JPH05337351A - Method for dispersing fine particles in liquid - Google Patents

Method for dispersing fine particles in liquid

Info

Publication number
JPH05337351A
JPH05337351A JP10793991A JP10793991A JPH05337351A JP H05337351 A JPH05337351 A JP H05337351A JP 10793991 A JP10793991 A JP 10793991A JP 10793991 A JP10793991 A JP 10793991A JP H05337351 A JPH05337351 A JP H05337351A
Authority
JP
Japan
Prior art keywords
fine particles
substance
particles
zeta potential
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10793991A
Other languages
Japanese (ja)
Inventor
Katsuhiro Ota
勝啓 太田
Akio Saito
昭男 斉藤
Yoichi Takahara
洋一 高原
Hitoshi Oka
齊 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10793991A priority Critical patent/JPH05337351A/en
Publication of JPH05337351A publication Critical patent/JPH05337351A/en
Pending legal-status Critical Current

Links

Landscapes

  • Colloid Chemistry (AREA)

Abstract

PURPOSE:To enhance the dispersibility of fine particles in a solution and to reduce the flocculation thereof by adding a substance capable of controlling the zeta potential of the fine particles in the solution to the solution in specific ratio. CONSTITUTION:The potential energy W between fine particles 1, 2 in a liquid is the sum of Van der Waals attraction VA and electrostatic repulsive force VR due to an electric double layer. Then, the peak of potential is made high to enhance dispersion or to reduce flocculation. Herein, a substance capable of controlling the zeta potential of fine particles in a solution such as alcohol or glycol is added to the solution in addition concn. of 10<-7>-25vol%. Whereupon, the surface potential of fine particles becomes high and electrostatic repulsive force is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明の分散法は、電子材料、磁
性材料、光学材料、セラミックスなど多くの材料の製造
プロセスにおいて、各種金属、合金、セラミックスを含
む無機物または有機物を含む化合物の微粒子、特に超微
粒子を製造する方法に係り、分散の良好な微粒子を製造
するのに好適な技術に関する。
INDUSTRIAL APPLICABILITY The dispersion method of the present invention is used in the production process of many materials such as electronic materials, magnetic materials, optical materials, and ceramics, in which fine particles of compounds containing inorganic or organic substances including various metals, alloys, and ceramics, In particular, the present invention relates to a method for producing ultrafine particles, and relates to a technique suitable for producing fine particles having good dispersion.

【0002】[0002]

【従来の技術】電子材料、磁性材料、光学材料、セラミ
ックスなど多くの材料の製造プロセスにおいて、その原
料調整、粉砕、混練、混合及び成形段階で材料となる微
粒子は、その媒体中に高濃度に懸濁している。これらの
微粒子が、凝集しているか、充分に分散しているかによ
り生成する材料の性能に大きく影響を与える。最近では
1μm以下の超微粒子を用いることへの要求が高まって
おり、スラリ−中の凝集粒子を皆無にするような精度の
高い制御が必要な場合がある。
2. Description of the Related Art In the manufacturing process of many materials such as electronic materials, magnetic materials, optical materials, and ceramics, the fine particles used as the raw material adjusting, crushing, kneading, mixing, and molding steps have a high concentration in the medium. It is suspended. Whether these fine particles are agglomerated or sufficiently dispersed has a great influence on the performance of the resulting material. Recently, there has been an increasing demand for using ultrafine particles of 1 μm or less, and there are cases where highly accurate control is required to eliminate aggregated particles in the slurry.

【0003】この対策として、ドデシル硫酸ナトリウム
等のイオン性界面活性剤またはポリエチレンオキシド等
高分子添加剤の添加などが行なわれる。これらを用いて
微粒子を分散する手段としては、分散・乳化系の化学
(1979年)第269頁から第273頁で述べられて
いる。
As a countermeasure against this, an ionic surfactant such as sodium dodecyl sulfate or a polymer additive such as polyethylene oxide is added. The means for dispersing fine particles using these is described in Chemistry of Dispersion / Emulsion Systems (1979), pages 269 to 273.

【0004】また超音波等による物理エネルギ−で分散
する方法もある。この分散する手段として、超音波技術
便覧(1960年)第1060頁から第1070頁で述
べられている。
There is also a method of dispersing with physical energy such as ultrasonic waves. The means for dispersing is described in Ultrasonic Technical Handbook (1960), pages 1060 to 1070.

【0005】[0005]

【発明が解決しようとする課題】イオン性界面活性剤を
添加して分散させる従来法では、液中のイオン濃度が高
くなると粒子が微小化するにつれて凝集しやすくなる。
そのため従来法では1μm以下の超微粒子の分散には不
適当と考えられる。
In the conventional method in which an ionic surfactant is added and dispersed, as the concentration of ions in the liquid increases, the particles tend to agglomerate as they become smaller.
Therefore, it is considered that the conventional method is not suitable for dispersing ultrafine particles of 1 μm or less.

【0006】また高分子添加剤を添加して分散させる従
来法では、高分子添加剤は分散剤として働く反面添加濃
度によって凝集剤にもなり、分散剤として最適な添加濃
度の調整が難しい。そのため従来法では1μm以下の超
微粒子の分散には不適当と考えられる。
In the conventional method of adding a polymer additive to disperse the polymer additive, the polymer additive acts as a dispersant, but also acts as a coagulant depending on the concentration added, and it is difficult to adjust the optimum addition concentration of the dispersant. Therefore, it is considered that the conventional method is not suitable for dispersing ultrafine particles of 1 μm or less.

【0007】超音波等物理エネルギ−で粒子を分散する
従来法では、粒子が微小化するにつれて、その表面積が
小さくなるので、1個当たりにかかる物理エネルギ−は
小さい。さらに長時間の超音波照射を行なうと逆に粒子
が凝集してしまう。そのため従来法では粒子を分散しに
くいと考えられる。
In the conventional method of dispersing particles with physical energy such as ultrasonic waves, the surface area of the particles becomes smaller as the particles become smaller, so that the physical energy required for each particle is small. On the contrary, when ultrasonic waves are irradiated for a long time, the particles conversely aggregate. Therefore, it is considered that it is difficult to disperse the particles by the conventional method.

【0008】本発明の目的は、上記問題を解決するため
に、各種金属、合金、セラミックスを含む無機物または
有機物を含む化合物の超微粒子の分散を良好でかつ凝集
の少ない微粒子を得る技術を提案することにある。
In order to solve the above problems, an object of the present invention is to propose a technique for obtaining fine particles with good dispersion of ultrafine particles of compounds containing various metals, alloys, inorganic materials including ceramics or compounds containing organic materials and with little aggregation. Especially.

【0009】[0009]

【課題を解決するための手段】本発明は、溶液中にある
微粒子のゼ−タ電位(表面電位)を制御できる物質を、
該溶液中に添加することにより、溶液中にある前記微粒
子の分散の向上あるいは凝集を低減する液中微粒子分散
法に関する。
The present invention provides a substance capable of controlling the zeta potential (surface potential) of fine particles in a solution,
The present invention relates to a method for dispersing fine particles in a liquid, which improves the dispersion or reduces aggregation of the fine particles in the solution when added to the solution.

【0010】図1に、本発明の基本概念図を示す。図1
(a)は、微粒子−微粒子間の距離(Å)とポテンシャ
ルエネルギ−(W)の関係を示したものであり、図1
(b)は、微粒子1と微粒子2との間の表面電荷3によ
り形成される電気二重層による静電気反発力、図1
(c)は、微粒子1と微粒子2との間のvan der
Waals力による引力を示す概念図である。図1に
示すように、液中では微粒子1と微粒子2との間のポテ
ンシャルエネルギ−Wは、van der Waals
力による引力(VA)と電気二重層による静電気反発力
(VR)の2つのポテンシャルの和(W=VA+VR)で
あり、このポテンシャルの山を超えることにより微粒子
同士が凝集すると考えられる。そこで、本発明は、この
ポテンシャルの山を高くして、分散の向上あるいは凝集
を低減させるために微粒子の表面電位(ゼ−タ電位)を
大きくし静電気反発力を高めることに着目してなされた
ものである。 図2に懸濁させた微粒子の静置後の粒子
濃度の時間変化と微粒子のゼ−タ電位の関係を示す。図
2において、4はフッ化水素酸でエッチング処理したシ
リコン(Si)粒子(容積比でHF:H2O=1:99
のフッ化水素酸に浸漬後フィルタで捕集した微粒子。以
降ベアSi粒子という。)5は処理しないSi粒子、6
はFe粒子である。粒子の種類によってゼ−タ電位が異
なっており、また同じSi粒子でも表面状態によりゼ−
タ電位の値が異なり、微粒子の粒子濃度の時間変化が異
なっている。(粒子濃度の時間変化の測定は、後記の実
施例に示した。) したがって、ゼ−タ電位を制御する
ことによって微粒子の分散の向上あるいは凝集を低減す
ることができると考えられる。
FIG. 1 shows a basic conceptual diagram of the present invention. Figure 1
(A) shows the relationship between the distance (Å) between the particles and the potential energy- (W).
(B) is the electrostatic repulsion force due to the electric double layer formed by the surface charge 3 between the fine particles 1 and the fine particles 2, FIG.
(C) is a van der between the fine particles 1 and the fine particles 2.
It is a conceptual diagram which shows the attractive force by Waals force. As shown in FIG. 1, the potential energy −W between the fine particles 1 and the fine particles 2 in the liquid is van der Waals.
It is the sum (W = VA + VR) of two potentials, the attractive force (VA) due to the force and the electrostatic repulsive force (VR) due to the electric double layer, and it is considered that the particles are aggregated when the potential peaks are exceeded. Therefore, the present invention has been made paying attention to increasing the peak of this potential and increasing the surface potential (zeta potential) of the fine particles to improve the electrostatic repulsion force in order to improve dispersion or reduce aggregation. It is a thing. FIG. 2 shows the relationship between the time change of the particle concentration of the suspended fine particles after standing and the zeta potential of the fine particles. In FIG. 2, 4 is silicon (Si) particles etched by hydrofluoric acid (volume ratio of HF: H 2 O = 1: 99).
Fine particles collected by a filter after soaking in the hydrofluoric acid. Hereinafter referred to as bare Si particles. ) 5 is untreated Si particles, 6
Are Fe particles. The zeta potential differs depending on the type of particles, and even the same Si particles have a zeta potential depending on the surface state.
The value of the electric potential is different, and the time variation of the particle concentration of fine particles is different. (Measurement of change in particle concentration over time is shown in Examples described later.) Therefore, it is considered that the dispersion of fine particles or the aggregation can be reduced by controlling the zeta potential.

