JPH0533760Y2 - - Google Patents

Info

Publication number
JPH0533760Y2
JPH0533760Y2 JP8541585U JP8541585U JPH0533760Y2 JP H0533760 Y2 JPH0533760 Y2 JP H0533760Y2 JP 8541585 U JP8541585 U JP 8541585U JP 8541585 U JP8541585 U JP 8541585U JP H0533760 Y2 JPH0533760 Y2 JP H0533760Y2
Authority
JP
Japan
Prior art keywords
water
pumping
water pumping
diameter
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8541585U
Other languages
Japanese (ja)
Other versions
JPS61200498U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8541585U priority Critical patent/JPH0533760Y2/ja
Publication of JPS61200498U publication Critical patent/JPS61200498U/ja
Application granted granted Critical
Publication of JPH0533760Y2 publication Critical patent/JPH0533760Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Jet Pumps And Other Pumps (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) この考案は湖、沼、ダム又は池等の開水面にお
ける浄水を行うに際し、大容量で効率よく行うこ
とを目的とした大容量用揚水装置に関する。
[Detailed description of the invention] (Field of industrial application) This invention is a large-capacity water pumping device that aims to efficiently purify water in open water surfaces such as lakes, marshes, dams, and ponds. Regarding.

(従来の技術) 従来間欠給気揚水装置については、多数の提案
がなされており、夫々実用に供せられている。特
に大容量の揚水装置としては、大径の揚水筒内を
縦に区分する考案又は小径の揚水筒を並列して使
用する考案が知られている(実開昭60−176300
号)。
(Prior Art) Many proposals have been made regarding conventional intermittent air supply pumping devices, and each has been put into practical use. In particular, as a large-capacity pumping device, a device is known in which the inside of a large-diameter pumping cylinder is divided vertically, or a device in which small-diameter pumping cylinders are used in parallel (Utility Model No. 176300
issue).

(考案により解決すべき課題) 従来、間欠空気揚水装置は、湖、沼、ダム等の
溶存酸素量を増大し、水質を改善することについ
て多大の効果を有し、国内百ケ所以上も設置さ
れ、近来設置要望数が増大の一途を辿つている。
従来の経験によれば、湖、沼等の断面形状が理想
的(例えば摺鉢状)な場合で、大深度(例えば水
深30m以上)の場合には、直径50cm、長さ10m以
上の揚水筒一基で100万m3の水量を浄水できるこ
とが判明している。そこで上記基準によれば、
1000万m3で10基、1億m3で100基必要になるけれ
ども、10基以上にもなると保守管理上複雑化が著
しく、管理困難になるおそれがあり、設置基数低
減の要請がある。元来、揚水筒による揚水の目的
は、水を上下対流循環させるにあるから(第7
図)、水に上下対流循環のエネルギーを付与でき
ればよいことになる。通常は揚水筒の直径を増大
させれば少ない基数で循環の目的を達成できるも
のと推定される。そこで揚水筒の直径を50cmから
60cm、70cm、80cm、90cmおよび1mと逐次増加し
た所、80cmまではほぼ所定の効率を保つている
が、90cm以後は効率が著しく低下する問題点が判
明した。その理由は、揚水筒の直径が大きくなる
と最初は1つの気泡にまとまつていても所定の長
さ通過以後は、気泡が割れ易くなり、正しい形状
を保つて浮上しない為に浮力が低下するので揚水
能力が低下するものと推定された。前記問題点を
改善する為に、直径50cmの揚水筒4本を結束して
使用すれば、その揚水能力は直径1mの揚水筒1
本より大きいことが判明した。また、直径80cmの
揚水筒は直径50cmの揚水筒の2.5倍の揚水能力が
認められた。そこで直径80cmの揚水筒を4本結束
した複合筒は、直径50cmの揚水筒の10本分の揚水
能力があることになる。従つて水量1億m3のダム
の浄水に際しても直径80cmの揚水筒を4本結束し
た複合筒10基を設置すれば、十分目的を達成する
ことになり、保守管理上の複雑化を著しく改善で
きる。
(Issues to be solved through innovation) Conventionally, intermittent air pumping devices have been highly effective in increasing the amount of dissolved oxygen in lakes, ponds, dams, etc. and improving water quality, and have been installed in more than 100 locations in Japan. The number of requests for installation has been increasing in recent years.
According to past experience, when lakes, ponds, etc. have an ideal cross-sectional shape (e.g. mortar shape) and are located at great depths (e.g. 30m or more deep), a pumping tube with a diameter of 50cm and a length of 10m or more is recommended. It has been found that one unit can purify 1 million m3 of water. According to the above criteria,
For 10 million m3 , 10 units are required, and for 100 million m3 , 100 units are required, but if there are more than 10 units, maintenance becomes extremely complicated and management becomes difficult, so there is a demand for a reduction in the number of installed units. Originally, the purpose of pumping water with a water pump was to circulate water vertically and convectively (No. 7)
(Fig.), it is sufficient if energy can be imparted to the water through vertical convection circulation. Normally, it is assumed that by increasing the diameter of the water pump, the purpose of circulation can be achieved with a smaller number of pumps. Therefore, the diameter of the water pump was changed from 50 cm.
When increasing the length sequentially to 60 cm, 70 cm, 80 cm, 90 cm, and 1 m, it was found that the efficiency was almost maintained at the specified level up to 80 cm, but after 90 cm, the efficiency decreased significantly. The reason for this is that as the diameter of the water pump increases, even if the bubbles initially form a single bubble, after passing a certain length, the bubbles become more likely to break and do not maintain their correct shape and float, resulting in a decrease in buoyancy. It was estimated that the pumping capacity would decrease. In order to improve the above problem, if four pumping tubes with a diameter of 50cm are used together, the pumping capacity will be equal to that of one pumping tube with a diameter of 1m.
It turned out to be bigger than a book. In addition, a pumping tube with a diameter of 80cm was found to have 2.5 times the pumping capacity of a pumping tube with a diameter of 50cm. Therefore, a composite tube made by bundling four water pumping tubes with a diameter of 80 cm has the same lifting capacity as ten water pumping tubes with a diameter of 50 cm. Therefore, even when purifying water from a dam with a water volume of 100 million m3 , installing 10 composite tubes made up of four pumping tubes with a diameter of 80 cm will be sufficient to achieve the purpose, significantly reducing the complexity of maintenance management. can.

