JPS63168258A - Channel refractory for intermediate channel type induction heating tundish - Google Patents

Channel refractory for intermediate channel type induction heating tundish

Info

Publication number
JPS63168258A
JPS63168258A JP10687A JP10687A JPS63168258A JP S63168258 A JPS63168258 A JP S63168258A JP 10687 A JP10687 A JP 10687A JP 10687 A JP10687 A JP 10687A JP S63168258 A JPS63168258 A JP S63168258A
Authority
JP
Japan
Prior art keywords
refractory
hollow refractory
hollow
induction heating
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10687A
Other languages
Japanese (ja)
Inventor
Tetsuo Futagawa
二川 哲雄
Akio Ishii
章生 石井
Noboru Okuyama
奥山 登
Yukihiro Nakamura
幸弘 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10687A priority Critical patent/JPS63168258A/en
Publication of JPS63168258A publication Critical patent/JPS63168258A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/116Refining the metal
    • B22D11/118Refining the metal by circulating the metal under, over or around weirs

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To improve the durability of hollow refractory and to reutilize it by cooling to the room temp. after casting by using aluminacarbon quality brick having the specific carbon content as the hollow refractory quality forming a channel. CONSTITUTION:The hollow refractory 7, which uses the alumina-carbon quality refractory having 5-35% carbon content, is arranged at the middle between the receiving molten steel room 1 supplying the molten steel from a ladle 3 and the discharging molten steel room 2 pouring the molten steel through a submerged nozzle 8. In this way, the development of crack is eliminated and the restriction on casting timing caused by exchanging the hollow refractory is reduced and the operational cast is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、中間溝型誘導加熱タンディツシュに於ける湯
溝部分の耐火物材質に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a refractory material for a tundish portion in an intermediate groove type induction heating tundish.

(従来の技術) 連続鋳造用タンディツシュ(以下タンディツシュと略す
。)内溶融金属の過熱温度(以下SHと略す。)は、鋳
片品質に大きな影響を及ぼす。S)Iが高い場合には等
軸品率を低下させ、中心偏析が増大する傾向となる。ま
た、逆に低い場合には、溶融金属の粘性低下、及びモー
ルド内にディツケルが発生し易く成るなどの要因により
非金属介在物に起因する欠陥を増加させる傾向となる。
(Prior Art) The superheating temperature (hereinafter abbreviated as SH) of molten metal in a continuous casting tundish (hereinafter abbreviated as tundish) has a great influence on the quality of slabs. When S)I is high, the equiaxed product rate decreases and center segregation tends to increase. On the other hand, if it is low, defects due to non-metallic inclusions tend to increase due to factors such as a decrease in the viscosity of the molten metal and the tendency to generate cracks in the mold.

従って、常に目標とするSHに制御することが鋳片晶質
上好ましいが、実際には取鍋的溶融金属の温度は熱放散
により徐々に低下する為、鋳造末期のSllを確保しよ
うとすれば、全体的に目標よりも高目で鋳造される事に
なる。
Therefore, it is preferable to always control SH to the target SH, but in reality, the temperature of the molten metal in the ladle gradually decreases due to heat dissipation, so if you want to secure the Sll at the final stage of casting, , overall it will be cast at a higher price than the target.

そこで、タンディツシュに加熱機能を付与し、SHを常
に一定に保とうとする試みが現在行なわれている。加熱
源としては、制御性・経済性が優れることから、電力を
利用した誘導加熱法が知られている。
Therefore, attempts are currently being made to provide a heating function to the tandish to keep the SH constant. As a heating source, an induction heating method using electric power is known because it is excellent in controllability and economical efficiency.

誘導加熱法には、高周波電流を用いるるつぼタイプと、
低周被電流を用い、鉄心を有する溝タイプとが有るが、
溝タイプの方が発熱効率が甚く、かつ、商用周波数を変
換せずに投入できるので設備費が安く好ましい。
Induction heating methods include a crucible type that uses high-frequency current,
There is a groove type that uses a low frequency current and has an iron core.
The groove type is preferable because it has greater heat generation efficiency and can be used without converting the commercial frequency, resulting in lower equipment costs.