【0011】また、微粒子のゼ−タ電位は、一般的には
負であるが、まれにアルミナ粒子同士の様に両者が正で
ある場合もあり得る。ゼ−タ電位を制御するとは、その
絶対値を大きくすることを意味する。
Further, the zeta potential of the fine particles is generally negative, but in rare cases, both particles may be positive like alumina particles. Controlling the zeta potential means increasing its absolute value.

【0012】本発明は、液中に特定の物質を添加するこ
とにより微粒子のゼ−タ電位を制御できるという知見に
基づいてなされたものである。
The present invention was made based on the finding that the zeta potential of fine particles can be controlled by adding a specific substance to a liquid.

【0013】ここで、ゼ−タ電位と滑り面の関係につい
て簡単に述べる。
Here, the relationship between the zeta potential and the sliding surface will be briefly described.

【0014】微粒子が溶液中を移動する際、微粒子の周
囲には液体分子が数層吸着して移動していくものと考え
られる。このときの数層の液体分子とその周りの液体と
の境界面を「滑り面」といい、この面の電位が上記した
ように微粒子の分散及び凝集に関係している。(滑り面
については、例えば北原文雄著「分散・乳化系の化学」
(工学図書1979年)第102頁に記されている。)
一方ゼ−タ電位は電気泳動法により測定されるため、ま
さにこの滑り面の電位を測定していることになる。(ゼ
−タ電位測定法の詳細は後記の実施例に示した。)本発
明ではゼ−タ電位、すなわち滑り面の電位を制御できる
物質として、アルコ−ル、グリコ−ル、アミン、アミノ
アルコ−ル、アルデヒド、有機酸、エステル、ケトン及
び非イオン界面活性剤等の物質を液中に添加することが
有効であることを見出した。これらの物質は、その分子
内の電荷分布が一様ではなく、ある部分はやや正に、あ
る部分はやや負になっており、全体としてゼロとなって
いる。すなわち、これらの物質は、双極子モ−メントを
持っている。そして、これらの物質により微粒子等のゼ
−タ電位が変化するのは、この電荷分布の不均一性が原
因であると考えられる。例えば、種々のアルコ−ルを用
いた場合ゼ−タ電位の値は異なっており、これは以下の
ように分子内の電荷分布の不均一性により半定量的に説
明できる。
It is considered that when the fine particles move in the solution, several layers of liquid molecules are adsorbed and moved around the fine particles. At this time, the boundary surface between several layers of liquid molecules and the liquid around it is called a “sliding surface”, and the potential on this surface is related to the dispersion and aggregation of the fine particles as described above. (For the sliding surface, for example, Fumio Kitahara, "Chemistry of Dispersion / Emulsion System"
(Engineering Book 1979), page 102. )
On the other hand, since the zeta potential is measured by the electrophoresis method, the potential of this sliding surface is measured exactly. (Details of the method for measuring the zeta potential are shown in the examples described later.) In the present invention, alcohol, glycol, amine, amino alcohol is used as a substance capable of controlling the zeta potential, that is, the potential of the sliding surface. It has been found that it is effective to add substances such as phenol, aldehyde, organic acid, ester, ketone and nonionic surfactant to the liquid. In these substances, the charge distribution in the molecule is not uniform, some parts are slightly positive, some parts are slightly negative, and the total is zero. That is, these materials have dipole moments. It is considered that the non-uniformity of the charge distribution is the reason why the zeta potential of the fine particles or the like changes due to these substances. For example, when various alcohols are used, the value of the zeta potential is different, which can be explained semi-quantitatively by the heterogeneity of the charge distribution in the molecule as follows.

【0015】図3及び図4は、微粒子表面に吸着したア
ルコ−ル分子について、量子力学に基づく理論計算によ
り求めたアルコ−ルの分子内の電荷分布並びにゼ−タ電
位を示す。各アルコ−ルの微粒子1への吸着状態は図3
に示す場合と図4に示す場合が考えられる。図3に示す
場合、滑り面の位置を微粒子1の表面より3〜4番目の
原子とすれば、その位置付近にある炭素原子の電荷の絶
対値が大きい程、ゼ−タ電位の絶対値は大きくなってい
ることが分かる。すなわち、アルコ−ルが吸着した際、
吸着端より3〜4番目の原子付近に存在する局所的な電
荷の分布がゼ−タ電位の値に影響を与えると考えること
ができる。
FIG. 3 and FIG. 4 show the charge distribution in the alcohol molecule and the zeta potential of the alcohol molecule adsorbed on the surface of the fine particles, which is obtained by theoretical calculation based on quantum mechanics. The adsorption state of each alcohol on the fine particles 1 is shown in FIG.
The case shown in FIG. 4 and the case shown in FIG. 4 can be considered. In the case shown in FIG. 3, assuming that the position of the sliding surface is the 3rd to 4th atoms from the surface of the fine particles 1, the larger the absolute value of the electric charge of the carbon atom near that position, the larger the absolute value of the zeta potential becomes. You can see that it is getting bigger. That is, when the alcohol is adsorbed,
It can be considered that the local distribution of charges existing in the vicinity of the 3rd to 4th atoms from the adsorption end affects the value of the zeta potential.

【0016】一方図4に示した場合、大きな負電荷を持
つ酸素原子の位置と滑り面との関係が異なっており、酸
素原子が滑り面に近い程ゼ−タ電位の絶対値は大きくな
っていると考えることができる。したがって、いずれの
場合もゼ−タ電位の大きさはアルコ−ル分子内の電荷分
布の不均一性によって決まるものと推論される。
On the other hand, in the case shown in FIG. 4, the relationship between the position of an oxygen atom having a large negative charge and the sliding surface is different, and the closer the oxygen atom is to the sliding surface, the larger the absolute value of the zeta potential becomes. Can be considered Therefore, in each case, it is inferred that the magnitude of the zeta potential depends on the nonuniformity of the charge distribution in the alcohol molecule.

【0017】ただし、ゼ−タ電位を制御できる物質は微
粒子に吸着することが不可欠であり、1分子中に−O
H、−CHO、−COOH及び−NH2等の親水基と炭
化水素基からなる疎水基を持つ物質である点が共通点で
あり、このことより微粒子への吸着が起こるものと考え
られる。
However, it is indispensable that a substance capable of controlling the zeta potential is adsorbed on the fine particles, and -O is present in one molecule.
It is a common point that they are substances having a hydrophilic group such as H, —CHO, —COOH, and —NH 2 and a hydrophobic group composed of a hydrocarbon group, and this is considered to cause adsorption to fine particles.

【0018】また、ゼ−タ電位を制御できる上記物質
は、いずれもイオン解離しにくい物質である。イオン解
離しやすい物質を液中に添加する場合には、液中のイオ
ン濃度が高くなり微粒子の凝集が起こりやすくなる。す
なわちゼ−タ電位を大きくしても微粒子の分散効果が充
分に現われない場合がある。したがって、イオン解離し
にくい物質を用いることは本発明を実現する上で非常に
好ましい。
All of the above substances that can control the zeta potential are substances that are difficult to ion dissociate. When a substance that easily dissociates into ions is added to the liquid, the concentration of ions in the liquid becomes high, and the fine particles easily aggregate. That is, even if the zeta potential is increased, the effect of dispersing the fine particles may not be sufficiently exhibited. Therefore, it is very preferable to use a substance that is difficult to dissociate into ions in order to realize the present invention.