次に具体的構造として、各小径の揚水筒に夫々
空気室を設けると、一群(2本乃至10本程度)の
小径の揚水筒へ、同一又は各別のコンプレツサー
から給気した場合であつても、各空気室に溜る加
圧空気の量に差を生じ、一斉に排気することが困
難な場合が多い。例えば空気室内の容量の誤差、
空気室の微細な傾斜、又は空気通過孔の形状差な
ど、製作上避け得られない微差があつても、同時
等量排気はむつかしく、結局各揚水筒の揚水量
と、放出時機に差を生じるおそれがあつた。同一
場所における揚水の放出が一斉に行われない場合
には、連続揚水の場合と同様の作用となつて、拡
散範囲が著しく狭くなる。
Next, as a concrete structure, if an air chamber is provided for each small-diameter water pump, then air can be supplied to a group (about 2 to 10 small-diameter water pumps) from the same or different compressors. However, there is a difference in the amount of pressurized air accumulated in each air chamber, and it is often difficult to exhaust the air all at once. For example, errors in the capacity of the air chamber,
Even if there are unavoidable manufacturing differences such as minute inclinations of the air chambers or differences in the shape of the air passage holes, it is difficult to simultaneously pump out the same amount of water, and in the end there are differences in the amount of water pumped from each pump and the timing of release. There was a risk that this would occur. If pumped water is not released all at once at the same location, the same effect as in the case of continuous pumping occurs, and the diffusion range becomes significantly narrower.

即ち揚水筒により水底付近の冷たい水が水面に
持ち上げられると(第7図)(例えば水温10℃の
水が15℃の水面に持ち上げられる)、水面付近の
水と急速に混合し、例えば水温14℃〜14.5℃位に
なり、比重が安定する。そこでこの混合水は、例
えば14℃に該当する水層(例えば水面下1mの水
深)を矢示47のように横方向に放射状に拡散す
る。
In other words, when cold water near the bottom is lifted to the surface by the water pump (Figure 7) (for example, water with a water temperature of 10°C is lifted to the water surface with a temperature of 15°C), it rapidly mixes with the water near the water surface, and for example, the water temperature becomes 14°C. ℃~14.5℃, and the specific gravity becomes stable. Therefore, this mixed water spreads radially in the horizontal direction as shown by arrow 47 through a water layer corresponding to, for example, 14° C. (for example, at a depth of 1 m below the water surface).