加熱の原理は、鉄心にmへコイルを巻き交流電流を印加
することにより、溝内の溶融金属が二次コイルとなり、
ファラディの電磁誘導の法制に従って誘導電流iが発生
し、ジュール熱12Rにより溶融金属が加熱されるもの
である。
The principle of heating is that by winding a coil around the iron core and applying alternating current, the molten metal in the groove becomes a secondary coil.
An induced current i is generated according to Faraday's law of electromagnetic induction, and the molten metal is heated by Joule heat 12R.

溝タイプの誘導加熱法の中でも溶融金属の容器の中間に
貫通する空間を設け、その空間に誘導コイル及び鉄心を
通す構造のものが、中間溝型誘導加熱法であり、これを
タンディツシュに適用したものが、中rtrI溝型誘導
加熱タンディツシュと称されるものである。(特開昭6
1−38754号)これは第5図(a) 、 (b) 
、 (c)に示すように、タンディツシュを取鍋3から
溶融金属が供給される受湯室1と浸漬ノズル8を通して
モールド11に注入される出湯室2に分割し、その閏を
複数の中空耐火物7で接合することによって溶融金属が
流通できる湯溝を形成させる。
Among the groove-type induction heating methods, the intermediate groove-type induction heating method has a structure in which a penetrating space is provided in the middle of the molten metal container, and the induction coil and iron core are passed through that space. This is called a medium rtrI groove type induction heating tundish. (Unexamined Japanese Patent Publication No. 6
1-38754) This is shown in Figure 5 (a) and (b).
As shown in (c), the tanditsu is divided into a receiving chamber 1 where molten metal is supplied from a ladle 3 and a tapping chamber 2 where molten metal is poured into a mold 11 through an immersion nozzle 8, and the tundish is divided into a plurality of hollow refractory holes. By joining with material 7, a channel through which molten metal can flow is formed.

そして、これら複数の中空耐火物7を設けたことによっ
て生じた空間6にmへコイル4を巻いた鉄芯5を貫通さ
せることによって二次コイルに相当する通電ループが湯
溝中の溶鋼を通して形成される。
Then, by passing the iron core 5 around which the coil 4 is wound to m through the space 6 created by providing these plurality of hollow refractories 7, an energizing loop corresponding to a secondary coil is formed through the molten steel in the hot water channel. be done.

ここで、中空耐火物7の具tin性としては、低価格で
、耐スポーリング性、耐食性に優れること以外に、中空
耐火物7自体に誘導電流の発生による発熱を防止するた
め、中空耐火物7の固有抵抗が高いことも必要である。
Here, the material properties of the hollow refractory 7 are that, in addition to being low-priced and having excellent spalling resistance and corrosion resistance, the hollow refractory 7 has the following characteristics: It is also necessary that the specific resistance of 7 is high.

そこで、中空耐火物7には、誘導電流発生防止を最重視
し、固有抵抗がほぼ無限大に大きいハイアルミナ系キャ
スタブルをオフライン成形したプレキャスト品を用いる
方法がある。
Therefore, for the hollow refractory 7, there is a method of using a precast product obtained by off-line molding of a high alumina castable having an almost infinitely large specific resistance, with the highest priority placed on preventing the generation of induced current.

(発明が解決しようとする問題点) ところが、この材質では、耐スポーリング性が劣り予熱
中又は溶融金属が流通中に中空耐火物7に亀裂が生じる
ことが有った。
(Problems to be Solved by the Invention) However, this material has poor spalling resistance, and cracks may occur in the hollow refractory 7 during preheating or during flow of molten metal.

また、無事鋳造が終了し、中空耐火物7に亀裂が発生し
ていないことが確認された場合でも、再度使用すること
は予熱中に亀裂が発生する懸念から不可能であり、1回
の鋳造が終了する毎にタンディツシュ側壁を解体し、中
空耐火物7を交換する必要が有った。
Furthermore, even if the casting is successfully completed and it is confirmed that no cracks have occurred in the hollow refractory 7, it is impossible to use it again due to concerns that cracks may occur during preheating, and It was necessary to dismantle the side wall of the tundish and replace the hollow refractory 7 every time the process was completed.

