particle size of the conductive ceramic may affect the resistance value, so the maximum particle size is preferably about 1 to 5 mm, particularly about 1.5 to 3 mm. The main reason for this is that if the particle size is too large, the current tends to become uneven.

なお、容器本体の下部と上部とで粒径を変更したり、導
電性セラミックスの種類を変えたりして下部と上部との
発熱特性を調整することも可能である。また容器本体を
厚み方向に分割し、内側の層と外側の層とで粒径を変更
したり、導電性セラミックスの種類を変えたりして発熱
特性を異ならせることもできる。この場合には溶湯に直
接に接触する内層を、@湯に対する耐溶損性のよいもの
、電気抵抗値の高いものとすることができる。溶湯に接
触しない外層は、溶湯に対する耐溶損性を内層ほどは考
慮せずともよいので、導電性セラミックスの種類の選択
、導電性セラミックスの配合割合の選択の自由度を拡大
できる。この場合、内層と外層との間に炭素、溶融状態
の低融点金属などからなる中間層を介在させ、内層と外
層との電気接触度を確保することもできる。
Note that it is also possible to adjust the heat generation characteristics between the lower and upper parts by changing the particle size or the type of conductive ceramic between the lower and upper parts of the container body. It is also possible to divide the container body in the thickness direction and change the particle size between the inner layer and the outer layer, or change the type of conductive ceramic to make the heat generation characteristics different. In this case, the inner layer that comes into direct contact with the molten metal can be made of a material that has good erosion resistance against the molten metal and a high electrical resistance value. Since the outer layer, which does not come into contact with the molten metal, does not need to be given as much consideration as the inner layer in terms of corrosion resistance to the molten metal, the degree of freedom in selecting the type of conductive ceramic and the proportion of the conductive ceramic can be expanded. In this case, an intermediate layer made of carbon, a molten low-melting point metal, or the like can be interposed between the inner layer and the outer layer to ensure electrical contact between the inner layer and the outer layer.

本発明にかかる容器本体は例えば次のように製造できる
。即ち、原料セラミックス粉末をボールミル、振動ミル
などで充分に粉砕、混合して所定の組成に調整した後、
原料セラミックス粉末と水とを混合したスラリを型のキ
ャビテイに流し込んで容器形状に成形し容器本体を得る
或形工程を実施し、更に容器本体を所定温度に加熱して
焼結する焼結工程を実施する。焼結工程に先立って、必
要ならば養生工程、乾燥工程を実施する。なお或形工程
では、型に振動を付与しつつ或形する振動或形を行うこ
とができる。
The container body according to the present invention can be manufactured, for example, as follows. That is, after thoroughly pulverizing and mixing the raw ceramic powder with a ball mill, vibration mill, etc. and adjusting it to a predetermined composition,
A slurry made by mixing raw ceramic powder and water is poured into a mold cavity and formed into a container shape to obtain a container body.The container body is then heated to a predetermined temperature and sintered. implement. Prior to the sintering process, a curing process and a drying process are performed if necessary. Note that in a certain shaping process, vibration or shaping can be performed while applying vibration to the mold.

本発明にがかる溶湯保持容器では、電極部は、容器本体
に電気を流すためのものであり、容器本体の外面部の全
面あるいは一部に装備ざれている。
In the molten metal holding container according to the present invention, the electrode portion is for passing electricity through the container body, and is provided on the entire or part of the outer surface of the container body.

電極部の材質は導電率、熱伝達率等を考慮して選択する
。この場合、導電率を高くし伝熱ロスを少なくすべく熱
伝達率を小さくすることができる。
The material of the electrode part is selected in consideration of electrical conductivity, heat transfer coefficient, etc. In this case, the heat transfer coefficient can be reduced in order to increase the electrical conductivity and reduce heat transfer loss.