【0019】したがって、イオン解離しにくく、1分子
中に親水基と疎水基を有する物質がゼ−タ電位の制御に
有効であることも理解できる。ただし、分子中の電荷分
布と滑り面との兼ね合いでゼ−タ電位制御効果は異なっ
てくる。すなわち、微粒子への物質の吸着端から2〜6
個目の原子のいずれか、あるいは複数個の原子の電荷分
布が負である物質が有効であることが容易に理解でき
る。具体的には、それらの原子が酸素原子、ハロゲン原
子及びチッ素原子等の電気陰性度の大きなものである
か、それらに結合する原子団が電子放出基あるいは電気
陰性度の大きな原子である場合である。またさらに複数
種の物質を組合せることも有効である。
Therefore, it can be understood that a substance which hardly dissociates into ions and has a hydrophilic group and a hydrophobic group in one molecule is effective for controlling the zeta potential. However, the effect of controlling the zeta potential differs depending on the balance between the charge distribution in the molecule and the slip surface. That is, 2 to 6 from the adsorption end of the substance to the fine particles
It can be easily understood that a substance in which the charge distribution of any one of the atoms or a plurality of atoms is negative is effective. Specifically, when those atoms have a large electronegativity such as oxygen atom, halogen atom and nitrogen atom, or the atomic group bonded to them is an electron emitting group or an atom having a large electronegativity. Is. It is also effective to combine a plurality of types of substances.

【0020】図5は、分子長の異なる2種類以上の非イ
オン界面活性剤等の分子が微粒子の表面に吸着した状態
の概念図である。図5におけるように、微粒子1の表面
に分子長に異なるCH3−R−R−R−OHとCH3−R
−R−OH(Rが、−(CH2)n−のときはアルコ−
ル、Rが−(CH2CH2O)m−、または−(CH2)n
−と−(CH2CH2O)m−の組合せであるときは非イ
オン界面活性剤である。n、mは5〜20程度の整数。)
が吸着した場合には、密集して吸着した短いほうの分子
の分子末端が、疑似的粒子表面となり、すなわち微粒子
の滑り面は、短いほうの分子の末端の外側にシフトす
る。そして、長いほうの分子の親水基(電気陰性度の大
きい酸素原子を含む。)がちょうど滑り面付近に位置す
ることになるので、ゼ−タ電位を制御できる有効な方法
となる。
FIG. 5 is a conceptual diagram showing a state in which two or more kinds of nonionic surfactants or the like having different molecular lengths are adsorbed on the surface of fine particles. As shown in FIG. 5, CH 3 —R—R—R—OH and CH 3 —R having different molecular lengths are formed on the surface of the fine particles 1.
-R-OH (R is, - (CH 2) when n- Arco -
Le, R is - (CH 2 CH 2 O) m-, or - (CH 2) n
- and - (CH 2 CH 2 O) is when a m- combination is a nonionic surfactant. n and m are integers of about 5 to 20. )
When is adsorbed, the molecular ends of the shorter molecules that are densely adsorbed become pseudo particle surfaces, that is, the sliding surfaces of the fine particles shift to the outside of the ends of the shorter molecules. The hydrophilic group of the longer molecule (including an oxygen atom having a high electronegativity) is located just near the sliding surface, which is an effective method for controlling the zeta potential.

【0021】図6(a)は、非イオン界面活性剤と比較
的分子鎖の短いアルコ−ルを組合せて添加された場合
に、これらが微粒子1の表面に吸着した状態を示す概念
図である。また、図6(b)と図6(c)は、非イオン
界面活性剤等とアミノアルコ−ルを組合せて添加された
場合に、これらが微粒子1の表面に吸着した状態を示す
概念図である。図6(a)〜図6(c)において、Rは
図4の場合と同じである。 このように、非イオン界面
活性剤とアルコ−ルまたはアミノアルコ−ルを組合せて
用いる場合には、非イオン界面活性剤等の疎水基の部分
に低分子量のアルコ−ルやアミノアルコ−ルが吸着する
ためにゼ−タ電位変化が起こると考えられる。そして、
微粒子の種類によっては、吸着量が多くなるため、ゼ−
タ電位の変化もより大きくなる。したがって、微粒子の
分散効果も大きくなる。
FIG. 6 (a) is a conceptual diagram showing a state in which a nonionic surfactant and an alcohol having a relatively short molecular chain are adsorbed on the surface of the fine particles 1 when they are added in combination. .. 6 (b) and 6 (c) are conceptual diagrams showing a state in which, when a nonionic surfactant or the like and amino alcohol are added in combination, they are adsorbed on the surface of the fine particles 1. is there. 6 (a) to 6 (c), R is the same as in FIG. Thus, when a nonionic surfactant is used in combination with alcohol or amino alcohol, a low molecular weight alcohol or amino alcohol is added to the hydrophobic group portion of the nonionic surfactant or the like. It is considered that zeta potential changes due to adsorption. And
Depending on the type of fine particles, the amount of adsorption increases, so
The change in the data potential also becomes larger. Therefore, the effect of dispersing the fine particles is increased.

【0022】非イオン界面活性剤等と組合せることによ
り分散効果が大きくなるものは、上記の他グリコ−ル、
アミン、アルデヒド、有機酸、エステル及びケトンなど
1分子中に親水基と疎水基を持つ物質である。
In addition to the above-mentioned glycols, those having a greater dispersion effect when combined with a nonionic surfactant or the like are
It is a substance having a hydrophilic group and a hydrophobic group in one molecule such as amine, aldehyde, organic acid, ester and ketone.

【0023】上記のような物質の添加濃度は、物質の種
類にもよるが、一般的に、溶液に対して10~7〜25v
ol%である。10~7vol%以上の添加で効果があ
り、25vol%より多くの添加は意味がない。
The addition concentration of the above-mentioned substance depends on the kind of the substance, but is generally 10 to 7 to 25 v with respect to the solution.
ol%. Addition of 10 to 7 vol% or more is effective, and addition of more than 25 vol% is meaningless.

【0024】最適添加濃度の範囲は、アルコ−ルの場合
で0.1〜2.5vol%、アミノアルコ−ルの場合で
10~7〜10~1vol%、有機酸の場合で0.001〜
0.1vol%、アルデヒドの場合で0.1〜1.0v
ol%,ケトンの場合で0.1〜2.0vol%などで
ある。
The optimum addition concentration range is 0.1 to 2.5 vol% in the case of alcohol, 10 to 7 to 10 to 1 vol% in the case of amino alcohol, and 0.001 in the case of organic acid. ~
0.1vol%, 0.1-1.0v in case of aldehyde
ol%, and in the case of ketone, it is 0.1 to 2.0 vol%.

【0025】[0025]

【作用】本発明によれば、ゼ−タ電位を制御できる物質
を溶液に添加することにより、溶液中の微粒子のゼ−タ
電位の絶対値を大きくなり、液中の微粒子と微粒子との
間の静電気反発力が増大する。その結果、微粒子間のポ
テンシャルエネルギ−が高くなり、微粒子同士の分散の
向上あるいは凝集を低減することが可能となる。
According to the present invention, by adding a substance capable of controlling the zeta potential to a solution, the absolute value of the zeta potential of the fine particles in the solution is increased, and the absolute value of the zeta potential between the fine particles in the solution is increased. The electrostatic repulsion force of increases. As a result, the potential energy between the fine particles becomes high, and it becomes possible to improve the dispersion of the fine particles or reduce the agglomeration.

【0026】また、同時に微粒子を懸濁させた容器壁面
への付着を防止できるという効果もある。
At the same time, there is an effect that it is possible to prevent the fine particles from being adhered to the wall surface of the container.

【0027】[0027]

【実施例】先ず初めにゼ−タ電位測定法について述べ
る。
EXAMPLES First, a method for measuring zeta potential will be described.

【0028】ゼ−タ電位は通常電気泳動法により求める
ことができる。電気泳動とは、液中に電場をかけたとき
表面電荷を持つ微粒子が移動する現象をいい、その微粒
子の移動速度を測定することによって、移動速度と比例
関係にある微粒子のゼ−タ電位を求めることができる。
本発明では、この原理に基づいたPen Kem製LA
SER ZEE TM Model 501により、微
粒子のゼ−タ電位の測定を行なった。
The zeta potential can be usually determined by electrophoresis. Electrophoresis is a phenomenon in which fine particles having a surface charge move when an electric field is applied to the liquid.By measuring the moving speed of the fine particles, the zeta potential of the fine particles, which is proportional to the moving speed, can be determined. You can ask.
In the present invention, LA manufactured by Pen Kem based on this principle is used.
The ZERO potential of the fine particles was measured with a SER ZEE ™ Model 501.

【0029】本発明の効果を確認するために、ポリスチ
レン粒子、Fe粒子、Si粒子及びSiO2粒子を用い
た。これらの粒子を用いたのは、単に粒子径の揃ったも
のが容易に入手できるためであり、本発明の効果はもち
ろんこれらの微粒子に限定されるものではない。
In order to confirm the effect of the present invention, polystyrene particles, Fe particles, Si particles and SiO 2 particles were used. These particles are used simply because particles having a uniform particle size are easily available, and the effect of the present invention is not limited to these fine particles.

【0030】ポリスチレン粒子は、The Dow C
hemical Company製の粒子径1〜0.0
38μmのものを用いた。Fe粒子、Si粒子及びSi
2粒子は高純度化学製の粒子径1μmのものを用い
た。Si粒子については前処理しない場合と、容積比
が、HF:H2O=1:99のフッ化水素酸に1分間エ
ッチング処理した後実験に用いたベアSi粒子の場合と
がある。
The polystyrene particles are The Dow C
Particle size 1-0.0 made by the chemical company
The one having a size of 38 μm was used. Fe particles, Si particles and Si
O 2 particles having a particle diameter of 1 μm manufactured by Kojundo Chemical Co., Ltd. were used. There is a case where Si particles are not pretreated, and a case where bare Si particles used in the experiment after being etched in hydrofluoric acid having a volume ratio of HF: H 2 O = 1: 99 for 1 minute.