このため、タンディツシュ稼動率の低下を招き、さらに
耐火物のコスト高が当誘導加熱法の導入によるメリット
を上減殺するという問題も有った。
For this reason, there was a problem that the operating rate of the tundish was lowered, and the high cost of refractories more than offset the benefits of introducing the induction heating method.

(問題点を解決するための手段) 本発明は、かかる中空耐火物7がタンディツシュの予熱
中又は、溶融金属の流通中に亀裂が生じ易いという問題
点や一回の鋳造が終了毎に取り替えなければならないと
いう問題点を解決し、タンディツシュ稼動率の向上及び
タンディツシュ耐火物コストの低減を図るものである。
(Means for Solving the Problems) The present invention solves the problem that the hollow refractory 7 easily cracks during preheating of the tundish or during the flow of molten metal, and that it must be replaced every time one casting is completed. This aims to solve the problem that the tundish refractories must be used, improve the operating rate of the tundish, and reduce the cost of the tundish refractories.

即ち、本発明は、中空耐火物7の耐用性、特に耐スポー
リング性を向上させることにより、実湯鋳造後に常温ま
で冷却後も再使用が図れる中空耐火物7の材質を提供す
るものである。すなわち(1)湯溝を形成する中空耐火
物材質として、炭素含有量が5〜35%のアルミナ−炭
素質煉瓦を用いることを特徴とする中間溝型誘導加熱タ
ンディツシュの湯溝耐火物。
That is, the present invention provides a material for the hollow refractory 7 that can be reused even after cooling to room temperature after actual casting by improving the durability, especially the spalling resistance, of the hollow refractory 7. . Namely, (1) a refractory groove for an intermediate groove type induction heating tundish characterized in that an alumina-carbonaceous brick having a carbon content of 5 to 35% is used as the hollow refractory material forming the groove;

(2)湯溝を形成する中空耐火物材質として、炭化珪素
量が5〜20%のハイアルミナ系キャスタブルを用いる
ことを特徴とする中間溝型誘導加熱タンディツシュの湯
溝耐・大物。
(2) A large intermediate groove type induction heating tundish characterized by using high alumina castable with a silicon carbide content of 5 to 20% as the hollow refractory material forming the groove.

である。It is.

これらの問題を解決するための手段としては、耐火物中
に鱗状゛黒鉛などの炭素を含有させることが得策である
As a means to solve these problems, it is a good idea to incorporate carbon such as scaly graphite into the refractory.

第1図は、アルミナ−炭素質煉瓦の固有抵抗と、この材
質で中空耐火物7を製作し、タンディツシュ誘導加熱を
行なう場合、溶鋼温度が1 、500℃一定おいて、誘
導コイルに1 、 OOOkwを印加したときの中空耐
火物7内部の上昇温度、および溶鋼温度上昇熱量/投入
電力換算熱量の比率から求めた電気効率の関係を示す。
Figure 1 shows the specific resistance of an alumina-carbonaceous brick, and when the hollow refractory 7 is manufactured using this material and tundish induction heating is performed, the temperature of the molten steel is kept constant at 1,500°C, and the induction coil has a power of 1,000 kw. The relationship between the temperature rise inside the hollow refractory 7 and the electrical efficiency determined from the ratio of molten steel temperature rise heat amount/input power converted heat amount is shown.

この図から、中空耐火物7の固有抵抗がo、ootΩ−
C■の場合では、中空耐火物7内部の上昇温度は1 、
500℃の溶融金属の温度より150℃高い1,650
℃となり、湯溝内溶融金属に流れる電流密度が低下する
ため、電気効率が約80%に低下する。一方。
From this figure, the specific resistance of the hollow refractory 7 is o, ootΩ-
In the case of C■, the temperature increase inside the hollow refractory 7 is 1,
1,650 150°C higher than the temperature of molten metal at 500°C
℃, the current density flowing through the molten metal in the gutter decreases, and the electrical efficiency decreases to about 80%. on the other hand.

固有抵抗が≧0.01Ω−cmの場合の中空耐火物7内
部の溶融金属の温度に対する上昇温度は≦35℃であり
、電気効率の低下も無視出来る程小さい。
When the specific resistance is ≧0.01 Ω-cm, the temperature increase relative to the temperature of the molten metal inside the hollow refractory 7 is ≦35° C., and the decrease in electrical efficiency is so small that it can be ignored.