但し、導電物質は一般的には、導電率が高くなると、熱
伝達率も高くなる傾向にあるので、単一の材料で電極部
を形戒するよりも、導電率の高い材料と熱伝達率の小さ
い材料とを適宜組合せて、電極部の所要の導電性を確保
しつつ、電極部の見掛けの熱伝達度合を小さくすること
ができる。また電極部は、電気抵抗の小さい導電性セラ
ミックスで形成することもできる。この場合には電極部
と容器本体とを一体或形することもできる。
However, in general, the higher the conductivity of conductive materials, the higher the heat transfer rate. The apparent degree of heat transfer of the electrode portion can be reduced while ensuring the required conductivity of the electrode portion by appropriately combining materials with small . Further, the electrode portion can also be formed of conductive ceramics with low electrical resistance. In this case, the electrode portion and the container body may be integrally formed.

なお、電極部を容器本体に装備するにあたっては、例え
ば、バンドの締付け、ボルト止め、螺子止め、嵌合止め
等の手段を採用できる。
In addition, when equipping the container body with the electrode part, means such as tightening of a band, bolting, screwing, fitting, etc. can be adopted, for example.

[実施例] 本発明にがかる溶湯保持容器をルツボタイプの溶湯保持
炉に適用した第1実施例について第1図および第2図を
参照して説明する。
[Example] A first example in which a molten metal holding container according to the present invention is applied to a crucible type molten metal holding furnace will be described with reference to FIGS. 1 and 2.

(実施例の構成〉 この溶湯保持炉1は、鋼の金属溶湯を3〜6k0保持す
る保持空間10をもつ有底状の容器本体12と、容器本
体12の外面部に装備された電極部14とで形成されて
いる。容器本体12は、全体が導電性セラミックスで形
成されている。即ち容器本体12は、重量%で、マグネ
シアが90%、ジルコニアが5%、アルミナが5%、不
可避の不純物を含有する混合セラミックスで形成されて
いる。容器本体12の保持空間10には図略のスタンド
を介して棒状電極部16および熱電対保持管18が挿入
されている。棒状電極部16は炭素棒で形成されている
。熱電対保持管18には溶湯の温度を測定する熱雷対2
0が挿入されている。
(Configuration of Embodiment) This molten metal holding furnace 1 includes a bottomed container body 12 having a holding space 10 for holding 3 to 6 kilograms of molten steel, and an electrode portion 14 provided on the outer surface of the container body 12. The container body 12 is entirely made of conductive ceramics.In other words, the container body 12 is made of 90% magnesia, 5% zirconia, 5% alumina, and 5% alumina by weight. It is made of mixed ceramics containing impurities.A rod-shaped electrode part 16 and a thermocouple holding tube 18 are inserted into the holding space 10 of the container body 12 via a stand (not shown).The rod-shaped electrode part 16 is made of carbon The thermocouple holding tube 18 has a thermocouple 2 for measuring the temperature of the molten metal.
0 is inserted.

N極部14はカーボンペーバを何層にも積層して形成ざ
れている。電極部14は容器本体12の外面部にステン
レス鋼製の締付バンド22を介して断熱部材24で被覆
された状態で装備ざれている。尚、第1図では断熱部材
24は省略されている。ここで電極部14と容器本体1
2との間には導線26の先端部が装入されている。締付
バンド22はバンド本体22aと締付具22bとで形成
ざれている。断熱部材24はアルミナ系のセラミックス
ベーパを何層にも積層して形成されている。
The N-pole portion 14 is formed by laminating many layers of carbon paver. The electrode section 14 is provided on the outer surface of the container body 12 via a stainless steel tightening band 22 and covered with a heat insulating member 24 . Note that the heat insulating member 24 is omitted in FIG. Here, the electrode part 14 and the container body 1
The tip of a conductive wire 26 is inserted between the two. The tightening band 22 is formed of a band main body 22a and a tightening tool 22b. The heat insulating member 24 is formed by laminating many layers of alumina ceramic vapor.

