JP2011051851A - Rare earth fluoride fine particle dispersion, method for producing the dispersion, method for producing rare earth fluoride thin film using the dispersion, method for producing polymer compound/rare earth fluoride composite film using the dispersion, and rare earth sintered magnet using the dispersion - Google Patents

Rare earth fluoride fine particle dispersion, method for producing the dispersion, method for producing rare earth fluoride thin film using the dispersion, method for producing polymer compound/rare earth fluoride composite film using the dispersion, and rare earth sintered magnet using the dispersion Download PDF

Info

Publication number
JP2011051851A
JP2011051851A JP2009203575A JP2009203575A JP2011051851A JP 2011051851 A JP2011051851 A JP 2011051851A JP 2009203575 A JP2009203575 A JP 2009203575A JP 2009203575 A JP2009203575 A JP 2009203575A JP 2011051851 A JP2011051851 A JP 2011051851A
Authority
JP
Japan
Prior art keywords
rare earth
earth fluoride
dispersion
fine particle
fluoride fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009203575A
Other languages
Japanese (ja)
Inventor
Yudai Shimoyama
雄大 下山
Shigeaki Funyu
重昭 舟生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2009203575A priority Critical patent/JP2011051851A/en
Publication of JP2011051851A publication Critical patent/JP2011051851A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rare earth fluoride fine particle dispersion using a nonpolar solvent, which can expect effects of inhibiting aggregation of fine particles, corrosion of a coated material and the like. <P>SOLUTION: The rare earth fluoride fine particle dispersion includes (A) rare earth fluoride fine particles having a hydrophilic group within the structure, (B) a nonpolar solvent, and (C) a nonionic surfactant, wherein the nonpolar solvent (B) is a nonpolar solvent having a dielectric constant of ≤10 or a mixed solution of two or more solvents including the nonpolar solvent having a dielectric constant of ≤10. In the rare earth fluoride fine particle dispersion, the rare earth includes at least one of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、希土類フッ化物微粒子分散液、この分散液を用いた希土類焼結磁石、希土類磁粉、高分子化合物/希土類フッ化物複合フィルム、この分散液の製造方法、分散液を用いた希土類フッ化物薄膜の製造方法に関する。   The present invention relates to a rare earth fluoride fine particle dispersion, a rare earth sintered magnet using the dispersion, a rare earth magnetic powder, a polymer compound / rare earth fluoride composite film, a method for producing the dispersion, and a rare earth fluoride using the dispersion. The present invention relates to a method for manufacturing a thin film.

NdFeB系焼結磁石は、高い残留磁束密度を有することから、各種機器の高効率化や小型化に貢献してきた。近年では、エアコンのコンプレッサーモータや、自動車関連機器(駆動モータ、発電機、電動パワーステアリング等)へと応用分野も広がっており、これらの用途では、耐熱性の高い、即ち保磁力の高い磁石が用いられている。   NdFeB-based sintered magnets have a high residual magnetic flux density, and thus have contributed to high efficiency and downsizing of various devices. In recent years, application fields have expanded to compressor motors for air conditioners and automobile-related equipment (drive motors, generators, electric power steering, etc.). For these applications, magnets with high heat resistance, that is, high coercive force, are used. It is used.

最も一般的な保磁力増大の手法は、Ndの一部を、Dy又はTbで置換することである。これは、Dy又はTbへの置換によって主相の異方性磁界が増大することを利用している(非特許文献1参照)。
しかし、Dy又はTbによるNd置換は、主相であるNdFe14B化合物の飽和磁化分極を減少させるため、この方法で保磁力増大を図る限りは、残留磁束密度の低下は避けられない。
近年は、耐熱性の高い磁石においても、高い残留磁束密度が要求されており、従来のプロセスでは対応が困難になってきている。
前述したNdFeB磁石では、主相であるNd14B結晶粒の界面に逆磁区の核が生成し、それが成長することで磁化反転すると考えられている(そのために保磁力が低い)。主相周辺の界面は、取り除くことのできない結晶構造上の欠陥であり、このように結晶粒界での逆磁区の生成が保磁力を決めるのであれば、異方性磁界は、粒界近傍でのみ高ければよいことになる。
従って、粒界近傍にのみDyやTbを濃化させれば、残留磁束密度の低下を抑制しつつ、保磁力の増大が可能となる。
The most common method for increasing the coercive force is to replace a part of Nd with Dy or Tb. This utilizes the fact that the anisotropic magnetic field of the main phase is increased by substitution with Dy or Tb (see Non-Patent Document 1).
However, Nd substitution with Dy or Tb reduces the saturation magnetization polarization of the Nd 2 Fe 14 B compound as the main phase. Therefore, as long as the coercive force is increased by this method, a decrease in the residual magnetic flux density is inevitable.
In recent years, a high residual magnetic flux density is required even for a magnet having high heat resistance, and it is difficult to cope with the conventional process.
In the above-described NdFeB magnet, it is considered that nuclei of reverse magnetic domains are generated at the interface of Nd 2 F 14 B crystal grains, which are the main phase, and grow to grow, thereby reversing the magnetization (for this reason, the coercive force is low). The interface around the main phase is a defect in the crystal structure that cannot be removed. Thus, if the generation of the reverse magnetic domain at the grain boundary determines the coercive force, the anisotropic magnetic field is near the grain boundary. Only high will be good.
Therefore, if Dy and Tb are concentrated only in the vicinity of the grain boundary, the coercive force can be increased while suppressing the decrease in the residual magnetic flux density.

更には、残留磁束密度と保磁力の両立を目的として、粒界拡散法と呼ばれる新たなプロセスが検討されている。このプロセスでは、NdFeB磁石の焼結体を作製して、ある程度の大きさまで加工した後に、焼結体の表面からDy(又はDy化合物)を拡散させる(非特許文献2、3参照)。このプロセス自体の歴史は古く、当初は小物磁石の表面劣化を回復させることを目的としていた。1986年にNdやTbをスパッタして時効(熱処理)することで、厚さ:100μmの磁石の磁気特性が回復することが報告されている。2000年には、Dyをスパッタした厚さ:50μmの磁石に対して、焼結温度よりも低い800℃で5分間の熱処理と時効処理とを施すことにより、残留磁束密度をほとんど低下させずに保磁力が増大し、更には粒界近傍にのみDyが濃化していることが確認されている。その後、比較的大きな磁石に対してもDyやTbをスパッタして保磁力の増大が認められることが報告されており、薄板だけではなく、バルクに対してもこの現象が起こりうることが示されている。   Furthermore, a new process called a grain boundary diffusion method has been studied for the purpose of achieving both residual magnetic flux density and coercive force. In this process, after a sintered body of an NdFeB magnet is manufactured and processed to a certain size, Dy (or a Dy compound) is diffused from the surface of the sintered body (see Non-Patent Documents 2 and 3). The process itself has a long history and was originally aimed at restoring the surface degradation of small magnets. In 1986, it has been reported that the magnetic properties of a magnet having a thickness of 100 μm are recovered by aging (heat treatment) by sputtering Nd or Tb. In 2000, Dy-sputtered magnets with a thickness of 50 μm were subjected to heat treatment and aging treatment at 800 ° C., which is lower than the sintering temperature, for 5 minutes, so that the residual magnetic flux density was hardly lowered. It has been confirmed that the coercive force increases and that Dy is concentrated only in the vicinity of the grain boundary. Later, it was reported that Dy and Tb were sputtered even on relatively large magnets, and an increase in coercive force was observed, indicating that this phenomenon can occur not only in thin plates but also in bulk. ing.