第2図は、アルミナ−炭素質焼成煉瓦の炭素含有量と固
有抵抗および耐久ポーリング性の指標となる熱wRN破
壊抵抗係数との関係を示す、この図において、固有抵抗
が≧0.001Ω−c11となる炭素含有量は、≦35
%である。熱衝撃破壊抵抗係数は。
Figure 2 shows the relationship between the carbon content of an alumina-carbonaceous fired brick and the thermal wRN fracture resistance coefficient, which is an index of resistivity and durable poling property. The carbon content is ≦35
%. The thermal shock rupture resistance coefficient is.

炭素含有量≧5%から急激に増大し例えば5%添加した
場合には、無添加品に比較して約3倍となり、タンディ
ツシュの予熱中又は溶融金属の流通中の亀裂発生を防止
できる。ただし≧35%添加により、カーボン結合が弱
くなる為、!衝撃破壊抵抗係数はむしろ低下する傾向と
なる。
When the carbon content increases rapidly from ≧5%, for example, when 5% is added, the carbon content becomes about three times that of a product without additives, and it is possible to prevent the occurrence of cracks during preheating of the tundish or during the flow of molten metal. However, if ≧35% is added, the carbon bond will become weaker! The impact fracture resistance coefficient tends to decrease.

一方、アルミナ−炭素質煉瓦および、中空耐火物7の周
囲に用いる不定形耐火物の最高使用温度は、1 、65
0℃の為、中空耐火物自身の誘導電流発生による発熱温
度を5150℃とする必要がある。
On the other hand, the maximum operating temperature of the alumina-carbonaceous brick and the monolithic refractory used around the hollow refractory 7 is 1.65
Since the temperature is 0°C, the heat generation temperature due to the generation of induced current in the hollow refractory itself needs to be 5150°C.

従って、中空耐火物7の炭素含有量の上限値は35%と
する。
Therefore, the upper limit of the carbon content of the hollow refractory 7 is set to 35%.

即ち、中空耐火物7の炭素含有量かく5%では、耐スポ
ーリング性が劣り、予熱中又は溶融金属流通中の亀裂発
生を防止することは不十分である6一方、〉35%では
、中空耐火物7自身の誘導電流発生による発熱により、
中空耐火物7およびその周囲の不定形耐火物の温度が許
容温度を超える為。
That is, when the carbon content of the hollow refractory 7 is 5%, the spalling resistance is poor and it is insufficient to prevent cracking during preheating or during the flow of molten metal. Due to the heat generated by the induced current in the refractory 7 itself,
The temperature of the hollow refractory 7 and the surrounding monolithic refractories exceeds the permissible temperature.

異常に溶損が進行し湯濡れ発生などの懸念が有る。There is a concern that melting damage will progress abnormally and that water will get wet.

従って、アルミナ−炭素質煉瓦による中空耐火物7の炭
素含有量は5〜35%の範囲とする。なおこの場合の炭
素含有量は、緩衝材として添加した鱗状黒鉛と、結合材
として添加したレジン・ピッチの炭素成分を合計した値
である。
Therefore, the carbon content of the hollow refractory 7 made of alumina-carbonaceous bricks is in the range of 5 to 35%. Note that the carbon content in this case is the sum of the carbon components of the scaly graphite added as a buffer material and the resin pitch added as a binder.

ところで、アルミナ−炭素質煉瓦を中空耐火物7の様に
中空形状に成形するには、特殊なプレス加工により成形
する必要が有り、製造コストが割高となる。
By the way, in order to form an alumina-carbonaceous brick into a hollow shape like the hollow refractory 7, it is necessary to form it by special press working, which increases the manufacturing cost.

そこで、コスト低減を図る為には1重量!1.価が約1
/10と安価なキャスタブルで成形したプレキャスト品
を適用することが得策である。
Therefore, in order to reduce costs, we decided to use 1 weight! 1. Value is about 1
It is a good idea to use a precast product molded from castable material, which is cheap at /10.