実験の結果によれば、拡散距離は300m〜
1000m以上にも及ぶことが判明した。従つて通常
のダム等においては、第7図中矢示48のように
岸辺に向つて拡散するものと推定され、ついで矢
示49のように下降し、矢示50のように水底を
経て揚水筒まで戻つて再び矢示51のように揚水
に混じることになる。
According to the experimental results, the diffusion distance is 300m~
It turned out to be over 1000m long. Therefore, in a normal dam, etc., it is assumed that the water will spread toward the shore as shown by arrow 48 in Figure 7, then descend as shown by arrow 49, and pass through the water bottom as shown by arrow 50 to reach the pumping tube. It returns to the point where it mixes with the pumped water again as shown by arrow 51.

然し乍ら一斉揚水できないと、恰も連続揚水と
同様になり、揚水と水面付近の水とは十分には混
合されないので、10℃の水は例えば12℃位とな
り、揚水筒の近辺へ沈降することになる。元来、
間欠揚水筒は、水面付近の溶存酸素量の多い水を
広範囲に水中に巻き込み、全体の溶存酸素量を急
速に改善する作用効果があるので、有効な方法と
されていた。然し乍ら上下対流の範囲が狭いと前
記理由により揚水筒本来の目的を達成できない問
題点がある。
However, if the water cannot be pumped all at once, it will be similar to continuous pumping, and the pumped water and the water near the water surface will not mix sufficiently, so the 10℃ water will become, for example, about 12℃, and will settle near the pumping tube. . originally,
Intermittent water pumping has been considered an effective method because it has the effect of drawing water with a high amount of dissolved oxygen near the water surface into the water over a wide area and rapidly improving the overall amount of dissolved oxygen. However, if the range of vertical convection is narrow, there is a problem that the original purpose of the water pump cannot be achieved due to the above-mentioned reason.

また、空気室を正確に同一形状にした場合であ
つても、水中設置の為に多少の傾斜ができたり、
波で揺れたりすれば、空気団の上昇に先後を生
じ、一斉揚水が困難になる。
In addition, even if the air chamber is made to have the same exact shape, it may be slightly sloped due to underwater installation.
If it is shaken by waves, the rise of the air mass will be delayed, making it difficult to pump water all at once.

(課題を解決する為の手段) 然るにこの考案は、一群の揚水筒群の下端部と
間欠給気装置の揚水基筒の上端部との間に、各揚
水筒の合計断面積とほぼ等しい大径整流筒を接続
し、これにより各小径の揚水基筒から送り出され
る水を整流し、上昇する空気団を一つにして、揚
水筒内における夫々の空気団の前後、遅速を調整
したのである。
(Means for solving the problem) However, in this invention, a large area approximately equal to the total cross-sectional area of each pumping cylinder is installed between the lower end of a group of pumping cylinders and the upper end of the pumping base of the intermittent air supply system. Diameter straightening tubes were connected, which rectified the water sent out from each small-diameter pumping base tube, combined the rising air masses into one, and adjusted the forward and backward speeds and slow speeds of each air mass within the pumping tube. .

即ちこの考案は複数の揚水筒に間欠給気装置を
備えた揚水装置において、前記複数の揚水筒の下
端と間欠給気装置の揚水基筒の上端との間に整流
筒を接続して揚水装置を構成した。前記における
複数の揚水筒は、独立した揚水筒の複数を並列一
体化した構造、又は大口径揚水筒の内部を中心線
と平行な仕切板によつて複数区画に区切つたもの
などが考えられる。前記における揚水筒の数は2
本以上十数本としてもよいけれども、実用上は2
本乃至十本程度である。
That is, this invention is a pumping system in which a plurality of pumping cylinders are equipped with an intermittent air supply device, in which a rectifying cylinder is connected between the lower ends of the plurality of pumping cylinders and the upper end of the pumping base cylinder of the intermittent air supply system. was configured. The plurality of water pumps mentioned above may have a structure in which a plurality of independent water pipes are integrated in parallel, or a structure in which the inside of a large diameter water pipe is divided into a plurality of sections by partition plates parallel to the center line. The number of water pumps in the above is 2
Although it is possible to have more than 10 books, in practical terms 2
There are about 10 to 10 books.