特許文献1には、粒子径が1μmほどのDyFやDy粉末を磁石表面に存在させた状態で、700〜1000℃の熱処理を施すことが記載されている。磁石に含まれている粒界(Ndリッチ相)は、上記温度範囲では液相となり、この液相は、磁石表面にも拡散してDyFやDy粉末と反応し、Dy化合物が液相に取り込まれた状態で、粒界相に沿って磁石内部まで拡散する。
このような手法では、スパッタ法や金属蒸気蒸着法と違って、金属Dyを用いないことが特徴の一つであり、粉末を溶液に分散させたスラリー溶液を使用する。そのため、特許文献1に記載されるものは、スパッタ法や金属蒸気蒸着法に用いられる特殊な装置を使わず、比較的容易な製造装置での拡散が可能なため、量産性に優れたプロセスと言える。
Patent Document 1 describes that heat treatment at 700 to 1000 ° C. is performed in a state where DyF 3 or Dy 2 O 3 powder having a particle diameter of about 1 μm is present on the surface of the magnet. The grain boundary (Nd rich phase) contained in the magnet becomes a liquid phase in the above temperature range, and this liquid phase also diffuses to the magnet surface and reacts with the DyF 3 or Dy 2 O 3 powder, and the Dy compound is In the state of being taken into the liquid phase, it diffuses into the magnet along the grain boundary phase.
Unlike the sputtering method and the metal vapor deposition method, such a method is characterized in that metal Dy is not used, and a slurry solution in which powder is dispersed in a solution is used. Therefore, what is described in Patent Document 1 does not use a special apparatus used for sputtering or metal vapor deposition, and can be diffused by a relatively easy manufacturing apparatus. I can say that.

また、特許文献2では、焼結・成形前のNdFeB磁粉表面に、DyやTb等の希土類フッ化物微粒子のコロイド溶液を塗布し、1nm〜1μm厚のコート膜を形成した磁性粉を用いて、焼結磁石及びボンド磁石を作製している。   Moreover, in patent document 2, the colloidal solution of rare earth fluoride fine particles, such as Dy and Tb, is applied to the surface of the NdFeB magnetic powder before sintering and molding, and a magnetic powder formed with a coating film having a thickness of 1 nm to 1 μm is used. Sintered magnets and bonded magnets are produced.

磁気特性向上を目的とした焼結体・磁粉の表面被覆材としては、接着性が高く、且つ表面被覆膜が均一であることが望ましい。そのためには、溶媒中で希土類フッ化物微粒子が良好に分散し、且つ粒子径がより小さいことが望まれる。   As a surface covering material of a sintered body or magnetic powder for the purpose of improving magnetic properties, it is desirable that the surface covering film has a high adhesiveness and is uniform. For this purpose, it is desired that the rare earth fluoride fine particles are well dispersed in the solvent and the particle diameter is smaller.

水を分散媒として用いた場合には、pH調整をすることが行われ、更には水系分散剤・増粘剤を用いることで、希土類フッ化物微粒子を分散させることが、比較的容易である。
また、無機微粒子の水系スラリーの工業実用例は、比較的多い。
しかしながら、磁性材料や金属材料等に、水を分散媒としたものの塗布を行うと、被塗布材の腐食や錆の発生が問題となる。
When water is used as a dispersion medium, pH adjustment is performed, and furthermore, it is relatively easy to disperse the rare earth fluoride fine particles by using an aqueous dispersant / thickener.
Moreover, there are relatively many industrial practical examples of aqueous slurry of inorganic fine particles.
However, when a magnetic material or a metal material is coated with water as a dispersion medium, the material to be coated is corroded or rusted.

そこで、極性の高い非水系分散媒、即ち極性の高い有機溶媒を用いることが考えられる。アルコールやエーテルのような極性の高い有機溶媒を使用した場合は、溶媒和等の効果により、微粒子を均一に分散させることはできるが、このような極性溶媒は、環境への負荷が高いものが多い。
更に、有機溶媒として入手し易いメタノールやエタノール等のアルコールや、アセトン、2−ブタノン、メチルイソブチルケトン等のケトン系溶剤は、一般に沸点が低く、分散媒として使用した場合には、取り扱い時に分散媒が蒸発してしまい、作業性の低下やスラリーの濃度変化が生じやすい。即ち、再現性に難を抱える材料となる。
また、価格や入手容易性等の点で利用しやすい極性有機溶媒には、比較的含水量が高いものが多く、有機溶媒中の分散において、混入した水分が粒子の凝集を促進する。同時に、被塗布材が金属の場合には、腐食や錆の問題を十分に満足できる程度に改善することも難しい。
Therefore, it is conceivable to use a non-polar dispersion medium having high polarity, that is, an organic solvent having high polarity. When a highly polar organic solvent such as alcohol or ether is used, fine particles can be uniformly dispersed due to effects such as solvation, but such a polar solvent has a high environmental load. Many.
Furthermore, alcohols such as methanol and ethanol, which are readily available as organic solvents, and ketone solvents such as acetone, 2-butanone, and methyl isobutyl ketone generally have a low boiling point, and when used as a dispersion medium, As a result, the workability is lowered and the slurry concentration is likely to change. That is, the material has difficulty in reproducibility.
In addition, many polar organic solvents that are easy to use in terms of price, availability, etc. have a relatively high water content, and mixed water promotes aggregation of particles in dispersion in the organic solvent. At the same time, when the material to be coated is a metal, it is difficult to improve the problem of corrosion and rust to a degree that can be sufficiently satisfied.

特許文献1、2にて有機溶媒として挙げているのは、アルコール、ケトン類等の極性溶媒のみであり、無極性又は低極性の有機溶媒ではない。プロトン性の溶媒、例えばメタノールを用いた場合、メタノールの水酸基の水素が希土類フッ化物の周りに集まり溶媒和することで安定化していると考えられる。
一般に分散質粒子の表面には、電荷が存在しており、それぞれの粒子に同種の電荷が存在しているために、分子間力よりも静電相互作用や水素結合等の形成による表面電荷の斥力が大となるため、粒子の凝集が妨げられ分散系は安定する。
一方、無極性溶媒では、このような効果が得られないため、単独では、微粒子を均一に分散させることは不可能である。
また、希土類フッ化物の比重(DyF:7.54g/cm)は、フィラー等の用途で一般に使用されるSiO(2.65g/cm)、Al(3.97g/cm)、ZrO(6.00g/cm)、SiC(3.14g/cm)等の無機微粒子に比べて重く、十分な分散安定性を得ることは、他の無機微粒子の分散系よりも困難である。
Patent Documents 1 and 2 list only organic solvents such as alcohols and ketones as organic solvents, not nonpolar or low polarity organic solvents. When a protic solvent such as methanol is used, it is considered that hydrogen of the hydroxyl group of methanol gathers around the rare earth fluoride and is stabilized by solvating.
In general, there are charges on the surface of dispersoid particles, and the same kind of charge exists on each particle. Therefore, the surface charge due to the formation of electrostatic interactions and hydrogen bonds rather than intermolecular forces. Since the repulsive force becomes large, the aggregation of particles is prevented and the dispersion system is stabilized.
On the other hand, since such an effect cannot be obtained with a nonpolar solvent, it is impossible to disperse the fine particles uniformly by itself.
The specific gravity (DyF 3 : 7.54 g / cm 3 ) of the rare earth fluoride is SiO 2 (2.65 g / cm 3 ) or Al 2 O 3 (3.97 g / cm 3 ) commonly used for fillers and the like. 3), ZrO 2 (6.00g / cm 3), SiC (3.14g / cm 3) heavier than the inorganic fine particles such as, to obtain a sufficient dispersion stability, than the dispersion of the other inorganic fine particles It is also difficult.