キャスタブル材質としては、ハイアルミナ系が一般的で
あるが、前述した様にこのままの材質では亀裂が入り易
く、非連続的に多数回使用することは困難である。
High alumina is commonly used as a castable material, but as mentioned above, this material is prone to cracking and is difficult to use discontinuously many times.

そこで、ハイアルミナ系キャスタブルの耐スポーリング
性を向上させる為には、熱伝導率を向上させることが有
効で、炭化珪素を添加することが一般に行なわれている
Therefore, in order to improve the spalling resistance of high alumina castables, it is effective to improve the thermal conductivity, and silicon carbide is generally added.

第3図及び第4図は、ハイアルミナ系キャスタブル中炭
化珪素含有量と、1−8iキルド鋼を1 、600’C
IHr保定による回転侵食試験の溶損量比及び熱衝撃破
壊抵抗係数の関係を示す。
Figures 3 and 4 show the silicon carbide content in high alumina castable and 1-8i killed steel at 1,600'C.
The relationship between the erosion loss ratio and thermal shock fracture resistance coefficient in a rotational erosion test with IHr retention is shown.

回転侵食による溶損量は、炭化珪素添加量が20%まで
は低下するが、20%を超えるとむしろ増加する傾向に
ある。
The amount of erosion due to rotational erosion decreases when the amount of silicon carbide added is up to 20%, but tends to increase when it exceeds 20%.

一方、熱衝撃破壊抵抗係数は、炭化珪素含有量が15%
までは含有量の増加と伴に熱衝撃破壊抵抗係数も増大す
る傾向にある。例えば、5%の添加により、熱衝撃破壊
抵抗係数は無添加時に比較して約3倍のR=90となり
、間欠的な操業においても多数回使用が可能となる。し
かし、炭化珪素含有量≧23%からR<90となり、多
数回使用が不可となる。
On the other hand, the thermal shock fracture resistance coefficient is 15% for silicon carbide content.
The thermal shock rupture resistance coefficient also tends to increase as the content increases. For example, by adding 5%, the thermal shock rupture resistance coefficient becomes R=90, which is about three times that when no additive is added, and it can be used many times even in intermittent operations. However, if the silicon carbide content is ≧23%, then R<90, making it impossible to use it multiple times.

なお、炭化珪素自体の固有抵抗は、例えば500℃にお
いて、 3,100Ω−am、 1,000℃において
430Ω−cmと高い為、炭化珪素を添加したキャスタ
ブルを中空耐火物に用いても誘導電流発生による、中空
耐火物7の発熱は、はとんど生じない。
Note that the specific resistance of silicon carbide itself is high, for example, 3,100 Ω-am at 500°C and 430 Ω-cm at 1,000°C, so even if castable to which silicon carbide is added is used for hollow refractories, induced current will not be generated. Due to this, heat generation in the hollow refractory 7 rarely occurs.

従って、ハイアルミナ系キャスタブルを中空耐火物に用
いる場合の炭化珪素の添加量は5〜20%の範囲が適正
である。即ち、く5%および≧20では、熱衝撃破壊抵
抗低数Rく90の為、間欠操業での多数回使用が困難で
ある為である。
Therefore, when using high alumina castable for hollow refractories, the appropriate amount of silicon carbide to be added is in the range of 5 to 20%. That is, when R is 5% and ≧20, the thermal shock fracture resistance is low (R) is 90, making it difficult to use it many times in intermittent operation.

〈実施例−1〉 中空耐火物にアルミナ炭素質煉瓦を用いた例。<Example-1> Example of using alumina carbonaceous bricks for hollow refractories.

溶鋼を46ton受鋼出来る大型タンディツシュに於い
て、第5図に示す取鍋3かも溶鋼が供給される受湯室1
と、浸漬ノズル8を通して、溶鋼が注入される出湯室2
の中間に内径Loomsφ、外径1501■φ、長さ1
,200mm、炭素含有量が10%のアイソスタティッ
クプレス成形し、バインダーとして、レゾール系レジン
を使用したアルミナ−炭素質中空耐火物7を思量で40
01の間隔で並列に設置し溶鋼が中空耐火物7を通過す
る構造とした。
In a large tundish capable of receiving 46 tons of molten steel, the ladle 3 shown in Fig. 5 also has a receiving chamber 1 to which molten steel is supplied.
and a tapping chamber 2 into which molten steel is injected through an immersion nozzle 8.
Inner diameter Loomsφ, outer diameter 1501■φ, length 1 in the middle
, 200 mm, isostatically press-molded with a carbon content of 10%, and alumina-carbonaceous hollow refractory 7 using resol-based resin as a binder is 40
The hollow refractories 7 were installed in parallel at intervals of 0.01 to allow molten steel to pass through the hollow refractories 7.