また、間欠吸気装置は、一つの空気室又は複数
の空気室を連通させて構成したものである。
Further, the intermittent intake device is configured by connecting one air chamber or a plurality of air chambers.

前記における整流筒の断面積は小径の揚水筒の
総断面積と同等程度、又は若干大きくしてあり、
長さは、空気団を形成し、又は上昇水を整流し得
る程度であるが、例えばその直径の1.5倍〜3倍
位の長さが適当である。
The cross-sectional area of the straightening tube in the above is approximately equal to or slightly larger than the total cross-sectional area of the small-diameter pumping tube,
The length is such that it can form an air mass or rectify rising water, and for example, a length of 1.5 to 3 times the diameter is appropriate.

(作用) 即ちこの考案によれば、複数の小径の揚水筒と
間欠空気供給装置との間に1本の整流筒を連設し
たので、揚水基筒から放出された空気は整流筒内
で合流し、また上昇水も整流されてから複数の小
径揚水筒内へ分流されるので、全体がほぼ同一条
件となる。
(Function) In other words, according to this invention, one rectifying tube is provided in series between the plurality of small-diameter water pumping tubes and the intermittent air supply device, so that the air discharged from the pumping base tubes merges within the rectifying tube. However, since the rising water is also rectified and then divided into a plurality of small-diameter water pumping cylinders, the conditions as a whole are almost the same.

(実施例 1) この考案の実施例を第1図乃至第4図の実施例
に基づいて説明する。
(Embodiment 1) An embodiment of this invention will be described based on the embodiments shown in FIGS. 1 to 4.

即ち空気室Aの上部に整流筒Bを連設し、整流
筒Bの上部に4本の小径揚水筒群Cの下端を連設
してある。前記空気室Aは、4本の揚水基筒1,
1a,1b,1cの夫々の外周に所定間隔をおい
て断面弧状の外覆筒2,2a,2b,2cを同心
円状に設置し、外覆筒2,2a,2b,2cと、
各揚水基筒1,1a,1b,1cとの間に断面弧
状の二つの仕切筒3,4を夫々所定間隔毎に縦設
し、仕切筒3,4と、揚水基筒1,1a,1b,
1cの外壁および外覆筒2,2a,2b,2cと
仕切筒3,4の上部との間を閉塞板5,5a,5
bによつて夫々閉塞して、各個の空気室a,b,
c,dを構成したものである。
That is, a rectifying cylinder B is connected to the upper part of the air chamber A, and the lower ends of a group of four small-diameter water pumping cylinders C are connected to the upper part of the rectifying cylinder B. The air chamber A includes four pumping base cylinders 1,
Outer cover cylinders 2, 2a, 2b, 2c having an arcuate cross section are installed concentrically at a predetermined interval on the outer periphery of each of 1a, 1b, 1c, and outer cover cylinders 2, 2a, 2b, 2c,
Two partition tubes 3 and 4 each having an arc-shaped cross section are vertically installed at predetermined intervals between each of the pumping base tubes 1, 1a, 1b, and 1c. ,
Closing plates 5, 5a, 5 are installed between the outer wall of 1c and the outer cover tubes 2, 2a, 2b, 2c and the upper parts of the partition tubes 3, 4.
The air chambers a, b,
This is a configuration of c and d.

前記外覆筒2の下端には加圧空気の給気管6を
連設すると共に、各個の空気室a,b,c,dの
最外室7,7は連接壁に連通孔8,8を設けてあ
る為に、事実上全部連通した空気室Aを構成して
いる。図中Dは揚水筒群Cに連結した集約筒、
9,10,11は各揚水基筒1,1a,1b,1
cの上部、および各仕切筒3,4の下部又は上部
壁に設けた通気孔である。
A pressurized air supply pipe 6 is connected to the lower end of the outer cover cylinder 2, and the outermost chambers 7, 7 of each air chamber a, b, c, d have communication holes 8, 8 in the connecting wall. Because it is provided, it constitutes an air chamber A that is virtually all in communication. In the figure, D is a collection cylinder connected to the pumping cylinder group C.
9, 10, 11 are each pumping base cylinder 1, 1a, 1b, 1
These are ventilation holes provided in the upper part of c and the lower or upper wall of each partition tube 3, 4.