国際公開第06/043348号パンフレットInternational Publication No. 06/043348 Pamphlet 特開2006−283042号公報JP 2006-283042 A

Journal of Magnetics Society of Japan Vol.31,No.1,2007Journal of Magnetics Society of Japan Vol. 31, no. 1,2007 S.Suzuki and K. Machida:Material Integration,16,No7,p17(2003)S. Suzuki and K.K. Macida: Material Integration, 16, No7, p17 (2003) K.Machida, T.Kawasaki, S.Suzuki, M.Ito, and T.Horikawa:Abstracts of Spring Meeting of Japan Society of Power and Power Metallurgy, p202(2004)K. Macida, T .; Kawasaki, S .; Suzuki, M.M. Ito, and T.M. Horikawa: Abstracts of Spring Meeting of Japan Society of Power and Power Metallurgy, p202 (2004)

本発明の目的は、これらの問題を解決するために、微粒子の凝集や、被塗布材の腐食等の抑制効果が期待できる非極性溶媒を用いた希土類フッ化物微粒子分散液を提供することである。これにより、含水量の低減、溶媒の蒸発による濃度変化や再現性低下の改善、更には環境に対し負荷の高い溶媒からの代替が可能となる。
また、本発明は、上記分散液を用いた希土類焼結磁石、希土類磁粉、高分子化合物/希土類フッ化物複合フィルム、この分散液の製造方法、分散液を用いた希土類フッ化物薄膜の製造方法を、提供することも目的とする。
In order to solve these problems, an object of the present invention is to provide a rare earth fluoride fine particle dispersion using a nonpolar solvent that can be expected to suppress the aggregation of fine particles and the corrosion of coated materials. . As a result, it is possible to reduce the water content, improve the concentration change and reproducibility deterioration due to evaporation of the solvent, and further replace the solvent with a high environmental load.
The present invention also provides a rare earth sintered magnet, rare earth magnetic powder, polymer compound / rare earth fluoride composite film using the above dispersion, a method for producing this dispersion, and a method for producing a rare earth fluoride thin film using the dispersion. It is also intended to provide.

本発明は、以下のものに関する。
(1)(A)構造内に親水性基を有する希土類フッ化物微粒子と、(B)非極性溶媒と、(C)ノニオン系界面活性剤とを含む、希土類フッ化物微粒子分散液。
(2)項(1)において、(B)非極性溶媒が、誘電率10以下の非極性溶媒、又は、この誘電率10以下の非極性溶媒を含む2種類以上の混合溶液である希土類フッ化物微粒子分散液。
(3)項(1)又は(2)において、希土類が、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sc、Yの内、少なくとも一種類以上を含むものである希土類フッ化物微粒子分散液。
(4)項(1)乃至(3)の何れかにおいて、希土類の内、Tb又はDyが、50atm%以上含まれている希土類フッ化物微粒子分散液。
(5)項(1)乃至(4)の何れかにおいて、希土類フッ化物微粒子の親水性基が、水酸基である希土類フッ化物微粒子分散液。
(6)項(1)乃至(5)の何れかにおいて、希土類フッ化物微粒子が、その平均粒子径を、0.01〜10μmとする希土類フッ化物微粒子分散液。
(7)項(1)乃至(6)の何れかにおいて、(C)ノニオン系界面活性剤が、炭素数12以上の高級脂肪酸のエステル又はエーテルを、少なくとも1種以上含む希土類フッ化物微粒子分散液。
(8)項(1)乃至(6)の何れかにおいて、(C)ノニオン系界面活性剤が、ポリグリセリンのヒドロキシ基の内1つ以上に、脂肪酸がエステル化したものを含む希土類フッ化物微粒子分散液。
(9)項(1)乃至(8)の何れかにおいて、25℃における分散液の粘度が、10mPa・s以下である希土類フッ化物微粒子分散液。
(10)項(1)乃至(9)の何れかにおいて、分散液全体を100質量%として、希土類フッ化物の含有量が、10質量%以下、界面活性剤の含有量が、10質量%以下である希土類フッ化物微粒子分散液。
(11)項(1)乃至(10)の何れかに記載のフッ化物微粒子分散液を用いた希土類焼結磁石。
(12)項(1)乃至(10)の何れかに記載のフッ化物微粒子分散液を用いた希土類磁粉。
(13)項(1)乃至(10)の何れかに記載の希土類フッ化物微粒子分散液と、高分子化合物とを混合し、溶媒を乾燥することにより得られる高分子化合物/希土類フッ化物複合フィルム。
(14)以下の工程により製造される希土類フッ化物微粒子分散液の製造方法。
(a)希土類の塩が溶解する水溶液にフッ化水素酸水溶液を滴下して、希土類フッ化物微粒子を合成する工程。
(b)希土類フッ化物粒子を、ノニオン系の界面活性剤を用いて疎水化する工程。
(c)疎水化した希土類フッ化物粒子を、非極性溶媒中に再分散させる工程。
(15)項(1)乃至(10)の何れかに記載の希土類フッ化物微粒子分散液を、対象物表面に塗布し、乾燥・溶媒除去後、真空又は不活性ガス雰囲気下にて熱処理して、対象物表面に均一な薄膜を形成させる希土類フッ化物薄膜の製造方法。
The present invention relates to the following.
(1) A rare earth fluoride fine particle dispersion containing (A) a rare earth fluoride fine particle having a hydrophilic group in the structure, (B) a nonpolar solvent, and (C) a nonionic surfactant.
(2) The rare earth fluoride according to item (1), wherein (B) the nonpolar solvent is a nonpolar solvent having a dielectric constant of 10 or less, or a mixed solution of two or more containing a nonpolar solvent having a dielectric constant of 10 or less Fine particle dispersion.
(3) In the item (1) or (2), the rare earth is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y. A rare earth fluoride fine particle dispersion containing at least one of them.
(4) The rare earth fluoride fine particle dispersion liquid according to any one of items (1) to (3), wherein Tb or Dy is contained in an amount of 50 atm% or more.
(5) The rare earth fluoride fine particle dispersion liquid according to any one of items (1) to (4), wherein the hydrophilic group of the rare earth fluoride fine particles is a hydroxyl group.
(6) The rare earth fluoride fine particle dispersion liquid according to any one of items (1) to (5), wherein the rare earth fluoride fine particles have an average particle diameter of 0.01 to 10 μm.
(7) The rare earth fluoride fine particle dispersion liquid according to any one of items (1) to (6), wherein (C) the nonionic surfactant contains at least one ester or ether of a higher fatty acid having 12 or more carbon atoms. .
(8) The rare earth fluoride fine particles according to any one of items (1) to (6), wherein (C) the nonionic surfactant contains one or more hydroxy groups of polyglycerin esterified with a fatty acid. Dispersion.
(9) The rare earth fluoride fine particle dispersion according to any one of items (1) to (8), wherein the viscosity of the dispersion at 25 ° C. is 10 mPa · s or less.
(10) In any one of items (1) to (9), the total dispersion is 100% by mass, the rare earth fluoride content is 10% by mass or less, and the surfactant content is 10% by mass or less. A rare earth fluoride fine particle dispersion.
(11) A rare earth sintered magnet using the fluoride fine particle dispersion according to any one of items (1) to (10).
(12) A rare earth magnetic powder using the fluoride fine particle dispersion according to any one of items (1) to (10).
(13) A polymer compound / rare earth fluoride composite film obtained by mixing the rare earth fluoride fine particle dispersion according to any one of items (1) to (10) and a polymer compound and drying the solvent. .
(14) A method for producing a rare earth fluoride fine particle dispersion produced by the following steps.
(A) A step of adding hydrofluoric acid aqueous solution dropwise to an aqueous solution in which a rare earth salt is dissolved to synthesize rare earth fluoride fine particles.
(B) A step of hydrophobizing the rare earth fluoride particles using a nonionic surfactant.
(C) A step of redispersing the hydrophobized rare earth fluoride particles in a nonpolar solvent.
(15) The rare earth fluoride fine particle dispersion according to any one of items (1) to (10) is applied to the surface of an object, dried and solvent-removed, and then heat-treated in a vacuum or an inert gas atmosphere. A method for producing a rare earth fluoride thin film, wherein a uniform thin film is formed on the surface of an object.