【0031】ゼ−タ電位の値は粒子の粒子径に依存しな
いと考えられ、上記粒子径での測定デ−タは0.05μ
m程度の超微粒子においてもそのまま用いることができ
る。
It is considered that the value of the zeta potential does not depend on the particle size of the particles, and the measured data at the above particle size is 0.05 μm.
Even ultrafine particles of about m can be used as they are.

【0032】(実施例1)イオン解離しにくく、親水基
と疎水基を持つ物質のゼ−タ電位制御効果を示す。アル
コ−ル、アルデヒド、有機酸、エステル及びケトン等広
範囲な物質にゼ−タ電位制御効果が認められた。このう
ち添加濃度とゼ−タ電位制御効果の一例として、フッ化
水素酸でエッチング処理したベアSi粒子にエタノ−ル
を添加した場合について述べる。
Example 1 The effect of controlling the zeta potential of a substance having a hydrophilic group and a hydrophobic group, which is difficult to dissociate into ions, is shown. A wide range of substances such as alcohols, aldehydes, organic acids, esters and ketones were found to have a zeta potential control effect. As an example of the added concentration and the effect of controlling the zeta potential, a case where ethanol is added to bare Si particles etched with hydrofluoric acid will be described.

【0033】図7にエタノ−ルの添加濃度とベアSi粒
子のゼ−タ電位変化の関係を示す。エタノ−ル添加前の
ベアSi粒子は−23.2mVであったが、0.5vo
l%のエタノ−ルの添加によりSi粒子のゼ−タ電位を
−47.3mVまで制御することができた。(図7には
記載していないが25vol%(20wt%)程度の添
加まで効果があった。)ゼ−タ電位の値が極小となる添
加濃度は物質によって異なるが、エタノ−ル以外の物質
についても図7と同様の結果が得られた。表1及び表2
に、各種物質についてゼ−タ電位の値が極小となるとき
の添加濃度とそのときのゼ−タ電位の値を示した。
FIG. 7 shows the relationship between the concentration of ethanol added and the change in the zeta potential of bare Si particles. Bare Si particles before the addition of ethanol were -33.2 mV, but 0.5 vo
It was possible to control the zeta potential of the Si particles to -47.3 mV by adding 1% of ethanol. (Although not shown in FIG. 7, it was effective up to the addition of about 25 vol% (20 wt%).) The addition concentration at which the value of the zeta potential becomes minimum differs depending on the substance, but substances other than ethanol The same result as in FIG. 7 was obtained. Table 1 and Table 2
Table 1 shows the addition concentration when the value of the zeta potential becomes minimum for various substances and the value of the zeta potential at that time.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】(実施例2)アミノアルコ−ルに関して
は、より少ない添加濃度でより大きな効果が得られた。
各種アミノアルコ−ルを添加したときのゼ−タ電位の変
化を表3に示す。
(Example 2) With respect to amino alcohol, a larger effect was obtained with a smaller addition concentration.
Table 3 shows the change in zeta potential when various amino alcohols were added.

【0037】[0037]

【表3】 [Table 3]

【0038】また、2−アミノエタノ−ルを添加した際
の添加濃度と1μmのポリスチレン粒子のゼ−タ電位の
関係を図8に、またモノイソプロパノ−ルアミンを添加
した際の添加濃度とゼ−タ電位の関係を図9に示す。ア
ミノアルコ−ルの場合には実施例1の物質のようにゼ−
タ電位の値が極小となることは少なく、図8及び図9に
示すように添加すればする程ゼ−タ電位の絶対値は大き
くなった。
FIG. 8 shows the relationship between the addition concentration when 2-aminoethanol was added and the zeta potential of 1 μm polystyrene particles, and the addition concentration and the zeta potential when monoisopropanolamine was added. FIG. 9 shows the relationship of the cell potential. In the case of amino alcohol, the same substance as in Example 1 is used.
The value of the zeta potential rarely becomes minimum, and as shown in FIGS. 8 and 9, the absolute value of the zeta potential increased as the content was added.

【0039】そして、アミノアルコ−ルは10~7mol
/l(3×10~6vol%)以上の添加でゼ−タ電位制
御に充分な効果が見られた。
Amino alcohol is 10 to 7 mol.
Addition of 1 / l (3 × 10 to 6 vol%) or more showed a sufficient effect for controlling the zeta potential.

【0040】(実施例3)表4にはハロゲン原子を含む
アルコ−ルを添加した際のゼ−タ電位の変化を示した。
Example 3 Table 4 shows changes in the zeta potential when an alcohol containing a halogen atom was added.

【0041】[0041]

【表4】 [Table 4]

【0042】ヘキサフルオロ−2−プロパノ−ルや1
H,1H−ペンタフルオロプロパノ−ルについては、ゼ
−タ電位を大きく変化させる効果のあることが分かっ
た。いずれもハロゲン原子を含まない物質よりも効果が
大きいことが分かる。
Hexafluoro-2-propanol and 1
It was found that H, 1H-pentafluoropropanol has an effect of greatly changing the zeta potential. It can be seen that both are more effective than the substances containing no halogen atom.

【0043】(実施例4)表5にはチッ素原子を含む物
質を添加した際のゼ−タ電位の変化を示した。
Example 4 Table 5 shows the change in zeta potential when a substance containing a nitrogen atom was added.

【0044】[0044]

【表5】 [Table 5]

【0045】ホルムアミドやN−メチルホルムアミドに
ついては、ゼ−タ電位を大きく変化させる効果のあるこ
とが分かった。いずれもチッ素原子を含まない物質より
も効果が大きいことが分かる。
It was found that formamide and N-methylformamide have the effect of greatly changing the zeta potential. It can be seen that both are more effective than the substance containing no nitrogen atom.

【0046】(実施例5) (R:−(CH2)n−,nは5〜20程度の整数。)で
示される非イオン界面活性剤を合成し、ゼ−タ電位制御
効果について検討した。その結果を表6に示す。
(Example 5) (R :-( CH 2) n-, n synthesizes a nonionic surfactant represented by an integer) of about 5 to 20, Ze -. Were studied data potential control effect. The results are shown in Table 6.

【0047】[0047]

【表6】 [Table 6]

【0048】多くの粒子に対して効果のあることが分か
った。類似の構造を持つ界面活性剤についても同様の効
果が期待できる。
It has been found to be effective for many particles. Similar effects can be expected for surfactants having a similar structure.

【0049】(実施例6)分子長の異なる2種類の非イ
オン界面活性剤I:CH3(CH210CH2O(CH2
2O)12H及びII:CH3(CH214CH2O(CH2
CH2O)14Hを合成し、これらについてゼ−タ電位制
御効果について検討した。その結果を表7に示す。
(Example 6) Two kinds of nonionic surfactants I: CH 3 (CH 2 ) 10 CH 2 O (CH 2 C) having different molecular lengths
H 2 O) 12 H and II: CH 3 (CH 2 ) 14 CH 2 O (CH 2
CH 2 O) 14 H was synthesized, and the effect of controlling the zeta potential was investigated for these. The results are shown in Table 7.

【0050】[0050]

【表7】 [Table 7]

【0051】多くの粒子に対して効果のあることが分か
った。類似の構造を持つ界面活性剤の組合せにも同様の
効果が期待できる。
It has been found to be effective for many particles. The same effect can be expected with a combination of surfactants having a similar structure.

【0052】(実施例7)非イオン界面活性剤CH
3(CH210CH2O(CH2CH2O)12Hとアルコ−
ルを組合せて用いた例を表8に示す。
Example 7 Nonionic Surfactant CH
3 (CH 2 ) 10 CH 2 O (CH 2 CH 2 O) 12 H and alcohol
Table 8 shows an example in which the two are used in combination.

【0053】[0053]

【表8】 [Table 8]

【0054】特に、アルコ−ルだけでは効果の小さいF
e粒子、Si粒子及びSiO2粒子等にも大きな効果の
あることが分かった。もちろんエタノ−ル以外のアルコ
−ルにも同様の効果が期待できる。
In particular, the effect of F is small when only alcohol is used.
It was found that e particles, Si particles, SiO 2 particles, etc. also have a great effect. Of course, similar effects can be expected for alcohols other than ethanol.

【0055】(実施例8)合成した非イオン界面活性剤
CH3(CH210CH2O(CH2CH2O)12Hとアミ
ノアルコ−ルを組合せた例を表9に示す。
Example 8 Table 9 shows an example of a combination of the synthesized nonionic surfactant CH 3 (CH 2 ) 10 CH 2 O (CH 2 CH 2 O) 12 H and amino alcohol.

【0056】[0056]

【表9】 [Table 9]

【0057】特に、アミノアルコ−ルだけでは効果の小
さいFe粒子、Si粒子及びSiO2粒子等にも大きな
効果のあることが分かった。
In particular, it was found that Fe particles, Si particles, SiO 2 particles, etc., which have a small effect only with amino alcohol, have a great effect.