前記実施例について、装置の作動を説明する。
先づコンプレツサー(図示してない)で加圧され
た空気は、第2図中ホース12内を矢示13のよ
うに供給されて、給気管6から矢示14のように
最外室7に入る。各個の空気室a,b,c,dは
全最外室の連接壁15に設けた連通孔8,8で連
通しているので、全最外室7には、加圧空気が同
時に供給される。従つて加圧空気は夫々通気孔9
を矢示16のように通過し、空気室a,b,c,
dの上部に溜り、空気量の増加につれて該部の水
面を逐次低下させる。前記水面が通気孔10(図
中鎖線17)に達すると、空気室a,b,c,d
内の空気は、矢示18,19,20のように通気
孔10,11を経て、各揚水基筒1,1a,1
b,1c内を上昇し、整流筒Bに入る。整流筒B
の上端部内側には、第4図及び第5図々示のよう
に仕切り21が嵌挿され、内側を四分割している
ので、整流筒内を一団になつて上昇した空気団2
2および揚水は、前記仕切り21によつて四分割
され、揚水筒群の夫々の中に入り、整形された鉋
弾型空気団23となつて上昇する。この揚水筒群
の筒長は、水深により異なるけれども、例えば
10m以上もあつて、最も大きな揚水力を発揮する
部分である。
The operation of the device will be explained with respect to the above embodiment.
First, air pressurized by a compressor (not shown) is supplied through the hose 12 as shown by the arrow 13 in FIG. enter. Since the individual air chambers a, b, c, and d communicate through communication holes 8 and 8 provided in the connecting walls 15 of all the outermost chambers, pressurized air is supplied to all the outermost chambers 7 at the same time. Ru. Therefore, pressurized air is supplied to each vent hole 9.
as shown by arrow 16, air chambers a, b, c,
d, and as the amount of air increases, the water level in that area gradually decreases. When the water surface reaches the ventilation hole 10 (dashed line 17 in the figure), air chambers a, b, c, d
The air inside passes through the ventilation holes 10, 11 as shown by arrows 18, 19, 20, and enters each pumping base cylinder 1, 1a, 1.
b, 1c and enters the rectifier cylinder B. Rectifier tube B
As shown in FIGS. 4 and 5, a partition 21 is inserted into the inside of the upper end to divide the inside into four parts, so that the air mass 2 that rises as a group inside the rectifying cylinder can be divided into four parts.
2 and the pumped water are divided into four parts by the partition 21, enter each of the water pumping cylinder groups, form a shaped plane-shaped air mass 23, and rise. Although the cylinder length of this pumping cylinder group varies depending on the water depth, for example,
It is over 10m long and is the part that exerts the greatest lifting power.

前記のようにして上昇した空気は、必要に応じ
て連結した集約筒Dに到つて再び一団となり、外
界に放出される。
The air that has risen as described above reaches the concentrating cylinder D, which is connected as necessary, where it becomes a group again and is discharged to the outside world.

この考案の揚水筒は例えば第7図のように、ダ
ム又は湖、沼等に設置する。前記のように空気室
へ加圧空気を給送すると、揚水は一旦矢示46の
ように水面に吹き上げられ、付近の水と混合した
後、等温深さの水深まで下つて該部を矢示47,
48のように横方向に拡散する。そこで一旦盛り
上つた水は、拡散により鎖線52のように凹入す
るので、水面の水が矢示53,53のように移動
し、次の揚水吹き上げに対応する。即ち常時水面
の水温が保たれることになる。図中54は浮室、
55は重錘である。
The water pump of this invention is installed in a dam, lake, swamp, etc., as shown in FIG. 7, for example. When pressurized air is supplied to the air chamber as described above, the pumped water is once blown up to the water surface as shown by arrow 46, mixes with the nearby water, and then descends to an isothermal depth and flows through the area as shown by arrow. 47,
48, it spreads laterally. The water that has once risen thereupon becomes depressed as shown by the chain line 52 due to diffusion, so that the water on the water surface moves as shown by the arrows 53, 53, corresponding to the next pumping up of water. In other words, the water surface temperature is maintained at all times. 54 in the figure is a floating chamber;
55 is a weight.