本発明者らは、鋭意研究を重ねた結果、水中でゾル・ゲル反応にて合成することで希土類フッ化物微粒子表面に親水性基を持たせ、この希土類フッ化物微粒子をノニオン系界面活性剤を用いて疎水化処理することで、非極性溶媒中でも良好な分散状態を保った希土類フッ化物微粒子分散液を作製できることを見出した。
また、希土類フッ化物粒子の疎水化処理剤としては、ノニオン系であり、特に構造内に疎水基として脂肪酸エステルを、親水性基として水酸基を含む界面活性剤を用いてこれらの問題を解決することがわかった。
添加した界面活性剤は、親水性基を粒子側に、疎水基を分散媒側にして希土類フッ化物粒子の表面に吸着する。その結果、希土類フッ化物微粒子の表面が界面活性剤の疎水基分子に覆われた状態になって、親水性だった粒子が疎水化される結果、分散媒(非極性溶媒)との親和性が高まり、非極性溶媒中で安定に分散することができる。
As a result of extensive research, the present inventors have synthesized a rare earth fluoride fine particle surface with a nonionic surfactant by synthesizing by a sol-gel reaction in water to give the surface of the rare earth fluoride fine particle. It has been found that a rare earth fluoride fine particle dispersion that maintains a good dispersion state even in a non-polar solvent can be produced by using a hydrophobic treatment.
Moreover, as a hydrophobizing agent for rare earth fluoride particles, it is nonionic, and in particular, these problems are solved by using a surfactant containing a fatty acid ester as a hydrophobic group and a hydroxyl group as a hydrophilic group in the structure. I understood.
The added surfactant is adsorbed on the surface of the rare earth fluoride particles with the hydrophilic group on the particle side and the hydrophobic group on the dispersion medium side. As a result, the surface of the rare earth fluoride fine particles is covered with the hydrophobic group molecules of the surfactant, and the hydrophilic particles are hydrophobized, resulting in an affinity for the dispersion medium (nonpolar solvent). And can be stably dispersed in a nonpolar solvent.

本発明では、非極性溶媒を用いることによって、メタノール、2‐ブタノン等の環境への負荷が高い極性溶媒を使わずに、微粒子を均一に分散させることができる。
また、非極性溶媒は、比較的高沸点で蒸発しにくいので、溶媒の蒸発を低減させることができ、分散液中の微粒子の濃度が変化することも無くなり、精密な塗布膜を形成することが可能になる。即ち、塗布工程等の作業性も改善される。非極性溶媒には、低価格で容易に入手できるものが多く、更に炭化水素系等の有機溶媒は、含水率が極めて低いので、被塗布材の腐食・錆等の問題を低減することもできる。
NdFeB磁石は、酸化により非常に錆を生じ易い材料である。従って、本発明による非極性溶媒を用いた希土類フッ化物微粒子分散液を用いて作製した希土類磁石、希土類磁粉では、従来以上の磁気特性の向上が期待できる。
In the present invention, by using a nonpolar solvent, fine particles can be uniformly dispersed without using a polar solvent having a high environmental load, such as methanol and 2-butanone.
In addition, since nonpolar solvents have a relatively high boiling point and are difficult to evaporate, the evaporation of the solvent can be reduced, the concentration of fine particles in the dispersion is not changed, and a precise coating film can be formed. It becomes possible. That is, workability such as the coating process is also improved. Many non-polar solvents are readily available at low cost, and organic solvents such as hydrocarbons have a very low moisture content, which can reduce problems such as corrosion and rust of coated materials. .
The NdFeB magnet is a material that is very easily rusted by oxidation. Therefore, the rare earth magnet and rare earth magnetic powder produced using the rare earth fluoride fine particle dispersion using the nonpolar solvent according to the present invention can be expected to improve the magnetic characteristics more than before.

実施例16にて作製した希土類フッ化物微粒子薄膜のSEM画像(倍率:1000倍)を示す。The SEM image (magnification: 1000 times) of the rare earth fluoride fine particle thin film produced in Example 16 is shown. 実施例17にて作製した希土類フッ化物微粒子薄膜のSEM画像(倍率:1000倍)を示す。The SEM image (magnification: 1000 times) of the rare earth fluoride fine particle thin film produced in Example 17 is shown. 比較例6にて作製した希土類フッ化物微粒子薄膜のSEM画像(倍率:1000倍)を示す。The SEM image (magnification: 1000 times) of the rare earth fluoride fine particle thin film produced in Comparative Example 6 is shown. 比較例7にて作製した希土類フッ化物微粒子薄膜のSEM画像(倍率:1000倍)を示す。The SEM image (magnification: 1000 times) of the rare earth fluoride fine particle thin film produced in Comparative Example 7 is shown.

以下、本発明につき更に詳しく説明する。   Hereinafter, the present invention will be described in more detail.

<ノニオン系界面活性剤>
本発明において用いられる(C)ノニオン系界面活性剤について説明する。ノニオン系界面活性剤は、希土類フッ化物の微粒子の分散性を向上させる役割を担う。ノニオン系界面活性剤の種類は、目的とする溶媒に溶解するものであれば特に限定されない。ノニオン系界面活性剤の溶媒への溶解基準は、ノニオン系界面活性剤を溶かした溶液を金属金網や濾紙等のフィルタを通すことで判断することができる。本発明では、ノニオン系界面活性剤を溶解させた溶液を、濾紙(ADVANTEC社製、No.4、保持粒径:1μm)に通過させた際に生じる残渣が、投入した界面活性剤の質量に対して1%以下であるものを溶解と判断している。
<Nonionic surfactant>
The (C) nonionic surfactant used in the present invention will be described. The nonionic surfactant plays a role of improving dispersibility of the rare earth fluoride fine particles. The kind of nonionic surfactant will not be specifically limited if it melt | dissolves in the target solvent. The standard of dissolution of the nonionic surfactant in the solvent can be determined by passing a solution in which the nonionic surfactant is dissolved through a filter such as a metal wire mesh or filter paper. In the present invention, the residue generated when the solution in which the nonionic surfactant is dissolved is passed through a filter paper (manufactured by ADVANTEC, No. 4, retention particle size: 1 μm) is added to the mass of the added surfactant. On the other hand, it is determined that dissolution is 1% or less.

界面活性剤には、HLB値{親水性−親油性バランス(Hydrophilic Loophole Balance)}と呼ばれる親水性・疎水性の尺度が決められている。HLB値が高い界面活性剤は、親水性分が強く、水に対する溶解性に優れ、反対にHLB値が低い界面活性剤は、水に対する溶解性が低下することが知られている。
本発明に用いる希土類フッ化物微粒子は、強い親水性を示すため、用いる界面活性剤は、(B)非極性溶媒中に溶解しうるとの条件を逸脱しない範囲で、HLB値が高い方が、より有効な粒子の疎水化処理を施すことができる。これは、希土類フッ化物微粒子表面の親水性基に界面活性剤の親水性基が吸着し、固定層を形成するためであり、この相互作用が界面活性剤の親水性度、即ちHLB値に比例するからである。
Surfactant has a hydrophilicity / hydrophobicity scale called HLB value {Hydrophilic-Louphilic Balance}. It is known that a surfactant having a high HLB value has a strong hydrophilic component and is excellent in solubility in water, whereas a surfactant having a low HLB value has a low solubility in water.
Since the rare earth fluoride fine particles used in the present invention exhibit strong hydrophilicity, the surfactant used has a higher HLB value within a range that does not deviate from the condition that it can be dissolved in (B) a nonpolar solvent. More effective particle hydrophobization treatment can be performed. This is because the hydrophilic group of the surfactant is adsorbed on the hydrophilic group on the surface of the rare earth fluoride fine particles to form a fixed layer, and this interaction is proportional to the hydrophilicity of the surfactant, that is, the HLB value. Because it does.