ところで容器本休12の全抵抗R(Ω)は、基本的には
、容器本体12を形成する導電性セラミックスの固有抵
抗値ρ(Ωcm)と容器本体12の肉厚t(cm)と容
器本体12の面積3(cm2)とで定まる。
By the way, the total resistance R (Ω) of the container main body 12 is basically determined by the specific resistance value ρ (Ωcm) of the conductive ceramic forming the container body 12, the wall thickness t (cm) of the container body 12, and the container body. It is determined by the area 3 (cm2) of 12.

本実施例の溶瀉保持炉1の容器本体12は次のように製
造した。即ち、原料セラミックス粉末を所定の配合割合
で調整した後、水を加えてスラリを形成する調整工程、
そのスラリを型のキャビティに流し込んで容器状に成形
する成形工程、容器状の成形体を型から外した後に養生
し、更に150℃で所定時間乾燥する乾燥工程、乾燥し
た成形体を1650℃で所定時間加熱して焼結する焼結
工程とを順に実施して製造した。なお、調整工程で使用
した原料セラミックス粉末の最大粒径は3mm程度であ
る。
The container body 12 of the melt holding furnace 1 of this example was manufactured as follows. That is, an adjustment step in which raw ceramic powder is adjusted to a predetermined blending ratio and then water is added to form a slurry;
A molding process in which the slurry is poured into a mold cavity and molded into a container shape, a drying process in which the container-shaped molded body is removed from the mold, cured, and further dried at 150°C for a predetermined time, and the dried molded body is heated at 1650°C. A sintering process of heating and sintering for a predetermined period of time was performed in order. Note that the maximum particle size of the raw ceramic powder used in the adjustment step was about 3 mm.

前記した溶渇保持炉1を使用するにあたっては、まず、
容器本体12の内面部にバーナの火炎をあてて、容器本
体12の内面部を700℃〜1000℃程度に予熱する
。上記した予熱により、マグネシアを主要成分とするた
め高温度領域で初めて導電性を帯びる容器本体12の導
電性を確保できる。
In using the above-mentioned melting and holding furnace 1, first,
The flame of a burner is applied to the inner surface of the container body 12 to preheat the inner surface of the container body 12 to about 700° C. to 1000° C. The above-mentioned preheating makes it possible to ensure the conductivity of the container body 12, which becomes conductive only in a high temperature range because the main component is magnesia.

そして予め高周波炉で鉄鋼の溶瀉(炭素鋼〉を1550
℃程度に溶解しておき、その高温の溶湯を容器本体12
の保持空間10内に移し変えて保持する。その後、導線
26を電源に接続するとともに棒状電極部16にバンド
28で止めた導線30を電源に接続し、更に熱電対20
を制御装置にセットする。
Then, melt the steel (carbon steel) in advance in a high frequency furnace to 1550
The high temperature molten metal is melted at a temperature of about
It is transferred and held in the holding space 10 of. Thereafter, the conducting wire 26 is connected to a power source, the conducting wire 30 fixed to the rod-shaped electrode portion 16 with a band 28 is connected to the power source, and the thermocouple 20 is connected to the power source.
Set in the control device.

このようにした状態で電極部14と電極部16との間に
所定の電圧(約1 20V)を印加し、容器本休12の
厚み方向へ電流(50A)を流す。
In this state, a predetermined voltage (approximately 120 V) is applied between the electrode part 14 and the electrode part 16, and a current (50 A) is caused to flow in the thickness direction of the container 12.

この結果、容器本体12の全体が次第に発熱(発熱at
6KW>するので、保持空間10内に保持されている炭
素鋼の}容湯(10kg>は全周囲から次第に加熱され
、溶湯は所定の温度域に維持ざれる。
As a result, the entire container body 12 gradually generates heat (heat generation at
6 KW>, the carbon steel molten metal (10 kg>) held in the holding space 10 is gradually heated from all around, and the molten metal is maintained within a predetermined temperature range.