【0058】(実施例9)本発明による微粒子の分散効
果を以下の手順により確認した。図10に示すように、
0.038μmのポリスチレン粒子を高さ30cmの円
筒型ガラス管(沈降管)内の超純水中に入れて懸濁液を
作り、(粒子濃度は5×1011個/cm3に調整した。)
振り混ぜてから静置した。静置時間と共に懸濁液の粒子
濃度が減少していくことが分かった。なお、ポリスチレ
ン粒子の粒子濃度の時間当りの変化は分光光度計を用い
た光の透過率より測定した。光の透過率は分光光度計か
ら照射される主波長420nmの光を用いて、超純水の
透過率を100として、不透明体を0とする比較値で示
したものである。(透過率による分散評価法としては、
例えば北原文雄著「分散・乳化系の化学」(工学図書1
979年)第129頁に記されている。)2−アミノエ
タノ−ルを3×10~5vol%加えた後、同様にして沈
降管内のポリスチレン粒子の粒子濃度の時間ごとの変化
を測定した。その結果を図11の14に示す。ほとんど
粒子濃度に変化は見られなかった。
Example 9 The dispersion effect of fine particles according to the present invention was confirmed by the following procedure. As shown in FIG.
0.038 μm polystyrene particles were put into ultrapure water in a cylindrical glass tube (sedimentation tube) having a height of 30 cm to form a suspension, and the particle concentration was adjusted to 5 × 10 11 particles / cm 3 . )
Shake it and let it stand. It was found that the particle concentration of the suspension decreased with the standing time. The change over time in the particle concentration of polystyrene particles was measured from the light transmittance using a spectrophotometer. The light transmittance is shown as a comparative value when the light having a main wavelength of 420 nm emitted from the spectrophotometer is used, the transmittance of ultrapure water is set to 100, and the opaque material is set to 0. (As a dispersion evaluation method based on transmittance,
For example, Fumio Kitahara, "Chemistry of Dispersion / Emulsion Systems" (Engineering Book 1
979) p.129. ) After adding 3 × 10 to 5 vol% of 2-aminoethanol, the change of the particle concentration of polystyrene particles in the sedimentation tube with time was measured in the same manner. The result is shown at 14 in FIG. Almost no change was seen in particle concentration.

【0059】また、2−アミノエタノ−ルの代わりにエ
タノ−ルを添加した場合についても粒子濃度があまり変
化しなかった。
Also, the particle concentration did not change much when ethanol was added instead of 2-aminoethanol.

【0060】いずれの場合もポリスチレン粒子の分散性
が良くなるので、添加剤を加えない場合に比べて清澄時
間が長くなることは明らかである。
In each case, the dispersibility of the polystyrene particles is improved, and it is clear that the fining time is longer than that in the case where no additive is added.

【0061】(実施例10)次に0.038μmのポリ
スチレン粒子を用いた同様の分散確認実験を塩酸を加え
て容器の水素イオン濃度を調整して行なった。pH3で
の静置時間と粒子濃度の関係は超純水中の結果と同じで
図11の13と同様であった。これを図12の13に示
す。すなわち静置時間と共に粒子濃度は減少した。しか
し、図12の15に示すように、2−アミノエタノ−ル
を3×10~5vol%加えることによりほとんど粒子濃
度に変化は見られなかった。
Example 10 Next, the same dispersion confirmation experiment using polystyrene particles of 0.038 μm was conducted by adding hydrochloric acid to adjust the hydrogen ion concentration of the container. The relationship between the standing time at pH 3 and the particle concentration was the same as the result in ultrapure water and was the same as 13 in FIG. This is shown at 13 in FIG. That is, the particle concentration decreased with the standing time. However, as shown at 15 in FIG. 12, almost no change in particle concentration was observed by adding 3 × 10 to 5 vol% of 2-aminoethanol.

【0062】(実施例11)次に、0.2μmのポリス
チレン粒子を用いて同様の分散確認実験を行なった。た
だし、塩酸を加えて溶液中の水素イオン濃度を調整して
0.2μmのポリスチレン粒子が凝集の起こりやすい条
件で(粒子濃度は4×1012個/cm3に調整した。)
2−アミノエタノ−ルを3×10~5vol%加えたとこ
ろ、図13の17に示すように、粒子濃度に変化は見ら
れなかった。すなわち、2−アミノエタノ−ルの添加に
より、あるpHで起きていた凝集を防止できることを示
している。なお、図13中の各pHに対する粒子濃度
は、静置時間が5日経過後の粒子濃度を示す。
Example 11 Next, the same dispersion confirmation experiment was carried out using 0.2 μm polystyrene particles. However, hydrochloric acid was added to adjust the hydrogen ion concentration in the solution, and 0.2 μm polystyrene particles were easily aggregated (particle concentration was adjusted to 4 × 10 12 particles / cm 3 ).
When 2-aminoethanol was added in an amount of 3 × 10 to 5 % by volume, no change was observed in the particle concentration as shown in 17 of FIG. That is, it is shown that the addition of 2-aminoethanol can prevent the aggregation that has occurred at a certain pH. The particle concentration for each pH in FIG. 13 indicates the particle concentration after a standing time of 5 days.

【0063】(実施例12)次に、1μmのポリスチレ
ン粒子を用いて同様の分散確認実験を行なった。1μm
の微粒子は超純水中ではほとんど凝集が見られなかった
ので、塩酸を加え溶液の水素イオン濃度を調整して実験
を行なった。図14の18に示すようにpH2程度より
酸性側に高くなると1μmの微粒子は凝集するようにな
る。(粒子濃度は5×1013個/cm3に調整した。ま
た、図14中の各pHに対する粒子濃度は、静置時間が
5日経過後の粒子濃度を示す。)その懸濁液に2−アミ
ノエタノ−ルを3×10~5vol%加えたところ、図1
4の19に示すように凝集の起こる水素イオン濃度は変
化した。すなわち、2−アミノエタノ−ルの添加によ
り、あるpHで起きていた凝集を防止できること、すな
わち、より酸性の高い領域まで凝集を防止できることを
示している。
Example 12 Next, the same dispersion confirmation experiment was conducted using polystyrene particles of 1 μm. 1 μm
Since the particles of No. 1 did not aggregate in ultrapure water, the experiment was conducted by adding hydrochloric acid to adjust the hydrogen ion concentration of the solution. As shown at 18 in FIG. 14, when the pH becomes higher than about pH 2 on the acidic side, the fine particles of 1 μm aggregate. (The particle concentration was adjusted to 5 × 10 13 particles / cm 3. The particle concentration for each pH in FIG. 14 indicates the particle concentration after 5 days of standing time.) 2- When 3 × 10 to 5 vol% of aminoethanol was added,
As shown in 19 of 4 above, the hydrogen ion concentration at which aggregation occurred changed. That is, it is shown that the addition of 2-aminoethanol can prevent the aggregation that has occurred at a certain pH, that is, the aggregation can be prevented even in a region having a higher acidity.

【0064】なお、アルカリ性でも対称的に効果があり
2−アミノエタノ−ルの添加により、凝集を生じる領域
をよりアルカリ性の高いところまでずらすことができ
る。
It should be noted that even if alkaline, it has a symmetrical effect, and by adding 2-aminoethanol, the region where aggregation occurs can be shifted to a more alkaline region.

【0065】(実施例13)次に超純水中に粒子径1μ
mのSi粒子を懸濁させ、同様の分散確認実験を行なっ
た。(粒子濃度は5×1013個/cm3に調整した。ま
た、図15中の各pHに対する粒子濃度は、静置時間が
1日経過後の粒子濃度を示す。)図15の20として示
すようにpH2.2程度より酸性側に高くなると、1μ
m粒子は凝集するようになる。
(Example 13) Next, the particle diameter was 1 μm in ultrapure water.
m Si particles were suspended and the same dispersion confirmation experiment was performed. (The particle concentration was adjusted to 5 × 10 13 particles / cm 3. The particle concentration for each pH in FIG. 15 indicates the particle concentration after one day of standing time.) As shown by 20 in FIG. If the pH becomes higher than about 2.2 on the acidic side, 1μ
The m particles become aggregated.

【0066】実施例7で用いた非イオン界面活性剤10
~7mol/lと2−アミノエタノ−ルを3×10~5vo
l%加えたところ、図15の21に示すように凝集の起
こる水素イオン濃度は、より酸性側に変化した。すなわ
ち、2−アミノエタノ−ルの添加により、あるpHで起
きていた凝集を防止できることが分かった。
Nonionic surfactant 10 used in Example 7
~ 7 mol / l and 2-aminoethanol 3 x 10 ~ 5 vo
When 1% was added, the hydrogen ion concentration at which aggregation occurred changed to a more acidic side as shown by 21 in FIG. That is, it was found that the addition of 2-aminoethanol can prevent the aggregation that has occurred at a certain pH.