界面活性剤は、その添加する濃度によりゼータ電位を変化させ、系の分散挙動を支配する。非水分散系に界面活性剤を添加して疎水化処理を施す場合について述べると、界面活性剤を添加された粒子表面において、界面活性剤分子の親水性基を粒子側に、疎水基を分散媒側に向けて吸着が起こる。
理論的には、界面活性剤分子が、粒子表面を単分子で完全に被覆する濃度において疎水化処理効果、即ち分散効果が生じる。この濃度を超えて、更に過剰の界面活性剤を添加すると、単分子で吸着した界面活性剤層の上に、疎水基を粒子側に、親水基を分散媒側に向けて所謂2層吸着が発生し、粒子は凝集する。更に過剰に添加すると、3層吸着が起こり、再度分散する。このように、界面活性剤の添加濃度によって、粒子は、分散と凝集とを繰り返す。そのため、本発明による希土類フッ化物微粒子分散液における最適なノニオン系界面活性剤濃度は、分散液全体を100質量%として、0.01〜10.0質量%、より好ましくは、0.1〜1.0質量%である。
The surfactant changes the zeta potential depending on the concentration of the surfactant and controls the dispersion behavior of the system. In the case of adding a surfactant to a non-aqueous dispersion and subjecting it to a hydrophobic treatment, on the surface of the particle to which the surfactant is added, the hydrophilic group of the surfactant molecule is dispersed on the particle side and the hydrophobic group is dispersed. Adsorption occurs toward the medium side.
Theoretically, a hydrophobizing effect, that is, a dispersion effect occurs at a concentration at which the surfactant molecule completely covers the particle surface with a single molecule. If an excessive amount of surfactant is added beyond this concentration, so-called two-layer adsorption is performed on the surfactant layer adsorbed by a single molecule with the hydrophobic group facing the particle and the hydrophilic group facing the dispersion medium. Occurs and the particles agglomerate. When added in excess, three-layer adsorption occurs and disperses again. As described above, the particles repeat dispersion and aggregation depending on the addition concentration of the surfactant. Therefore, the optimum nonionic surfactant concentration in the rare earth fluoride fine particle dispersion according to the present invention is 0.01 to 10.0% by mass, more preferably 0.1 to 1, with 100% by mass of the entire dispersion. 0.0% by mass.

一般に界面活性剤は、大別してアニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤の4つに分類されている。
本発明では、これらの中でも、ノニオン系界面活性剤を用いる。非極性溶媒中に分散した粒子でも、イオン性界面活性剤を含む時には、数〜数十mV程度のゼータ電位が観測される。また、非極性溶媒中のイオン性界面活性剤の存在は、他の電解質の電離を助長すると共に、イオン性界面活性剤は、自分自身が、解離したイオンを自分のミセルで安定化することが知られている。例えば、代表的なカチオン性界面活性剤であるセチルトリメチルアンモニウムクロライド(CTAC)では、Clと活性剤イオンとになる。この場合、Clの方が親水性であるので、親水性である希土類フッ化物微粒子に対して吸着して負電荷を与えると考えられている。その時に電離しているイオンが分散媒中に遊離状態で存在すると、この遊離が金属材料等に対してアタックし腐食を発生させる原因となりうる。
In general, surfactants are roughly classified into four types: anionic surfactants, cationic surfactants, nonionic surfactants, and amphoteric surfactants.
In the present invention, among these, a nonionic surfactant is used. Even in particles dispersed in a nonpolar solvent, a zeta potential of about several to several tens of mV is observed when an ionic surfactant is included. In addition, the presence of ionic surfactants in nonpolar solvents facilitates ionization of other electrolytes, and ionic surfactants themselves can stabilize dissociated ions with their micelles. Are known. For example, cetyltrimethylammonium chloride (CTAC), which is a typical cationic surfactant, becomes Cl and an activator ion. In this case, since Cl - is more hydrophilic, it is considered to adsorb to the rare earth fluoride fine particles that are hydrophilic to give a negative charge. If ions that are ionized at that time exist in a free state in the dispersion medium, this release may attack the metal material and cause corrosion.

そこで、界面活性剤の中でも、特にノニオン系界面活性剤を用いることによって、非極性溶媒中でのイオンの解離をなくし、被塗布材に対するこれらの腐食を促進するイオン種のアタックがなく、安定した分散状態の分散液を得ることができる。
本発明による希土類フッ化物分散液は、ノニオン系界面活性剤を用いることによって、界面活性剤のイオンによる非塗布材の腐食や錆の問題を解決すると共に、(B)非極性溶媒中に、希土類フッ化物微粒子を凝集体の存在無く均一に分散させるものである。
本発明の希土類フッ化物分散液は、更に、特定のノニオン系界面活性剤と(B)非極性溶媒とを使用することによって特別な効果、つまり非極性分散媒系において親水性粒子である希土類フッ化物を均一に安定分散させ、塗布作業中の分散媒の揮発をなくし、且つ他の極性溶媒に比べて、含水量が少ないことで被塗布材の腐食を削減する効果を有する。
Therefore, among the surfactants, in particular, by using a nonionic surfactant, the dissociation of ions in the nonpolar solvent is eliminated, and there is no attack of ionic species that promote the corrosion of the coated material, and the surfactant is stable. A dispersion in a dispersed state can be obtained.
The rare earth fluoride dispersion according to the present invention solves the problem of corrosion and rust of the non-coated material due to the ions of the surfactant by using a nonionic surfactant, and (B) a rare earth in a nonpolar solvent. Fluoride fine particles are uniformly dispersed without the presence of aggregates.
The rare earth fluoride dispersion of the present invention further has a special effect by using a specific nonionic surfactant and (B) a nonpolar solvent, that is, a rare earth fluoride which is a hydrophilic particle in a nonpolar dispersion medium. The chemical compound is uniformly and stably dispersed, the volatilization of the dispersion medium during the coating operation is eliminated, and the moisture content is smaller than other polar solvents, thereby reducing the corrosion of the coated material.

このようなノニオン系界面活性剤としては、例えば、ソルビタン脂肪酸エステル類(モノオレイン酸ソルビタン、セスキオレイン酸ソルビタン、トリオレイン酸ソルビタン、モノイソステアリン酸ソルビタン、セスキイソステアリン酸ソルビタン等)、ポリグリセリン脂肪酸エステル類(モノオレイン酸デカグリセリル、ペンタオレイン酸デカグリセリル、デカオレイン酸デカグリセリル、ペンタイソステアリン酸デカグリセリル、モノオレイン酸ヘキサグリセリル、モノイソステアリン酸ジグリセリル等)、ポリオキシエチレンソルビタン脂肪酸エステル類(トリステアリン酸ポリオキシエチレンソルビタン、トリオレイン酸ポリオキシエチレンソルビタン等)、ポリエチレングリコール脂肪酸エステル(モノステアリン酸ポリエチレングリコール等)、ポリオキシエチレンソルビット脂肪酸エステル類(テトラオレイン酸ポリオキシエチレンソルビット等)、ポリエチレングリコール脂肪族エステル類(モノステアリン酸ポリエチレングリコール、モノラウリン酸ポリエチレングリコール、ジステアリン酸グリコール等)、ポリオキシエチレンアルキルエーテル類(ポリオキシエチレンオレイルエーテルリン酸ナトリウム、ポリオキシエチレンラウリルエーテルリン酸ナトリウム等)、ポリオキシエチレンアルキルフェニルエーテル等が挙げられる。
これらは、特に限定されることはなく、上述した条件を満足するノニオン系界面活性剤であれば用いることができる。これらノニオン系界面活性剤の中でも特に好ましいものは、ポリグリセリン脂肪酸エステル類である。ポリグリセリン脂肪酸エステル類は、置換基(親水基/疎水基)の数が多く、構造的自由度が高いため、選択する微粒子や溶媒に合わせて構造内の親水基/疎水基の割合を変更可能であり、その結果、高い分散安定性が期待できる。
Examples of such nonionic surfactants include sorbitan fatty acid esters (such as sorbitan monooleate, sorbitan sesquioleate, sorbitan trioleate, sorbitan monoisostearate, sorbitan sesquiisostearate), and polyglycerin fatty acid esters. (Decaglyceryl monooleate, decaglyceryl pentaoleate, decaglyceryl dekaoleate, decaglyceryl pentaisostearate, hexaglyceryl monooleate, diglyceryl monoisostearate, etc.), polyoxyethylene sorbitan fatty acid esters (polystearic acid poly Oxyethylene sorbitan, polyoxyethylene sorbitan trioleate, etc.), polyethylene glycol fatty acid ester (polyethylene monostearate) Coal), polyoxyethylene sorbite fatty acid esters (polyoxyethylene sorbitol tetraoleate), polyethylene glycol aliphatic esters (polyethylene glycol monostearate, polyethylene glycol monolaurate, glycol distearate, etc.), polyoxyethylene alkyl Examples include ethers (sodium polyoxyethylene oleyl ether phosphate, sodium polyoxyethylene lauryl ether phosphate, etc.), polyoxyethylene alkylphenyl ether, and the like.
These are not particularly limited, and any nonionic surfactant that satisfies the above-described conditions can be used. Among these nonionic surfactants, polyglycerol fatty acid esters are particularly preferable. Polyglycerin fatty acid esters have a large number of substituents (hydrophilic groups / hydrophobic groups) and a high degree of structural freedom, so the ratio of hydrophilic groups / hydrophobic groups in the structure can be changed according to the selected fine particles and solvent. As a result, high dispersion stability can be expected.