なお本実施例では、容器本休12と電極部14との境界
部分に炭素粉末からなる導電発熱層を介在させることも
できる。導電発熱層は電流拡散層としての機能と、熱拡
rli層としての機能を果すので、容器本体12と電極
部14との電気的接触度を高めると共に熱的接触度も高
めるので、容器本体12の局部的過熱を抑えるのに有利
である。
In this embodiment, a conductive heating layer made of carbon powder may be interposed at the boundary between the container main cover 12 and the electrode portion 14. The conductive heating layer functions as a current diffusion layer and a thermal expansion RLI layer, so it increases the electrical contact between the container body 12 and the electrode section 14 as well as the thermal contact. This is advantageous in suppressing local overheating.

(実施例の効果) 本実施例では、容器本体120発熱量で溶湯を所定の温
度域に維持できる。また、容器本体12の全体が加熱す
るので、溶湯の全体の周囲から加熱され、従って溶瀉の
全体を均−7JO熱するのに有利である。
(Effects of Example) In this example, the molten metal can be maintained within a predetermined temperature range using the calorific value of the container body 120. Further, since the entire container body 12 is heated, the molten metal is heated from the periphery of the entire molten metal, which is advantageous in uniformly heating the entire molten metal.

本実施例では、容器本休12内の溶湯の静置度を確保で
き、介在物も湯面に浮上させ易い。この点コイルに高周
波電流を流す従来の溶湯保持炉では、溶湯に二次誘導電
流が流れる関係で溶湯が積極的に撹拌され、溶湯の静置
度が充分でなく、介在物によっては溶湯の湯面に浮上せ
ず、溶湯から分離できなくなるのと異る。このように容
器本体12で精度よく温度調整ざれかつ介在物も除去さ
れた清浄度の高い溶湯を後工程で用いれば、製品の品質
を向上するのに有利である。
In this embodiment, it is possible to ensure that the molten metal in the container main suspension 12 remains stationary, and inclusions can be easily floated to the surface of the molten metal. In this regard, in conventional molten metal holding furnaces in which a high-frequency current is passed through a coil, the molten metal is actively stirred due to the secondary induced current flowing through the molten metal. This is different from the case where it does not float to the surface and cannot be separated from the molten metal. If a highly clean molten metal whose temperature is precisely controlled in the container body 12 and whose inclusions have been removed is used in the subsequent process, it is advantageous to improve the quality of the product.

また溶湯を保持空間10に装入する前に容器本休12を
予熱すれば、保持空間10に溶潟を直接装入した際に容
器本体12の急熱を防止でき、従って急熱に起因した亀
裂が容器本体12に生じることを極力抑制することがで
きる。
Furthermore, if the container main suspension 12 is preheated before charging the molten metal into the holding space 10, it is possible to prevent the container body 12 from rapidly heating when the molten metal is directly charged into the holding space 10. The occurrence of cracks in the container body 12 can be suppressed as much as possible.

[他の実施例] 本発明にかかる溶湯保持容器を溶湯保持炉に適用した第
2実施例について第3図を参照して説明する。
[Other Examples] A second example in which the molten metal holding container according to the present invention is applied to a molten metal holding furnace will be described with reference to FIG. 3.

この溶湯保持炉4は金属溶楊を保持する保持空間40を
もつ有底状の容器本休42と、容器本体42の外面のほ
ぼ全域に装備された筒状の電極部44とで形成されてい
る。容器本体42は、全体が導電性セラミックスで形成
されている。即ち容器本体42は、重量%で、マグネシ
アが90%、ジルコニアが5%、アルミナが5%、不可
避の不純物を含有する混合セラミックスで形成されてい
る。容器本体42の上面部には、溶湯と電極部44とが
接触するのを回避するフランジ部42aがリング状に形
成ざれている。電極部44はアルミナとグラファイトと
の混合物で形成ざれている。
This molten metal holding furnace 4 is formed of a bottomed container 42 having a holding space 40 for holding molten metal, and a cylindrical electrode portion 44 provided over almost the entire outer surface of the container body 42. There is. The container body 42 is entirely made of conductive ceramics. That is, the container body 42 is made of a mixed ceramic containing unavoidable impurities such as 90% magnesia, 5% zirconia, and 5% alumina by weight. A ring-shaped flange portion 42a is formed on the upper surface of the container body 42 to avoid contact between the molten metal and the electrode portion 44. The electrode portion 44 is made of a mixture of alumina and graphite.