並列した2本の中空耐火物7の間には、誘導コイル4を
巻いた鉄心5を直角方向に貫通させた。
Between the two parallel hollow refractories 7, an iron core 5 around which an induction coil 4 was wound was passed through in a perpendicular direction.

中空耐火物7中を流れる溶鋼量は、1本当り約1 to
n/分であり、出側溶鋼温度が入側に比較してMAX2
5℃上昇する様に誘導コイル4に対し電圧400〜1 
、200V 、電流620〜1.85OA、周波数50
c/sの交流電流を印加した。
The amount of molten steel flowing through the hollow refractory 7 is approximately 1 to
n/min, and the exit side molten steel temperature is MAX2 compared to the input side.
Apply voltage 400 to 1 for induction coil 4 so that the temperature rises by 5℃.
, 200V, current 620~1.85OA, frequency 50
An alternating current of c/s was applied.

操業パターンは、全て1ヒート鋳造毎に常温まで冷却さ
れる間欠的なものであったが、ヘアークラック以外の亀
裂は見られず、6ヒートまで使用できた。使用を中止し
た理由は、1ヒート使用毎の加熱、冷却の際に添加した
炭素が酸化し、脱炭層が生成され、健全層の残存厚さが
僅かになったためである。
The operation pattern was an intermittent one in which the castings were cooled down to room temperature after each heat casting, but no cracks other than hair cracks were observed and up to 6 heats could be used. The reason for discontinuing the use was that the carbon added during heating and cooling for each heat use was oxidized, a decarburized layer was generated, and the remaining thickness of the healthy layer became small.

なお、当中空耐火物7の使用前後の健全層部の組成、物
性の変化を第1表に示すが、それらの変化は、僅少であ
る。
Table 1 shows changes in the composition and physical properties of the sound layer before and after use of the hollow refractory 7, and these changes are slight.

表−1 〈実施例−2〉 中空耐火物に、炭化珪素添加のハイアルミナ系プレキャ
スト品を適用した例。
Table 1 <Example 2> An example in which a high alumina precast product containing silicon carbide is applied to a hollow refractory.

前述した実施例(1)と同様の製造方法にて、Aら0.
=62%、5LO2= 36%、Ca0=1.5%から
成る低セメントキャスタブルにSiC298%、粒度≦
1 、65m腸の炭化珪素を添加し、 その含有量を10%としたハイアルミナ系キャスタブル
をプレキャストした中空耐火物7を適用した。
Using the same manufacturing method as in Example (1) described above, A et al.
= 62%, 5LO2 = 36%, Ca0 = 1.5% in low cement castable with SiC298%, particle size ≦
1. Hollow refractory 7 was applied, which was made by precasting high alumina castable to which 65 m of silicon carbide was added and its content was 10%.

操業パターンは、全て1ヒート鋳造毎に常温まで冷却さ
れる間欠的なものであったが、ヘアークラック以外の亀
裂は見られず、実施例(1)と同様に6ヒートまで使用
できた。
Although the operation pattern was an intermittent one in which the castings were cooled down to room temperature after each heat casting, no cracks other than hair cracks were observed, and up to 6 heats could be used as in Example (1).

使用を中止した理由は、1ヒート毎に中空耐火物7の内
面が約3IIIllW4損するため、残存厚みが僅かに
なったことによるものである。
The reason for discontinuing the use was that the inner surface of the hollow refractory 7 lost about 3IIIW4 for each heat, so the remaining thickness became small.

なお、当中空耐火物7の使用前後の組成、物性は、表2
に示すが、使用後の圧縮強さが約2倍になっており、焼
結により緻密化が進行している。
The composition and physical properties of this hollow refractory 7 before and after use are shown in Table 2.
As shown in the figure, the compressive strength after use has approximately doubled, indicating that densification has progressed due to sintering.