前述したノニオン系界面活性剤は、重量平均分子量:1000〜50000程度の比較的低分子量のものが好ましい。高分子量のノニオン系界面活性剤は、(B)非極性溶媒への溶解性に乏しいものや、溶解しても添加した高分子による架橋構造の構築により、微粒子の凝集が生じるものがある。また、一般に高分子分散剤は、十分な分散安定化効果を得るためにその添加量が多くなる傾向がある。   The nonionic surfactant described above preferably has a relatively low molecular weight with a weight average molecular weight of about 1000 to 50000. Some high molecular weight nonionic surfactants (B) have poor solubility in non-polar solvents, and others have the effect of aggregation of fine particles due to the construction of a crosslinked structure by the added polymer even when dissolved. In general, the amount of the polymer dispersant added tends to increase in order to obtain a sufficient dispersion stabilizing effect.

<希土類フッ化物微粒子>
本発明に用いる希土類フッ化物は、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sc、Yからなる少なくとも1種の希土類元素を含むフッ化物である。
磁気特性向上効果を考えた場合、好ましくは、Pr、Tb、Dy、Hoであり、更に好ましくは、Tb又はDyである。このうちTb又はDyが、希土類又はアルカリ土類金属のうち、50atm%以上存在することが、残留磁束密度と保磁力とを両立させる上で好ましい。
<Rare earth fluoride fine particles>
The rare earth fluoride used in the present invention is at least one rare earth element composed of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, and Y. It is a fluoride containing.
When considering the effect of improving magnetic properties, preferably, Pr, Tb, Dy, Ho, and more preferably Tb or Dy. Among these, it is preferable that Tb or Dy is present at 50 atm% or more among rare earths or alkaline earth metals in order to achieve both the residual magnetic flux density and the coercive force.

希土類フッ化物は、構造内に親水性基を有するものが好ましい。親水性基とは、水酸基、カルボキシル基、カルボニル基等が挙げられる。
希土類フッ化物が、親水性基を有することで、添加したノニオン系界面活性剤が、親水性基を粒子側に、疎水基を分散媒側に向けて強く吸着する。中でも水酸基が特に好ましい。
The rare earth fluoride preferably has a hydrophilic group in the structure. Examples of the hydrophilic group include a hydroxyl group, a carboxyl group, and a carbonyl group.
Since the rare earth fluoride has a hydrophilic group, the added nonionic surfactant strongly adsorbs the hydrophilic group toward the particle side and the hydrophobic group toward the dispersion medium. Of these, a hydroxyl group is particularly preferred.

希土類フッ化物中の構造内に存在する水酸基は、示差熱・熱重量同時測定装置(TG−DTA)を用いて確認することができる。各希土類フッ化物の熱分解温度を下記表1に纏めた。表1に記載される温度付近に、質量減少とDTAピークが検出できるため水酸基の存在を確認することができる。
しかしながら、下記表1に示す温度は、測定条件や微量不純物の混入等により、±5℃程度は容易に変動しうる。
The hydroxyl group present in the structure of the rare earth fluoride can be confirmed using a differential thermal / thermogravimetric measurement apparatus (TG-DTA). The thermal decomposition temperature of each rare earth fluoride is summarized in Table 1 below. The presence of a hydroxyl group can be confirmed because mass loss and DTA peak can be detected near the temperatures listed in Table 1.
However, the temperatures shown in Table 1 below can easily vary by about ± 5 ° C. depending on the measurement conditions and the incorporation of trace impurities.

Figure 2011051851
Figure 2011051851

溶媒中の希土類元素の濃度は、特に限定されるものではないが、分散液全体を100質量%として、0.1〜10.0質量%が好ましく、より好ましくは、0.1〜5.0質量%である。0.1質量%未満の低濃度では、分散性が良好であるが、生産性が悪く、10.0質量%を超える高濃度になる場合には、粒子間距離が近いため徐々に凝集が強くなり、ノニオン系界面活性剤を添加しても十分な効果を得られにくく、塗布の際には、均一な成膜が困難になりやすい。   The concentration of the rare earth element in the solvent is not particularly limited, but is preferably 0.1 to 10.0% by mass, more preferably 0.1 to 5.0% based on 100% by mass of the entire dispersion. % By mass. When the concentration is less than 0.1% by mass, the dispersibility is good, but the productivity is poor, and when the concentration is more than 10.0% by mass, the distance between particles is close and the aggregation is gradually strong. Thus, even if a nonionic surfactant is added, it is difficult to obtain a sufficient effect, and uniform film formation tends to be difficult at the time of coating.

希土類フッ化物微粒子の大きさは、平均粒子径が、0.01〜10μmが好ましい。より好ましくは、0.01〜1μmであり、更に好ましくは、0.01〜0.2μmである。平均粒子径が、10μmを超えるものでは、均一な分散状態を維持することが難しく、沈降が生じる可能性がある。粒子の大きさは、動的光散乱法や、レーザー回折法によって求めることができ、ここでいう平均粒子径とは、メディアン径(D50)を言う。 The average particle diameter of the rare earth fluoride fine particles is preferably 0.01 to 10 μm. More preferably, it is 0.01-1 micrometer, More preferably, it is 0.01-0.2 micrometer. When the average particle diameter exceeds 10 μm, it is difficult to maintain a uniform dispersion state, and sedimentation may occur. The size of the particles can be determined by a dynamic light scattering method or a laser diffraction method, and the average particle diameter here refers to the median diameter (D 50 ).

本発明に用いる希土類フッ化物微粒子の製造方法を説明する。ナノ粒子を製造するには、大きく分けると粉砕のようなトップダウン(ブレークダウン)方式、液体から化学反応等を利用するボトムアップ(ビルドアップ)方式の2つの方法がある。ビーズミル等の粉砕によるトップダウン方式では、コスト面で優れるが、一般に希土類フッ化物は、結合が強く、ナノからサブミクロンオーダーの微粒子を得ることが難しく、更には、粉砕時のメディアによるコンタミ(contamination)の問題も生じる。一方、ボトムアップ方式で製造する微粒子では、比較的容易にナノスケールの超微粒子を製造できる利点がある。   A method for producing rare earth fluoride fine particles used in the present invention will be described. There are two methods for producing nanoparticles: a top-down (breakdown) method such as pulverization, and a bottom-up (build-up) method using a chemical reaction from a liquid. The top-down method by pulverization such as a bead mill is excellent in terms of cost. Generally, rare earth fluorides have strong bonds, and it is difficult to obtain fine particles on the order of nano to submicron. Furthermore, contamination due to media during pulverization is used. ) Also arises. On the other hand, fine particles produced by the bottom-up method have an advantage that nano-scale ultra fine particles can be produced relatively easily.

そのため、ボトムアップ方式を用いて、希土類の塩が溶解した水溶液に、フッ化水素酸水溶液を滴下し、粒子を合成する手法が有効である。
粒子合成後の、分離・精製方法等に関しては、既存の手法(濾過や遠心分離)を用いることができ、特に限定されるものではない。
しかしながら、このようなナノ粒子は、凝集力が強く、マイクロオーダーの凝集体をつくり易いため、一次粒子迄分散させる必要がある。サブミクロンからナノ領域の粒子の分散を考えた場合は、粒子表面の活性が非常に高く、凝集体として存在していることが多いため、これを分散させるためには、粒子の合成、又は、解砕と同時に粒子表面を有機物若しくは高分子で修飾する手法が有効である。
Therefore, a method of synthesizing particles by dropping a hydrofluoric acid aqueous solution into an aqueous solution in which a rare earth salt is dissolved using a bottom-up method is effective.
Regarding the separation / purification method after the particle synthesis, an existing method (filtration or centrifugation) can be used and is not particularly limited.
However, such nanoparticles have a strong cohesive force and are easy to form micro-order aggregates, so it is necessary to disperse even primary particles. When considering the dispersion of particles in the sub-micron to nano region, the activity of the particle surface is very high and often exists as an aggregate. To disperse this, synthesis of particles, or A technique of modifying the particle surface with an organic substance or polymer simultaneously with the crushing is effective.