前記のように間欠給気装置の空気室を出た加圧
空気は、整流筒で一団となり、ついで小径の揚水
筒群で分割され、更に集約筒で一団となるので、
当初各空気室を出る際に、多少の前後があつて
も、整流筒を上昇する間に自然に補正され、小径
の揚水筒内へはほぼ同一状態で供給される。従つ
て各揚水筒内を上昇する水量もほぼ均等になる。
仮に均等にならない場合であつても、一斉揚水に
ついては保持される。
As mentioned above, the pressurized air that exits the air chamber of the intermittent air supply device becomes a group in the straightening tube, then divided by a group of small-diameter water pumping tubes, and then further grouped in a concentrator tube.
Even if there is some fluctuation when exiting each air chamber, it is naturally corrected while ascending the straightening tube, and is supplied into the small-diameter water pumping tube in almost the same state. Therefore, the amount of water rising in each pumping cylinder is also approximately equal.
Even if it is not uniform, simultaneous pumping will be maintained.

次に、第8図は揚水筒内を上昇する水量を時間
との関係において示すものである。即ち空気団が
揚水筒の先端から放出される直後が最大となり、
ついで急激に少なくなる。このことの繰り返しと
なる。
Next, FIG. 8 shows the amount of water rising in the water pumping cylinder in relation to time. In other words, the air mass is at its maximum immediately after it is released from the tip of the water pump, and
Then it decreases rapidly. This will be repeated.

(実施例 2) この考案の他の実施例を第5図及び第6図につ
いて説明する。
(Embodiment 2) Another embodiment of this invention will be described with reference to FIGS. 5 and 6.

即ち間欠空気供給装置として、大径の揚水基本
筒24の外周に、外覆筒25を遊嵌し、外覆筒2
5と前記揚水基筒24との間に仕切筒26,27
を所定間隔で遊嵌し、仕切筒26,27の下部と
揚水基筒壁との間、外覆筒25の上端と仕切筒2
7の外壁および仕切筒27の上端と揚水基筒24
の外壁を夫々塞板28,29,30で閉塞してあ
る。前記揚水基筒24の上端は、そのまま延長し
て整流筒Bとし、整流筒Bにフランジ31を介し
て小径の揚水筒群Cを連設することは前記実施例
1と同様である。またフランジ31の内側には、
仕切り21が十字状に嵌着され、整流筒B内を上
昇する空気団32および揚水を揚水筒群Cの各揚
水筒33,33へ均等に分配する。前記仕切り2
1の高さは、整流筒Bの漏斗状部34の高さ程度
であるが、第5図中鎖線図示のように下方へ延長
し、空気団等の分割整流を円滑にすることもでき
る。
That is, as an intermittent air supply device, an outer cover tube 25 is loosely fitted around the outer periphery of a large-diameter pumping basic tube 24, and the outer cover tube 2
5 and the pumping base cylinder 24, there are partition cylinders 26 and 27 between
are loosely fitted at predetermined intervals, and between the lower part of the partition tubes 26 and 27 and the pumping base tube wall, and between the upper end of the outer cover tube 25 and the partition tube 2.
The outer wall of 7 and the upper end of the partition tube 27 and the pumping base tube 24
The outer walls of the cylinders are closed with closing plates 28, 29, and 30, respectively. The upper end of the pumping base cylinder 24 is extended as it is to form a straightening cylinder B, and a small diameter pumping cylinder group C is connected to the straightening cylinder B via a flange 31, as in the first embodiment. Moreover, inside the flange 31,
A partition 21 is fitted in a cross shape, and evenly distributes the air mass 32 rising in the straightening tube B and the pumped water to each of the pumping tubes 33, 33 of the pumping tube group C. Said partition 2
1 is approximately the height of the funnel-shaped portion 34 of the rectifying tube B, but it can also be extended downward as shown by the chain line in FIG. 5 to facilitate divisional rectification of air masses, etc.