容器本体42の外面側には螺子部42cが形成されてい
る。電極部44の内面側にも螺子部44Cが形成されて
いる。そして螺子部44cと螺子部42cとの螺合によ
り容器本体42と電極部44とは一休的に組付けられて
いる。更に容器本休42の外面部と電極部44の内面部
との間には膨脹黒鉛が介在ざれている。ここで使用の際
に容器本体12が発熱して昇温すると、膨張黒鉛は膨張
し、従って容器本休12と電極部44との接触度を一層
向上させ得る。
A threaded portion 42c is formed on the outer surface of the container body 42. A threaded portion 44C is also formed on the inner surface of the electrode portion 44. The container body 42 and the electrode part 44 are temporarily assembled by screwing the threaded part 44c and the threaded part 42c together. Further, expanded graphite is interposed between the outer surface of the container main body 42 and the inner surface of the electrode section 44. When the container main body 12 generates heat and rises in temperature during use, the expanded graphite expands, and therefore the degree of contact between the container main body 12 and the electrode section 44 can be further improved.

更に第3図に示すように容器本体42の保持空間40に
は図略のスタンドを介して棒状電極部46が挿入されて
いる。棒状電極部46は炭索棒で形成ざれている。なお
、本実施例では電極部46の外面部に導線48をバンド
50で固定し、電極部44の外面部に導線52をバンド
54で固定し、電極部46側の導線48、電極部44側
の導線52を電源につないで電極部46と電極部44と
の間に通電し、容器本体42の厚み方向に電流を流し容
器本体42を発熱させる。
Furthermore, as shown in FIG. 3, a rod-shaped electrode portion 46 is inserted into the holding space 40 of the container body 42 via a stand (not shown). The rod-shaped electrode portion 46 is formed of a carbon cord rod. In this embodiment, the conducting wire 48 is fixed to the outer surface of the electrode section 46 with a band 50, the conducting wire 52 is fixed to the outer surface of the electrode section 44 with the band 54, and the conducting wire 48 on the electrode section 46 side and the conducting wire 48 on the electrode section 44 side are fixed. The conductive wire 52 is connected to a power source and electricity is applied between the electrode portion 46 and the electrode portion 44 to cause current to flow in the thickness direction of the container body 42 and cause the container body 42 to generate heat.

この第2実施例においても容器本体42の全体が導電セ
ラミックスで形成されているため、第1実施例と基本的
には同じ作用効果が得られ、溶湯を均一加熱するのに有
利である。
In this second embodiment as well, since the entire container body 42 is made of conductive ceramics, basically the same effects as in the first embodiment can be obtained, which is advantageous in uniformly heating the molten metal.

[発明の効果] 本発明にかかる溶濡保持容器によれば、容器本体の発熱
量で溶瀉を所定の温度域に維持できる。
[Effects of the Invention] According to the wetting and holding container according to the present invention, the melt can be maintained within a predetermined temperature range using the calorific value of the container body.