希土類フッ化物微粒子の(B)非極性溶媒への分散方法としては、特に限定しないが、希土類フッ化物微粒子と(B)非極性溶媒とを混合し、溶液中で微粒子の表面処理を行った後に、超音波やビーズミル分散器を用いて分散を行うことにより、所望の粒子径に制御することが、好ましい分散方法の一つである。また溶媒置換を行う方法も可能である。
更に、希土類フッ化物微粒子の微細化には、上記混合液(スラリー)を湿式解砕処理する方法を用いることもできる。湿式解砕処理により溶媒中に分散する希土類フッ化物微粒子の凝集体を微粒子化・分散することができる。
解砕処理法としては、超音波分散法、ビーズミル法、ジェットミル法、ロールミル法、ハンマーミル法、振動ミル法、流星型ボールミル法、サンドミル法、三本ロールミル法等が挙げられる。
The method for dispersing the rare earth fluoride fine particles in the (B) nonpolar solvent is not particularly limited, but after the rare earth fluoride fine particles and the (B) nonpolar solvent are mixed and the surface treatment of the fine particles is performed in the solution. One of preferred dispersion methods is to control to a desired particle size by carrying out dispersion using ultrasonic waves or a bead mill disperser. Further, a method of performing solvent substitution is also possible.
Furthermore, a method of wet crushing the above mixed solution (slurry) can also be used for refining the rare earth fluoride fine particles. Aggregates of rare earth fluoride fine particles dispersed in a solvent can be made into fine particles and dispersed by wet crushing treatment.
Examples of the crushing method include an ultrasonic dispersion method, a bead mill method, a jet mill method, a roll mill method, a hammer mill method, a vibration mill method, a meteor ball mill method, a sand mill method, and a three-roll mill method.

混合・解砕時の液温は、10℃以下に保持するのが好ましく、分散液が固化しない限り(使用する溶媒の融点以下での処理)、液温は低いことが好ましい。液温が高くなると微粒子が凝集し、十分な解砕効果が得られない。   The liquid temperature during mixing and crushing is preferably maintained at 10 ° C. or lower, and the liquid temperature is preferably low as long as the dispersion does not solidify (treatment at the melting point or lower of the solvent used). When the liquid temperature becomes high, the fine particles aggregate and a sufficient crushing effect cannot be obtained.

希土類フッ化物微粒子の解砕後、必要に応じて遠心分離を実施し、分散液中に存在する粗大粒子を除去してもよい。遠心分離後に得られる上澄み液は、解砕が不十分であった比較的大きな凝集体が除かれ、透明度が高く、粒度分布の整った希土類フッ化物微粒子を得ることができる。遠心分離としては、500〜10000回転/分の回転数にて1〜10分間行うことが損失の面で好ましい。   After crushing the rare earth fluoride fine particles, if necessary, centrifugation may be performed to remove coarse particles present in the dispersion. The supernatant obtained after centrifugation is free from relatively large agglomerates that have not been sufficiently crushed, and rare earth fluoride fine particles having high transparency and a well-defined particle size distribution can be obtained. Centrifugation is preferably performed for 1 to 10 minutes at a rotational speed of 500 to 10,000 rotations / minute in terms of loss.

<非極性溶媒>
本発明に用いる、(B)非極性溶媒は、無極性の溶媒である。更に、蒸発速度の速い溶媒は、作業中に蒸発してしまい均一な塗布面ができず、塗り斑の原因となる恐れがある。そのため、溶媒としては、高沸点のものを選択するのが好ましい。
非極性溶媒には、安価で入手しやすく且つ比較的高沸点(即ち蒸発しにくい)のものが多く存在するため、極性有機溶媒と比較して溶媒の蒸発及びそれに関連する前記の諸問題を改善することができる。非極性溶媒は、単独物に限定されず、本発明の効果を損なわない範囲で、誘電率の比較的小さい(誘電率10以下)極性溶媒を含む混合溶媒としてもよい。
<Non-polar solvent>
The (B) nonpolar solvent used in the present invention is a nonpolar solvent. Furthermore, a solvent having a high evaporation rate evaporates during the operation, and a uniform coated surface cannot be formed, which may cause smears. Therefore, it is preferable to select a solvent having a high boiling point.
Many non-polar solvents are cheap, readily available, and have relatively high boiling points (ie, are difficult to evaporate), thus improving solvent evaporation and related problems as compared to polar organic solvents. can do. The nonpolar solvent is not limited to a single substance, and may be a mixed solvent containing a polar solvent having a relatively low dielectric constant (dielectric constant of 10 or less) as long as the effects of the present invention are not impaired.

溶媒の極性の指標としては、溶媒の誘電率が挙げられる。誘電率の値は、溶剤ハンドブック(株式会社講談社発行、浅原昭三ら編)、より引用でき、誘電率計(Scientifica社製、型式:M―870)等を使用して、直接測定することもできる。   Examples of the polarity of the solvent include the dielectric constant of the solvent. The value of dielectric constant can be quoted from Solvent Handbook (published by Kodansha Co., Ltd., edited by Shozo Asahara et al.), And can also be directly measured using a dielectric constant meter (Scientificica, model: M-870). .

非極性又はこの非極性溶媒に混合する低極性の溶媒としては、例えば直鎖状又は分岐状の脂肪族炭化水素、脂肪族不飽和炭化水素、脂環式炭化水素、芳香族炭化水素、これらのハロゲン化物(ハロゲン化炭化水素)等が挙げられる。脂肪族炭化水素としては、例えばペンタン、ヘキサン、ヘプタン、オクタン、デカン、ウンデカン、ドデカン、イソドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカン、等が挙げられる。脂肪族不飽和炭化水素としては、ドデセン、トリデセン、テトラデセン、ペンタデセン、ヘキサデセン、ヘプタデセン、オクタデセン、等が挙げられる。芳香族炭化水素としては、トルエン、キシレン、エチルベンゼン、クメン等が挙げられる。この他、脂環式炭化水素としては、炭素数3以上のシクロアルカン(シクロペンタン、シクロヘキサン、シクロオクタン等)やテトラヒドロフラン等の脂環式エーテルも使用できる。   Nonpolar or low polarity solvents mixed with this nonpolar solvent include, for example, linear or branched aliphatic hydrocarbons, aliphatic unsaturated hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, these Halide (halogenated hydrocarbon) etc. are mentioned. Examples of the aliphatic hydrocarbon include pentane, hexane, heptane, octane, decane, undecane, dodecane, isododecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, and the like. Examples of the aliphatic unsaturated hydrocarbon include dodecene, tridecene, tetradecene, pentadecene, hexadecene, heptadecene, octadecene, and the like. Aromatic hydrocarbons include toluene, xylene, ethylbenzene, cumene and the like. In addition, as the alicyclic hydrocarbons, cycloalkanes having 3 or more carbon atoms (cyclopentane, cyclohexane, cyclooctane, etc.) and alicyclic ethers such as tetrahydrofuran can also be used.

溶媒としては、石油留分、パラフィン系炭化水素、ナフタレン系炭化水素も適応可能であり、これらの例としては、エクソンモービル化学社製の商品名:アイソパーE、アイソパーG、アイソパーH、アイソパーL、フィリップ石油社製の諸品名:ソルトール、出光興産株式会社製の商品名:IPソルベント、石油ナフサでは、昭和シェル石油株式会社製の商品名:S.B.R.シェルゾール70、シェルゾール71、エクソンモービル化学社製の商品名:ベガゾール等が使用できる。これらの溶媒を単独または混合して用いることができる。   As the solvent, petroleum fractions, paraffin hydrocarbons, and naphthalene hydrocarbons are also applicable. Examples of these are trade names of Isopar E, Isopar G, Isopar H, Isopar L, manufactured by ExxonMobil Chemical Co., Ltd. Product names manufactured by Philippe Petroleum Corporation: Saltol, Idemitsu Kosan Co., Ltd. Trade name: IP Solvent, Petroleum Naphtha, Showa Shell Sekiyu Co., Ltd. B. R. Shell sol 70, shell sol 71, trade name manufactured by ExxonMobil Chemical Co., Ltd .: Vegazole and the like can be used. These solvents can be used alone or in combination.