【0067】(実施例14)次に容積比でHF:H2
=1:99のフッ化水素酸を調整して粒子径1μmのベ
アSi粒子を懸濁させ、同様の分散確認実験を行なっ
た。(粒子濃度は5×1013個/cm3に調整した。)
図16の22に示すように静置時間と共に粒子濃度は減
少することが分かった。次に、実施例7で用いた非イオ
ン界面活性剤10~7mol/lと2−アミノエタノ−ル
3×10~5vol%を加えた後、同様にして分散確認実
験を行なった。そして、得られた結果を同じく図16の
23に示す。ほとんど凝集は見られなくなった。
Example 14 Next, the volume ratio of HF: H 2 O was changed.
= 1:99 hydrofluoric acid was prepared to suspend bare Si particles having a particle diameter of 1 µm, and the same dispersion confirmation experiment was performed. (The particle concentration was adjusted to 5 × 10 13 particles / cm 3. )
As indicated by 22 in FIG. 16, it was found that the particle concentration decreased with standing time. Next, after adding 10 to 7 mol / l of the nonionic surfactant used in Example 7 and 3 × 10 to 5 vol% of 2-aminoethanol, a dispersion confirmation experiment was conducted in the same manner. The obtained result is also shown at 23 in FIG. Almost no aggregation was observed.

【0068】(実施例15)次に超純水中に粒子径1μ
mのSiO2粒子を懸濁させ、同様の分散確認実験を行
なった。(粒子濃度は5×1013個/cm3に調整し
た。また、図17中の各pHに対する粒子濃度は、静置
時間が1日経過後の粒子濃度を示す。)図17の24に
示すようにpH2.2程度より酸性側が大きくなると、
1μm粒子は凝集するようになる。実施例7で用いた非
イオン界面活性剤10~7mol/lと2−アミノエタノ
−ルを3×10~5vol%加えたところ、図17の25
に示すように凝集の起こる水素イオン濃度はより酸性側
に変化した。すなわち、2−アミノエタノ−ルの添加に
より、あるpHで起きていた凝集を防止できることが分
かった。
(Example 15) Next, the particle diameter was 1 μm in ultrapure water.
m SiO 2 particles were suspended and the same dispersion confirmation experiment was conducted. (The particle concentration was adjusted to 5 × 10 13 particles / cm 3. The particle concentration for each pH in FIG. 17 indicates the particle concentration after one day of standing time.) As shown in 24 of FIG. When the acidic side becomes larger than about pH 2.2,
1 μm particles become aggregated. When the nonionic surfactant used in Example 7 (10 to 7 mol / l) and 2-aminoethanol (3 × 10 to 5 vol%) were added, the amount of 25 in FIG.
As shown in, the concentration of hydrogen ions causing aggregation changed to a more acidic side. That is, it was found that the addition of 2-aminoethanol can prevent the aggregation that has occurred at a certain pH.

【0069】(実施例16)次に超純水中に粒子径1μ
mのFe粒子を懸濁させ、同様の分散確認実験を行なっ
た。(粒子濃度は5×1013個/cm3に調整した。ま
た、図18中の各pHに対する粒子濃度は、静置時間が
1日経過後の粒子濃度を示す。)図18の26に示すよ
うにpH3程度より酸性側が大きくなると、1μm粒子
は凝集するようになる。実施例7で用いた非イオン界面
活性剤10~7mol/lと2−アミノエタノ−ルを3×
10~5vol%加えたところ、図18の27に示すよう
に凝集の起こる水素イオン濃度は変化した。すなわち、
2−アミノエタノ−ルの添加により、あるpHで起きて
いた凝集を防止できることが分かった。
(Example 16) Next, the particle size was 1 μm in ultrapure water.
Fe particles of m were suspended, and the same dispersion confirmation experiment was performed. (The particle concentration was adjusted to 5 × 10 13 particles / cm 3. The particle concentration for each pH in FIG. 18 indicates the particle concentration after a standing time of one day.) As shown in 26 of FIG. In particular, when the acidic side becomes larger than about pH 3, 1 μm particles are aggregated. The nonionic surfactant used in Example 7 (10 to 7 mol / l) and 2-aminoethanol were mixed with 3 ×.
When 10 to 5 vol% was added, the hydrogen ion concentration at which aggregation occurred changed as shown by 27 in FIG. That is,
It has been found that the addition of 2-aminoethanol can prevent the aggregation that has occurred at a certain pH.

【0070】(実施例17)次に2−アミノエタノ−ル
の添加濃度と分散効果の関係について検討した。1μm
のポリスチレン粒子を懸濁させ、同様の分散確認実験を
行なった。(粒子濃度は5×1013個/cm3に調整し
た。また、図19中の各pHに対する粒子濃度は、静置
時間が5日経過後の粒子濃度を示す。)図19の28に
示すようにpH2.2程度より酸性側が大きくなると、
1μm粒子は凝集するようになる。2−アミノエタノ−
ルを3×10~5vol%加えたところ、図19の29に
示すように凝集の起こる水素イオン濃度は変化した。2
−アミノエタノ−ルの添加濃度を3×10~3volとす
ると、図19の30に示すように凝集の起こる水素イオ
ン濃度はさらに小さくなり、分散効果がより大きくなる
ことが明らかになった。すなわち、2−アミノエタノ−
ルの添加濃度が多くなることにより微粒子のゼ−タ電位
の絶対値が大きくなり、それだけ分散効果が大きくなっ
たと考えられる。したがって他の粒子に対しても添加濃
度を多くすることにより同様の効果が期待できる。
Example 17 Next, the relationship between the concentration of 2-aminoethanol added and the dispersion effect was examined. 1 μm
The polystyrene particles of were suspended and the same dispersion confirmation experiment was performed. (The particle concentration was adjusted to 5 × 10 13 particles / cm 3. The particle concentration for each pH in FIG. 19 shows the particle concentration after 5 days of standing time.) As shown in 28 of FIG. When the acidic side becomes larger than about pH 2.2,
1 μm particles become aggregated. 2-aminoethano
When 3 × 10 to 5 vol% of hydrogen was added, the hydrogen ion concentration at which aggregation occurred changed as indicated by 29 in FIG. Two
It was revealed that when the addition concentration of -aminoethanol was set to 3 x 10 to 3 vol, the hydrogen ion concentration at which agglomeration occurred was further reduced and the dispersion effect was further increased, as indicated by 30 in FIG. That is, 2-aminoethano-
It is considered that the absolute value of the zeta potential of the fine particles increased due to the increase in the addition concentration of the ruthenium, and the dispersion effect increased accordingly. Therefore, the same effect can be expected for other particles by increasing the addition concentration.

【0071】(実施例18)次に容積比でHF:H2
=1:99のフッ化水素酸を調整して粒子径1μmのS
i粒子を懸濁させ、同様の分散確認実験を行なった。
(粒子濃度は5×10 13個/cm3に調整。)図20に
示すように静置時間と共に粒子濃度は減少することが分
かった。次に、実施例7で用いた非イオン界面活性剤1
0~7mol/lとm−アミノフェノ−ルを1vol%を
加えた後、同様にして分散確認実験を行ない、得られた
結果を同じく図20の32に示す。ほとんど凝集は見ら
れなかった。
Example 18 Next, the volume ratio of HF: H2O
= 1: 99 of hydrofluoric acid is prepared and S of particle diameter 1 μm is prepared.
The i particles were suspended, and the same dispersion confirmation experiment was performed.
(Particle concentration is 5 × 10 13Pieces / cm3Adjusted to. ) In Figure 20
It can be seen that the particle concentration decreases with standing time as shown.
won. Next, the nonionic surfactant 1 used in Example 7
0 ~7mol / l and 1-vol% of m-aminophenol
After adding, the dispersion confirmation experiment was performed in the same manner, and was obtained.
The result is also shown at 32 in FIG. Almost no aggregation
I couldn't.

【0072】(実施例19)次に容積比でHF:H2
=1:99のフッ化水素酸を調整して粒子径1μmのS
i粒子を分散させ、同様の分散確認実験を行なった。
(粒子濃度は5×1013個/cm3に調整した。)図2
1に示すように静置時間と共に粒子濃度は減少すること
が分かった。次に、実施例7で用いた非イオン界面活性
剤10~7mol/lとホルムアミド0.5vol%を加
えた後、同様にして分散確認実験を行ない、得られた結
果を同じく図21の34に示す。ほとんど凝集は見られ
なかった。以上の分散確認実験により、本発明で述べた
ゼ−タ電位の制御が微粒子の分散及び凝集の低減に有効
であることが実証された。
(Example 19) Next, in volume ratio, HF: H 2 O was used.
= 1: 99 of hydrofluoric acid is prepared and S of particle diameter 1 μm is prepared.
The i particles were dispersed, and the same dispersion confirmation experiment was performed.
(The particle concentration was adjusted to 5 × 10 13 particles / cm 3 ).
As shown in Fig. 1, it was found that the particle concentration decreased with the standing time. Next, after adding 10 to 7 mol / l of the nonionic surfactant used in Example 7 and 0.5 vol% of formamide, a dispersion confirmation experiment was conducted in the same manner, and the obtained results are also shown in FIG. Shown in. Almost no aggregation was observed. From the above dispersion confirmation experiment, it was demonstrated that the control of the zeta potential described in the present invention is effective in reducing the dispersion and aggregation of the fine particles.

【0073】(実施例20)本発明を実施するために分
散制御システムの一例を図22に示す。図22におい
て、原料投入部35から投入された懸濁液と、ゼ−タ電
位制御物質貯蔵部36から添加濃度調節部37を介入し
て供給されるゼ−タ電位制御物質が、撹拌槽38に送ら
れて混合及び分散され、セラミックスの原料ができる。
(Embodiment 20) FIG. 22 shows an example of a distributed control system for carrying out the present invention. In FIG. 22, the suspension charged from the raw material charging unit 35 and the zeta potential control substance supplied from the zeta potential control substance storage unit 36 through the addition concentration control unit 37 are the stirring tank 38. It is sent to and mixed and dispersed to produce a ceramic raw material.