前記実施例において、整流筒Bより上方の動作
は実施例1と同一であるが、間欠給気装置が単一
揚水基筒であるから此の点について説明する。先
づコンプレツサー(図示してない)から加圧空気
をホース35を介し、矢示36のように給気口3
7へ供給すると、外覆筒側の空気室38内へ矢示
39のように送入される。この加圧空気は通気孔
40を経て、仕切筒26,27間の空気室38a
に入り、該部の水位を逐次下降する。水位が通気
孔41に達すると、前記空気室38,38a内に
溜つた空気は仕切筒27の通気孔41を矢示43
のように通過して、揚水基筒24の通気孔42か
ら矢示44のように揚水基筒24内へ入り、矢示
45のように整流筒B内を上昇し、仕切り21に
よつて分割された後揚水筒群Cへ分配される。
In the above embodiment, the operation above the rectifier tube B is the same as in the first embodiment, but since the intermittent air supply device is a single pumping base tube, this point will be explained. First, pressurized air is supplied from a compressor (not shown) through a hose 35 to the air supply port 3 as shown by an arrow 36.
7, it is fed into the air chamber 38 on the side of the outer cover cylinder as shown by the arrow 39. This pressurized air passes through the ventilation hole 40 and enters the air chamber 38a between the partition tubes 26 and 27.
The water level in the area is gradually lowered. When the water level reaches the vent hole 41, the air accumulated in the air chambers 38, 38a moves through the vent hole 41 of the partition tube 27 as indicated by the arrow 43.
It passes through the pumping base cylinder 24 as shown in the arrow 44 through the ventilation hole 42 of the pumping base cylinder 24, and goes up inside the rectifying cylinder B as shown by the arrow 45, and is divided by the partition 21. After that, it is distributed to pumping cylinder group C.

(考案の効果) 即ちこの考案によれば、小径の揚水筒群の下端
に大径の整流筒を連設したので、各小径揚水筒内
へほぼ同一状態で空気団が、一つにまとまつて分
割送入され、水も分割されるので、各揚水筒は一
斉に揚水し、拡散効率を向上する効果がある。
(Effect of the invention) In other words, according to this invention, since the large-diameter rectifying tube is connected to the lower end of the group of small-diameter pumping tubes, the air masses are brought together in almost the same state into each small-diameter pumping tube. Since the water is divided and the water is divided, each pumping tube pumps up water at the same time, which has the effect of improving diffusion efficiency.

前記のようにこの考案は、整流筒を介装したの
で、空気団および水を分割して揚水筒群に供給す
ることになり、その量に多少の誤差がでるにして
も、空気と水の給送がほぼ一斉に行われ、各揚水
筒から放出される時機がちぐはぐになるおそれは
ない。
As mentioned above, this idea uses a rectifying tube, so the air mass and water are divided and supplied to the water pumping tube group, and even if there is some error in the amount, the air and water are The feeding is carried out almost simultaneously, and there is no risk that the timing of discharge from each pumping cylinder will be inconsistent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の実施例の一部を省略した正
面図、第2図は同じく一部を切断した正面図、第
3図は同じく一部横断平面図、第4図は同じく揚
水筒の横断平面図、第5図は同じく他の実施例の
断面図、第6図は同じく第5図のイ−イ線の横断
平面図、第7図は同じく設置状態を示す図、第8
図は揚水筒内を上昇する水量と時間との関係を示
すグラフである。 1,1a,1b,1c……揚水基筒、2……外
覆筒、3,4……仕切筒、A……空気室、B……
整流筒、C……揚水筒、D……集約筒。
Fig. 1 is a partially omitted front view of the embodiment of this invention, Fig. 2 is a partially cutaway front view, Fig. 3 is a partially cross-sectional plan view, and Fig. 4 is also a partially cutaway front view. FIG. 5 is a cross-sectional view of another embodiment, FIG. 6 is a cross-sectional view taken along line E--I of FIG. 5, FIG. 7 is a diagram showing the installed state, and FIG.
The figure is a graph showing the relationship between the amount of water rising in the pumping cylinder and time. 1, 1a, 1b, 1c... Pumping base cylinder, 2... Outer cylinder, 3, 4... Partition cylinder, A... Air chamber, B...
Rectifying tube, C... Lifting tube, D... Consolidating tube.