表−2 (発明の効果) 以上説明したように本発明による アルミナ−炭素質煉瓦を中空耐火物7に適用することに
よって亀裂発生が大輪に解消され、間欠操業においても
6ヒートの多数回使用が可能になった。これにより、1
ヒート毎の中空耐火物7の取り替えが回避され、鋳造タ
イミングが中空耐火物7の取り替えに制約されることが
少なくなり、かつ作業費低減に対しても大きな利益が得
られた。
Table 2 (Effects of the invention) As explained above, by applying the alumina-carbonaceous brick according to the present invention to the hollow refractory 7, the occurrence of cracks is largely eliminated, and even in intermittent operation, multiple uses of 6 heats are possible. It's now possible. This results in 1
Replacement of the hollow refractory 7 for each heat was avoided, the casting timing was less restricted by the replacement of the hollow refractory 7, and great benefits were obtained in terms of reduced work costs.

一方、ハイアルミナ系キャスタブルに炭化珪素を添加し
たプレキャスト品を中空耐火物7に適用した場合も同様
に6回の間欠多数回使用が可能になり、さらに、中空耐
火物7の単価が約1/10と安価の為、耐火物コストの
低減に対しても効果が大きい。
On the other hand, if a precast product made by adding silicon carbide to high alumina castable is applied to the hollow refractory 7, it can be used 6 times intermittently, and furthermore, the unit price of the hollow refractory 7 can be reduced by about 1/2. Since it is inexpensive at 10, it is also highly effective in reducing refractory costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、中空耐火物の固有抵抗と温度上昇量、電気抵
抗の関係図、 第2図は、アルミナ−炭素質煉瓦の炭素含有量と固有抵
抗、熱?ftfl!係数の関係図、第3図は、ハイアル
ミナ系キャスタブル中の珪素含有量と溶損量の関係、 第4図は、ハイアルミナ系キャスタブル中の珪素含有量
と熱衝蛤係数の関係とを表わす図である。 第5図は、本発明を適用する中間溝型誘導加熱タンディ
ツシュの全体図である。 1:受湯室、      2:出湯室、3:取鍋、  
     4:コイル、5:鉄心、      6:空
間、 7:中空耐火物、   8:浸漬ノズル。 第2図 アルミナ−次余′lIF煉瓦の交索含鳴量(%)第3図 第4図 ハイアルミナチキャズタ7つし中の、ンC化王1常含埼
量(%)手続補正吉 昭和62年令月23日
Figure 1 shows the relationship between the specific resistance, temperature rise, and electrical resistance of hollow refractories. ftfl! Figure 3 shows the relationship between the silicon content in high alumina castable and the amount of corrosion loss, and Figure 4 shows the relationship between the silicon content in high alumina castable and the thermal shock coefficient. It is a diagram. FIG. 5 is an overall view of an intermediate groove type induction heating tundish to which the present invention is applied. 1: Hot water receiving room, 2: Hot water supply room, 3: Ladle,
4: Coil, 5: Iron core, 6: Space, 7: Hollow refractory, 8: Immersion nozzle. Fig. 2 Amount of cross-wire content (%) of alumina - secondary IF brick Fig. 3 Fig. 4 Amount of normal content (%) of 7 high alumina chikasuta (%) Procedure correction Yoshi Showa 62 year month 23rd

Claims (2)

【特許請求の範囲】[Claims] (1)湯溝を形成する中空耐火物材質として、炭素含有
量が5〜35%のアルミナ−炭素質煉瓦を用いることを
特徴とする中間溝型誘導加熱タンディッシュの湯溝耐火
物。
(1) A gutter refractory for an intermediate gutter type induction heating tundish, characterized in that an alumina-carbonaceous brick having a carbon content of 5 to 35% is used as the hollow refractory material forming the gutter.
(2)湯溝を形成する中空耐火物材質として、炭化珪素
量が5〜20%のハイアルミナ系キャスタブルを用いる
ことを特徴とする中間溝型誘導加熱タンディッシュの湯
溝耐火物。
(2) A gutter refractory for an intermediate groove type induction heating tundish, characterized in that high alumina castable having a silicon carbide content of 5 to 20% is used as the hollow refractory material forming the gutter.
JP10687A 1987-01-06 1987-01-06 Channel refractory for intermediate channel type induction heating tundish Pending JPS63168258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10687A JPS63168258A (en) 1987-01-06 1987-01-06 Channel refractory for intermediate channel type induction heating tundish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10687A JPS63168258A (en) 1987-01-06 1987-01-06 Channel refractory for intermediate channel type induction heating tundish