また本発明にかがる溶湯保持容器によれば、容器本体の
全体が導電セラミックスで形成されているため、容器本
体の全体が発熱するので、溶湯を均一加熱するのに有利
である。このように容器本体で温度調整された溶湯を後
工程で用いると、後工程で製造した製品の品質を向上す
るのに有利である。
Further, according to the molten metal holding container according to the present invention, since the entire container body is made of conductive ceramics, the entire container body generates heat, which is advantageous for uniformly heating the molten metal. Using the molten metal whose temperature has been adjusted in the container body in a subsequent process is advantageous in improving the quality of products manufactured in the subsequent process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明にかかる第1実施例を示し
、第1図は断熱部材を省略して示す加熱している状態の
溶湯保持炉の斜視図、第2図は同平面図である。 第3図は本発明の第2実施例を示す溶湯保持炉の断面図
である。第4図および第5図はそれぞれ各材料の使用温
度と固有抵抗値との関係を示すグラフである。第6図は
従来の発熱体を厚み方向へ分割した概念を示した斜視図
である。 図中、10は保持空間、12は容器本体、14は電極部
、40は保持空間、42は容器本体、44は電極部を示
す。
1 and 2 show a first embodiment of the present invention, FIG. 1 is a perspective view of the molten metal holding furnace in a heated state with the heat insulating member omitted, and FIG. 2 is a plan view of the same. It is. FIG. 3 is a sectional view of a molten metal holding furnace showing a second embodiment of the present invention. FIGS. 4 and 5 are graphs showing the relationship between the operating temperature and specific resistance value of each material. FIG. 6 is a perspective view showing the concept of dividing a conventional heating element in the thickness direction. In the figure, 10 is a holding space, 12 is a container main body, 14 is an electrode section, 40 is a holding space, 42 is a container main body, and 44 is an electrode section.

Claims (1)

【特許請求の範囲】[Claims] (1)金属溶湯を保持する保持空間をもち全体が導電性
セラミックスで形成された有底状の容器本体と、 該容器本体の外面部の少なくとも一部に装備された電極
部とで形成され、 金属溶湯と該電極部との間に電圧を印加して該容器本体
の厚み方向へ電流を流し、該容器本体を発熱させる構成
としたことを特徴とする溶湯保持容器。
(1) It is formed of a bottomed container body having a holding space for holding molten metal and made entirely of conductive ceramics, and an electrode part equipped on at least a part of the outer surface of the container body, A molten metal holding container characterized in that a voltage is applied between the molten metal and the electrode portion to flow a current in the thickness direction of the container body, thereby causing the container body to generate heat.
JP1155533A 1989-06-16 1989-06-16 Melt container Pending JPH0320590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1155533A JPH0320590A (en) 1989-06-16 1989-06-16 Melt container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1155533A JPH0320590A (en) 1989-06-16 1989-06-16 Melt container

Publications (1)

Publication Number Publication Date
JPH0320590A true JPH0320590A (en) 1991-01-29

Family

ID=15608149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1155533A Pending JPH0320590A (en) 1989-06-16 1989-06-16 Melt container

Country Status (1)

Country Link
JP (1) JPH0320590A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241197A (en) * 2007-03-28 2008-10-09 Fuji Electric Systems Co Ltd Electric heating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241197A (en) * 2007-03-28 2008-10-09 Fuji Electric Systems Co Ltd Electric heating device

Similar Documents

Publication Publication Date Title
JPH04233191A (en) Dc arc furnace
JPH0320590A (en) Melt container
US4849014A (en) Molten metal heating method
US2195705A (en) Electric heater
US5708257A (en) Heating device for transfer of liquid metal and process for manufacturing the device
JP2530083B2 (en) DC electric arc furnace lining
US769250A (en) Electric furnace.
US20090250453A1 (en) Electric conduction heating device
US6741632B1 (en) Ultra high temperature rapid cycle induction furnace
JPH02263544A (en) Heater device for submerging into molten metal
US4469925A (en) Inductive heating device utilizing a heat insulator
GB1473091A (en)
US2021221A (en) Method of and apparatus for producing fused refractory and abrasive materials
JPH0667538B2 (en) Metal melt container with heating part
CN2235108Y (en) Electrode structure at bottom of direct current arc furnace
US2112161A (en) Electric furnace for melting and refining metals and other materials
CN114485147B (en) Fast ignition heating method for electric arc furnace
WO2021045173A1 (en) Self-baking electrode and electrode paste for self-baking electrode
Kroll et al. A new carbon resistor furnace
JPH05337635A (en) Molten metal holding vessel
US2681944A (en) Electrical resistance
JPH05288473A (en) Constructing method for wall of furnace
US932986A (en) Transforming smelting-furnace.
JP3720225B2 (en) Manufacturing method of manganese alloy iron in electric furnace
JPH0323059A (en) Molten metal supplying member