【0074】[0074]

【発明の効果】本発明によれば、液中の微粒子の分散の
向上及び凝集を低減することができるため、材料の製造
プロセスにおいて微粒子の分散性良好な微粒子を低コス
トで製造することができる。
EFFECTS OF THE INVENTION According to the present invention, since it is possible to improve the dispersion and aggregation of fine particles in a liquid, it is possible to produce fine particles having good fine particle dispersibility at a low cost in the process of producing a material. ..

【0075】また、本発明は本発明による物質と微粒子
の組合せにより凝集剤としての効果も期待できる。
The present invention can also be expected to be effective as an aggregating agent by combining the substance according to the present invention with fine particles.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明に係る微粒子−微粒子間の距離
とポテンシャルエネルギ−の関係を示す図である。
FIG. 1 is a diagram showing a relationship between a particle-particle distance and a potential energy according to the present invention.

【図2】図2は、微粒子のゼ−タ電位と粒子濃度の関係
を示す図である。
FIG. 2 is a graph showing the relationship between the zeta potential of fine particles and the particle concentration.

【図3】図3は、微粒子表面に吸着したアルコ−ル分子
の電荷分布と滑り面の電位を示す図である。
FIG. 3 is a diagram showing the charge distribution of alcohol molecules adsorbed on the surface of fine particles and the potential on the sliding surface.

【図4】図4は、微粒子表面に吸着したアルコ−ル分子
の電荷分布と滑り面の電位を示す図である。
FIG. 4 is a diagram showing the charge distribution of alcohol molecules adsorbed on the surface of fine particles and the potential on the sliding surface.

【図5】図5は、微粒子表面に吸着した非イオン界面活
性剤分子またはアルコ−ル分子を示す図。
FIG. 5 is a view showing nonionic surfactant molecules or alcohol molecules adsorbed on the surface of fine particles.

【図6】図6(a)、図6(b)及び図6(c)は、非
イオン界面活性剤とアルコ−ルを組合せて添加した場合
に吸着した状態を示す図である。
FIG. 6 (a), FIG. 6 (b) and FIG. 6 (c) are diagrams showing adsorbed states when a nonionic surfactant and alcohol are added in combination.

【図7】図7は、エタノ−ルの添加濃度とベアSi粒子
のゼ−タ電位の関係を示す図である。
FIG. 7 is a diagram showing the relationship between the concentration of ethanol added and the zeta potential of bare Si particles.

【図8】図8は、2−アミノエタノ−ルの添加濃度とポ
リスチレン微粒子のゼ−タ電位の関係を示す図である。
FIG. 8 is a diagram showing the relationship between the added concentration of 2-aminoethanol and the zeta potential of polystyrene fine particles.

【図9】図9は、微粒子のゼ−タ電位とモノイソプロパ
ノ−ルアミンの添加濃度の関係を示す図である。
FIG. 9 is a graph showing the relationship between the zeta potential of fine particles and the concentration of monoisopropanolamine added.

【図10】図10は、分光光度計による粒子濃度変化を
測定する方法を示す概念図である。
FIG. 10 is a conceptual diagram showing a method for measuring a particle concentration change by a spectrophotometer.

【図11】図11は、ポリスチレン粒子の懸濁液の静置
時間と粒子濃度変化の関係を示す図である。
FIG. 11 is a diagram showing a relationship between a standing time of a polystyrene particle suspension and a change in particle concentration.

【図12】図12は、ポリスチレン粒子の懸濁液の静置
時間と粒子濃度変化の関係を示す図である。
FIG. 12 is a diagram showing a relationship between a standing time of a polystyrene particle suspension and a change in particle concentration.

【図13】図13は、水素イオン濃度と粒子濃度の関係
を示す図である。
FIG. 13 is a diagram showing a relationship between hydrogen ion concentration and particle concentration.

【図14】図14は、水素イオン濃度と粒子濃度の関係
を示す図である。
FIG. 14 is a diagram showing a relationship between hydrogen ion concentration and particle concentration.

【図15】図15は、水素イオン濃度と粒子濃度の関係
を示す図である。
FIG. 15 is a diagram showing a relationship between hydrogen ion concentration and particle concentration.

【図16】図16は、ベアSi粒子の懸濁液の静置時間
と粒子濃度変化の関係を示す図である。
FIG. 16 is a diagram showing a relationship between a standing time of a suspension of bare Si particles and a change in particle concentration.

【図17】図17は、水素イオン濃度と粒子濃度の関係
を示す図である。
FIG. 17 is a diagram showing a relationship between hydrogen ion concentration and particle concentration.

【図18】図18は、水素イオン濃度と粒子濃度の関係
を示す図である。
FIG. 18 is a diagram showing a relationship between hydrogen ion concentration and particle concentration.

【図19】図19は、水素イオン濃度と粒子濃度の関係
を示す図である。
FIG. 19 is a diagram showing a relationship between hydrogen ion concentration and particle concentration.

【図20】図20は、Si粒子の懸濁液の静置時間と粒
子濃度変化の関係を示す図である。
FIG. 20 is a diagram showing the relationship between the standing time of a suspension of Si particles and the change in particle concentration.

【図21】図21は、Si粒子の懸濁液の静置時間と粒
子濃度変化の関係を示す図である。
FIG. 21 is a diagram showing a relationship between a standing time of a suspension of Si particles and a change in particle concentration.

【図22】図22は、本発明に係る分散制御システムの
一例を示す図である。
FIG. 22 is a diagram showing an example of a distributed control system according to the present invention.

【符号の説明】[Explanation of symbols]

1…微粒子、2…微粒子、3…表面電荷,4…ベアSi
粒子、5…Si粒子、6…Fe粒子、7…滑り面、8…
微粒子の懸濁液、9…分光光度計レ−ザ照射部、10…
分光光度計レ−ザ受光部、11…レ−ザ光、12…沈降
した微粒子、13…無添加の場合、14…2−アミノエ
タノ−ルを3×10~5vol%添加した場合、15…エ
タノ−ルを1vol%添加した場合、16…無添加の場
合、17…2−アミノエタノ−ルを3×10~5vol%
添加した場合、18…無添加の場合、19…2−アミノ
エタノ−ルを3×10~5vol%添加した場合、20…
無添加の場合、21…非イオン界面活性剤10~7mol
/lと2−アミノエタノ−ルを3×10~5vol%添加
した場合、22…無添加の場合、23…非イオン界面活
性剤10~7mol/lと2−アミノエタノ−ルを3×1
0~5vol%添加した場合、24…無添加の場合、25
…非イオン界面活性剤10~7mol/lと2−アミノエ
タノ−ルを3×10~5vol%添加した場合、26…無
添加の場合、27…非イオン界面活性剤10~7mol/
lと2−アミノエタノ−ルを3×10~5vol%添加し
た場合、28…無添加の場合、29…2−アミノエタノ
−ルを3×10~5vol%添加した場合、30…2−ア
ミノエタノ−ルを3×10~3vol%添加した場合、3
1…無添加の場合、32…非イオン界面活性剤10~7
ol/lと2−アミノエタノ−ルを3×10~5vol%
添加した場合、33…無添加の場合、34…非イオン界
面活性剤10~7mol/lと2−アミノエタノ−ルを3
×10~5vol%添加した場合、35…原料投入部、3
6…ゼ−タ電位制御物質貯蔵部、37…添加濃度調整
部、38…撹拌槽、39…ゼラミックス加工部。
1 ... fine particles, 2 ... fine particles, 3 ... surface charge, 4 ... bare Si
Particles, 5 ... Si particles, 6 ... Fe particles, 7 ... Sliding surface, 8 ...
Suspension of fine particles, 9 ... Spectrophotometer laser irradiation part, 10 ...
Spectrophotometer laser light receiving part, 11 ... Laser light, 12 ... Sedimented fine particles, 13 ... In case of no addition, 14 ... In case of adding 2 × 10 to 5 vol% of 2-aminoethanol, 15 ... When 1 vol% of ethanol is added, 16 ... When no addition is added, 17 ... 2-Aminoethanol is added at 3 × 10 to 5 vol%
In the case of addition, 18 ... In the case of no addition, 19 ... In the case of adding 3 × 10 to 5 vol% of 2-aminoethanol, 20 ...
In the case of no addition, 21 ... Nonionic surfactant 10 to 7 mol
/ L and 2-aminoethanol added at 3 x 10 to 5 vol%, 22 ... no addition, 23 ... nonionic surfactant 10 to 7 mol / l and 2-amino ethanol at 3 x 1
If 0 to 5 vol% is added, 24 ... 25 without addition
... nonionic surfactant 10 ~ 7 mol / l and 2 aminoethanol - when added Le 3 × 10 ~ 5 vol%, when the 26 ... no additive, 27 ... non-ionic surfactant 10 ~ 7 mol /
1 and 2-aminoethanol were added in an amount of 3 × 10 to 5 vol%, 28 ... No addition was added, 29: 2-aminoethanol was added in an amount of 3 × 10 to 5 vol%, 30 ... -When adding 3 x 10 to 3 vol%
1 ... In case of no addition, 32 ... Nonionic surfactant 10 to 7 m
ol / l and 2 aminoethanol - Le 3 × 10 ~ 5 vol%
When added, 33 ... When not added, 34 ... Nonionic surfactant 10 to 7 mol / l and 2-aminoethanol 3
When adding 10 to 5 vol%, 35 ... Raw material charging part, 3
6 ... Zeta potential control substance storage section, 37 ... Addition concentration adjusting section, 38 ... Stirring tank, 39 ... Zeramix processing section.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡 齊 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Osamu Oka, 292, Yoshida-cho, Totsuka-ku, Yokohama, Kanagawa Prefecture