Claims (1)

【実用新案登録請求の範囲】 1 複数の揚水筒に間欠給気装置を備えた揚水装
置において、前記複数の揚水筒の下端と、間欠
給気装置の揚水基筒との間に整流筒を連設して
なる大容量用揚水装置。 2 複数の揚水筒は、独立した揚水筒の複数を並
列一体化したもの、または大口径揚水筒の内部
を複数分割した実用新案登録請求の範囲第1項
記載の大容量用揚水装置。 3 整流筒の長さは、直径と同等以上とした実用
新案登録請求の範囲第1項記載の大容量用揚水
装置。 4 整流筒は、大径円筒の上部内側に小径揚水筒
の数に対応して仕切りを設けある実用新案登録
請求の範囲第1項記載の大容量用揚水装置。 5 間欠吸気装置は、一つの空気室又は複数の空
気室を連通させて構成した実用新案登録請求の
範囲第1項記載の大容量用揚水装置。
[Claims for Utility Model Registration] 1. In a water pumping system in which a plurality of water pumping cylinders are equipped with an intermittent air supply device, a rectifying pipe is connected between the lower ends of the plurality of water pumping cylinders and a pumping base cylinder of the intermittent air supply device. Large-capacity water pumping equipment. 2. The large-capacity water pumping device according to claim 1, wherein the plurality of water pumping tubes are a plurality of independent water pumping tubes integrated in parallel, or a large-diameter water pumping tube whose interior is divided into a plurality of parts. 3. The large-capacity water pumping device according to claim 1 of the utility model registration claim, wherein the length of the rectifier tube is equal to or greater than the diameter. 4. The large-capacity water pumping device according to claim 1, wherein the rectifying cylinder is provided with partitions inside the upper part of the large-diameter cylinder in correspondence with the number of small-diameter pumping cylinders. 5. The large-capacity water pumping device according to claim 1, wherein the intermittent intake device is configured by communicating one air chamber or a plurality of air chambers.
JP8541585U 1985-06-06 1985-06-06 Expired - Lifetime JPH0533760Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8541585U JPH0533760Y2 (en) 1985-06-06 1985-06-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8541585U JPH0533760Y2 (en) 1985-06-06 1985-06-06

Publications (2)

Publication Number Publication Date
JPS61200498U JPS61200498U (en) 1986-12-15
JPH0533760Y2 true JPH0533760Y2 (en) 1993-08-26

Family

ID=30635792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8541585U Expired - Lifetime JPH0533760Y2 (en) 1985-06-06 1985-06-06

Country Status (1)

Country Link
JP (1) JPH0533760Y2 (en)

Also Published As

Publication number Publication date
JPS61200498U (en) 1986-12-15

Similar Documents

Publication Publication Date Title
JPH0328960Y2 (en)
CN1323040C (en) Multifunction water pumping aerator
US3622074A (en) Modular floating water-cooling system
CN102966080B (en) Novel salt spray defoaming facility for thermal power plant and nuclear power plant
MXPA03010499A (en) Floating fine-bubble aeration system.
JPH0533760Y2 (en)
CN102001744B (en) Integral Orbal oxidation ditch combination type aeration system
JPS63315195A (en) Partial water purification method in continuous water area
CN104692591B (en) A kind of ladder oxygen supplement city river processing equipment and its sewage water treatment method
CN104386811B (en) A kind of for the sludge return type triphase separator in anaerobic reactor
CN204281410U (en) A kind of for the sludge return type triphase separator in anaerobic reactor
CN107585952B (en) Sewage treatment device and sewage treatment process thereof
CN109433150A (en) A kind of self-supporting combination tower tray
CN205662366U (en) Filler formula EGSB reactor
CN113501576A (en) Rapid separation deep denitrification treatment device
CN204417219U (en) A kind of deep-water aeration device
JP3551981B2 (en) Large capacity deep water aeration device
JP2676048B2 (en) Combined multistage pumping equipment
CN217828978U (en) Be used for novel deaeration structure of automatic filling machine of blade
CN216073204U (en) Rapid separation deep denitrification treatment device
CN217757044U (en) Quasi-hemispherical aeration head for sludge treatment of aeration tank of sewage treatment plant
JPS63394Y2 (en)
CN217757045U (en) Full-spherical aeration head for sludge treatment of aeration tank of sewage treatment plant
CN210261462U (en) Exempt from sewage treatment system of extensive civil engineering
CN207192926U (en) Novel ecological chinampa