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP62098522A Division JPS63171256A (en) 1987-04-23 1987-04-23 Refractories for molten metal channel of intermediate channel type induction heating tundish

Publications (1)

Publication Number Publication Date
JPS63168258A true JPS63168258A (en) 1988-07-12

Family

ID=11464832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10687A Pending JPS63168258A (en) 1987-01-06 1987-01-06 Channel refractory for intermediate channel type induction heating tundish

Country Status (1)

Country Link
JP (1) JPS63168258A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264834A (en) * 2007-04-20 2008-11-06 Jfe Steel Kk Tundish for continuous casting
JP2015221456A (en) * 2014-05-23 2015-12-10 新日鐵住金株式会社 Weir refractory construction method for induction heating type tundish and weir refractory repair method for weir refractory
CN114101650A (en) * 2021-11-26 2022-03-01 东北大学 Channel type induction heating device and tundish

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138754A (en) * 1984-07-31 1986-02-24 Nippon Steel Corp Tundish for continuous casting
JPS61150758A (en) * 1984-12-25 1986-07-09 Kawasaki Steel Corp Method for heating molten metal in tundish for continuous casting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138754A (en) * 1984-07-31 1986-02-24 Nippon Steel Corp Tundish for continuous casting
JPS61150758A (en) * 1984-12-25 1986-07-09 Kawasaki Steel Corp Method for heating molten metal in tundish for continuous casting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264834A (en) * 2007-04-20 2008-11-06 Jfe Steel Kk Tundish for continuous casting
JP2015221456A (en) * 2014-05-23 2015-12-10 新日鐵住金株式会社 Weir refractory construction method for induction heating type tundish and weir refractory repair method for weir refractory
CN114101650A (en) * 2021-11-26 2022-03-01 东北大学 Channel type induction heating device and tundish

Similar Documents

Publication Publication Date Title
CN104439192A (en) Method for manufacturing cellular ceramic-metal composite vertical mill roller
JPS5865565A (en) Manufacture of casting block internally chilling steel pipe
CN105543639A (en) Centrifugal ceramic composite vertical mill roller sleeve and manufacturing method thereof
US5732763A (en) Device for feeding molten metal particularly cast iron, to a casting machine, and casting installation incorporating same
JPS63168258A (en) Channel refractory for intermediate channel type induction heating tundish
JP3080582B2 (en) Metal casting method
JP2768785B2 (en) Method of lining and repair of molten steel pot
JPS63171256A (en) Refractories for molten metal channel of intermediate channel type induction heating tundish
JP4746412B2 (en) Continuous casting method
EP0069094A1 (en) Lining of inductors for holding and melting of metals
CN111375736B (en) Casting method of martensite precipitation hardening stainless steel
JPS6347539B2 (en)
US3914527A (en) Lining for zinc pot induction heater
RU2731494C1 (en) Method of iron castings reinforcement
JP2004083361A (en) Regenerated castable refractory
CN112371969B (en) Implementation method of functional refractory material of channel type electromagnetic induction heating tundish
JP2558187B2 (en) Heating mold for continuous casting
CN114216334B (en) Medium frequency induction smelting furnace and baking method thereof
KR100333074B1 (en) Large steel ingot casting by hot top heating method
KR20120087524A (en) The device to prevent clogging of submerged entry nozzle
JP2704249B2 (en) Basic amorphous refractories for induction furnaces
JPH10279357A (en) Lining material for induction furnace
Sengupta Refractories for the Cast Iron Melting
JPS639908B2 (en)
CN104148597B (en) The former slag of liquid condition shaping makes mould and the method for die bush cast ferroalloy