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】溶液中にある微粒子のゼ−タ電位(表面電
位)を制御できる物質を、該溶液中に10~7〜25vo
l%の範囲の添加濃度で添加することにより、溶液中に
ある被吸着体である前記微粒子の分散の向上あるいは凝
集を低減することを特徴とする液中微粒子分散法。
1. A substance capable of controlling the zeta potential (surface potential) of fine particles in a solution is added to the solution in an amount of 10 to 7 to 25 vo.
A method for dispersing fine particles in a liquid, which comprises improving the dispersion or reducing aggregation of the fine particles as an adsorbent in a solution by adding at an addition concentration within the range of 1%.
【請求項2】溶液中にある微粒子のゼ−タ電位を制御で
きる物質が、分子内に電荷分布のある物質(双極子モ−
メントを持つ物質)である請求項1記載の液中微粒子分
散法。
2. A substance capable of controlling the zeta potential of fine particles in a solution is a substance having a charge distribution in the molecule (dipole mode).
A substance having a ment).
【請求項3】溶液中にある微粒子のゼ−タ電位を制御で
きる物質が、1分子中に親水基と疎水基を持つ物質であ
る請求項1記載の液中微粒子分散法。
3. The method for dispersing fine particles in a liquid according to claim 1, wherein the substance capable of controlling the zeta potential of the fine particles in the solution is a substance having a hydrophilic group and a hydrophobic group in one molecule.
【請求項4】溶液中にある微粒子のゼ−タ電位を制御で
きる物質が、分子末端から2〜6個目の原子のいずれ
か、あるいは複数個の原子の電荷分布が負である分子か
らなる物質である請求項1記載の液中微粒子分散法。
4. The substance capable of controlling the zeta-potential of fine particles in a solution is composed of any one of 2 to 6 atoms from the end of the molecule, or a molecule having a negative charge distribution of a plurality of atoms. The method for dispersing fine particles in a liquid according to claim 1, which is a substance.
【請求項5】溶液中にある微粒子のゼ−タ電位を制御で
きる物質が、イオン解離しにくい物質である請求項1記
載の液中微粒子分散法。
5. The method for dispersing fine particles in a liquid according to claim 1, wherein the substance capable of controlling the zeta potential of the fine particles in the solution is a substance which is difficult to dissociate into ions.
【請求項6】1分子中に親水基と疎水基を持つ物質が、
該疎水基の水素原子の一部あるいは全てをハロゲン原子
で置き換えた物質である請求項3記載の液中微粒子分散
法。
6. A substance having a hydrophilic group and a hydrophobic group in one molecule,
The method for dispersing fine particles in liquid according to claim 3, wherein the hydrophobic group is a substance in which some or all of hydrogen atoms are replaced with halogen atoms.
【請求項7】溶液中にある微粒子のゼ−タ電位を制御で
きる物質が、1分子中にアミノ基と水酸基を有する物質
である請求項1記載の液中微粒子分散法。
7. The method for dispersing fine particles in a liquid according to claim 1, wherein the substance capable of controlling the zeta potential of the fine particles in the solution is a substance having an amino group and a hydroxyl group in one molecule.
【請求項8】1分子中に親水基と疎水基を持つ物質が、
該疎水基の水素原子の一部あるいは全てをチッ素原子で
置き換えた物質である請求項3記載の液中微粒子分散
法。
8. A substance having a hydrophilic group and a hydrophobic group in one molecule,
The method for dispersing fine particles in a liquid according to claim 3, wherein the hydrophobic group is a substance in which some or all of hydrogen atoms are replaced with nitrogen atoms.
【請求項9】分子長の異なる2種類以上の物質を添加す
ることにより行なう請求項2〜8記載の液中微粒子分散
法。
9. The method for dispersing fine particles in a liquid according to claim 2, which is carried out by adding two or more kinds of substances having different molecular lengths.
【請求項10】1種類以上の非イオン界面活性剤と1分
子中に親水基と疎水基を持つ物質を添加することにより
行なう請求項1記載の液中微粒子分散法。
10. The method for dispersing fine particles in a liquid according to claim 1, which is carried out by adding at least one nonionic surfactant and a substance having a hydrophilic group and a hydrophobic group in one molecule.
【請求項11】非吸着体が各種金属、合金、セラミック
スを含む無機物または有機物を含む化合物である請求項
1〜10記載の液中微粒子分散法。
11. The method for dispersing fine particles in liquid according to claim 1, wherein the non-adsorbent is a compound containing an inorganic substance or an organic substance including various metals, alloys, and ceramics.
JP10793991A 1991-05-14 1991-05-14 Method for dispersing fine particles in liquid Pending JPH05337351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10793991A JPH05337351A (en) 1991-05-14 1991-05-14 Method for dispersing fine particles in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10793991A JPH05337351A (en) 1991-05-14 1991-05-14 Method for dispersing fine particles in liquid

Publications (1)

Publication Number Publication Date
JPH05337351A true JPH05337351A (en) 1993-12-21

Family

ID=14471883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10793991A Pending JPH05337351A (en) 1991-05-14 1991-05-14 Method for dispersing fine particles in liquid

Country Status (1)

Country Link
JP (1) JPH05337351A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6808654B2 (en) 1997-09-05 2004-10-26 Mitsubishi Materials Corporation Transparent conductive film and composition for forming same
JP2006082073A (en) * 2004-08-20 2006-03-30 Tosoh Corp Method for producing composite particle, and composite particle
JP2018060815A (en) * 2012-05-25 2018-04-12 バシウム・カナダ・インコーポレーテッド Electrode material for lithium electrochemical cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6808654B2 (en) 1997-09-05 2004-10-26 Mitsubishi Materials Corporation Transparent conductive film and composition for forming same
KR100544252B1 (en) * 1997-09-05 2006-03-23 미쓰비시 마테리알 가부시키가이샤 Transparent Conductive Film and Composition for Forming Same
JP2006082073A (en) * 2004-08-20 2006-03-30 Tosoh Corp Method for producing composite particle, and composite particle
JP2018060815A (en) * 2012-05-25 2018-04-12 バシウム・カナダ・インコーポレーテッド Electrode material for lithium electrochemical cell

Similar Documents

Publication Publication Date Title
US6413441B1 (en) Magnetic polishing fluids
JP5586229B2 (en) Liquid suspensions and powders of cerium oxide particles, their production process and their use in polishing
CN1886469B (en) Solution containing surface-modified nanoparticles
TW422873B (en) Polishing slurries and a process for the production thereof
JP3226925B2 (en) Magnetorheological materials using surface modified particles
Miao et al. Rheology of Aqueous Magnetorheological Fluid Using Dual Oxide‐Coated Carbonyl Iron Particles
KR100807165B1 (en) Use of 2,3-dihydroxynaphthalene-6-sulfonic acid salts as dispersants
JP2011051851A (en) Rare earth fluoride fine particle dispersion, method for producing the dispersion, method for producing rare earth fluoride thin film using the dispersion, method for producing polymer compound/rare earth fluoride composite film using the dispersion, and rare earth sintered magnet using the dispersion
EP1167482A2 (en) Aqueous dispersion for chemical mechanical polishing used for polishing of copper
KR20080077613A (en) Molecules with complexing groups for aqueous nanoparticle dispersions and uses thereof
KR20100007905A (en) Dispersion comprising cerium oxide, silicon dioxide and amino acid
Kim et al. Influence of anionic polyelectrolyte addition on ceria dispersion behavior for quartz chemical mechanical polishing
KR20020035826A (en) Improved chemical mechanical polishing slurries for metal
JP2011523377A (en) Hybrid nanoscale particles
JPWO2003055800A1 (en) Inorganic oxide
JPH05337351A (en) Method for dispersing fine particles in liquid
CN114479676A (en) Low-abrasive-content and weakly acidic polishing solution for ultraprecise processing of optical glass and preparation method thereof
JP2524020B2 (en) Liquid particle adhesion control method
JP3576261B2 (en) Free abrasive slurry with controlled dispersion / aggregation state, method for producing the same, and method for dispersing the same
US20100171065A1 (en) Magnetorheological materials, method for making, and applications thereof
JPH0332135B2 (en)
JPH0567601A (en) Control method for adhesion of foreign substance in solution
Cao et al. Investigation into rheological properties of magnetorheological polishing slurry using α-cellulose as an additive agent and its polishing performance
Ye et al. Improving the Dispersion Stability and Chemical Mechanical Polishing Performance of CeO2 Slurries
JP5031744B2 (en) Aqueous dispersion composition for UV shielding