ハロゲン置換の炭化水素系溶媒としては、ジクロロメタン、クロロホルム、四塩化炭素、クロロベンゼン等の塩化炭化水素、フルオロカーボン系溶媒、三フッ化エタン、C14、C16、C18等のC2n+2で表されるパーフルオロアルカン類(住友スリーエム株式会社製、商品名:フロリナートPF5080、フロリナートPF5070等)、フッ素系不活性液体(住友スリーエム株式会社製、商品名:フロリナートFCシリーズ)、フルオロカーボン類(デュポン株式会社製、商品名:クライトックスGPLシリーズ)、等が挙げられえる。 Examples of halogen-substituted hydrocarbon solvents include chlorohydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, chlorobenzene, fluorocarbon solvents, ethane trifluoride, C 6 F 14 , C 7 F 16 , C 8 F 18 and the like. Perfluoroalkanes represented by C n F 2n + 2 (manufactured by Sumitomo 3M Co., Ltd., trade names: Florinato PF5080, Florinato PF5070, etc.), fluorine-based inert liquids (manufactured by Sumitomo 3M Ltd., trade name: Florinato FC series), Fluorocarbons (manufactured by DuPont, trade name: Krytox GPL series), and the like.

本発明で使用される非極性溶媒として、シリコーンオイルも使用できる。シリコーンオイルの具体例としては、市販品としては、信越シリコーン社製、商品名:KF96L、KF994、東レ・ダウコーニング株式会社製、商品名:SH200等がある。
シリコーンオイルとしては、これらの具体例に限定されるものではなく、その分子量により非常に広い粘度範囲のものが入手可能であるが、微粒子の分散性を考えると、0.5〜30mPa・s程度の低粘度のものを用いることが好ましい。これらのオイルは、高い比抵抗を有し、高安定性、高安全性、無臭性、低表面張力といった特徴を有する。
Silicone oil can also be used as the nonpolar solvent used in the present invention. Specific examples of the silicone oil include commercial products manufactured by Shin-Etsu Silicone Co., Ltd., trade names: KF96L, KF994, Toray Dow Corning Co., Ltd., trade name: SH200, and the like.
The silicone oil is not limited to these specific examples, and those having a very wide viscosity range are available depending on the molecular weight, but considering the dispersibility of the fine particles, about 0.5 to 30 mPa · s. It is preferable to use one having a low viscosity. These oils have high specific resistance and are characterized by high stability, high safety, odorlessness, and low surface tension.

<希土類フッ化物微粒子分散液>
希土類フッ化物微粒子分散液中の水分量は、0.5質量%以下、好ましくは0.1質量%以下にすることが望ましい。溶媒中では、水が存在すると分散状態を低下させる。また、磁石への塗布を考えた場合にも、水分量が多く含まれると磁石表面の酸化を促し、磁気特性を低下させる。
<Rare earth fluoride fine particle dispersion>
The amount of water in the rare earth fluoride fine particle dispersion is 0.5% by mass or less, preferably 0.1% by mass or less. In the solvent, the presence of water reduces the dispersion state. Also, when considering application to a magnet, if a large amount of water is contained, oxidation of the magnet surface is promoted and magnetic properties are deteriorated.

本発明の希土類フッ化物微粒子分散液は、ディップやスプレー等により目的物への塗布を行った後、溶媒を除去することによって、目的物の表面に微粒子の膜を形成させることができる。また、ディスペンサー等により、任意の場所にのみ任意量を塗布することも可能である。   The rare earth fluoride fine particle dispersion of the present invention can form a fine particle film on the surface of the target by removing the solvent after being applied to the target by dipping or spraying. It is also possible to apply an arbitrary amount only to an arbitrary place by a dispenser or the like.

溶媒の除去、及び、その後の焼結工程は、NやAr等の不活性ガス雰囲気下で行うことが好ましい。これは、溶媒の蒸発時の気化熱により磁石が冷却され、磁石表面に結露が生じ易いためである。
使用した溶媒の沸点以上の温度で、十分に溶媒を取り除くことで、磁石ブロック又は基板表面等の対象物に希土類フッ化物微粒子膜を形成させることができる。
The removal of the solvent and the subsequent sintering step are preferably performed in an inert gas atmosphere such as N 2 or Ar. This is because the magnet is cooled by the heat of vaporization when the solvent evaporates, and condensation is likely to occur on the magnet surface.
By removing the solvent sufficiently at a temperature equal to or higher than the boiling point of the solvent used, the rare earth fluoride fine particle film can be formed on the object such as the magnet block or the substrate surface.

前述した、希土類フッ化物微粒子分散液を用いた希土類磁石処理用のフィルムは、フィルム状にすることにより、スラリー状の塗布液に比べて微粒子を正確に必要な量を塗布することができ、熱・光等で転写することにより、複雑な図形(一部に穴あき部を持つもの、曲線図形等)、曲面に対して均一に正確に塗布することができる等の特徴を有する。
また、塗布工程の自動化や高速化し易い等の適用性が高い特徴を有する。フィルムは、高分子を溶媒に溶解させた溶液と微粒子を溶媒に分散させた溶液とを混合した塗布液を、フッ素樹脂フィルム、ポリエチレンテレフタレートフィルム、離型紙等の剥離性基材上に塗布し、あるいは不織布等の基材に前記溶液を含浸させて剥離性基材上に載置し、溶媒等を除去して作製することができる。
希土類磁石処理用のフィルムは、タックや粘着性を有していることが好ましく、粘着付与材を添加することにより、タックや粘着性を制御できる。粘着付与材としては、ロジン系、テルペン系、合成石油樹脂系、フェノール樹脂系、キシレン樹脂系、脂環族系石油樹脂、クマロンインデン樹脂、スチレン樹脂、ジシクロペンタジエン樹脂等が挙げられる。
また、希土類磁石処理用のフィルムは、フィルムとしての必要な特性を付与する為、軟化材、酸化防止剤、架橋剤などを加えることもできる。
The film for treating rare earth magnets using the rare earth fluoride fine particle dispersion described above can be applied in a precise amount of fine particles compared to a slurry-like coating liquid by making it into a film. -By transferring with light or the like, it has a feature that it can be applied uniformly and accurately to complex figures (those with a hole in part, curved figures, etc.) and curved surfaces.
In addition, it has a high applicability such as easy application process and high speed. For the film, a coating solution obtained by mixing a solution in which a polymer is dissolved in a solvent and a solution in which fine particles are dispersed in a solvent is applied onto a peelable substrate such as a fluororesin film, a polyethylene terephthalate film, or a release paper. Alternatively, it can be prepared by impregnating a base material such as a nonwoven fabric with the solution and placing it on a peelable base material and removing the solvent or the like.
The film for treating a rare earth magnet preferably has tack and tackiness, and the tack and tackiness can be controlled by adding a tackifier. Examples of the tackifier include rosin, terpene, synthetic petroleum resin, phenol resin, xylene resin, alicyclic petroleum resin, coumarone indene resin, styrene resin, dicyclopentadiene resin and the like.
In addition, the film for treating rare earth magnets can be added with a softening material, an antioxidant, a crosslinking agent, or the like in order to impart the necessary properties as a film.

本発明にて述べる希土類磁石処理用の高分子化合物/希土類フッ化物複合フィルムは、圧力、熱、可視光、紫外線、電子線等を用い希土類磁石へ転写することができる。これらは併用しても良い。   The polymer compound / rare earth fluoride composite film for treating a rare earth magnet described in the present invention can be transferred to a rare earth magnet using pressure, heat, visible light, ultraviolet light, electron beam or the like. These may be used in combination.

以下、本発明の実施例を説明するが、本発明はこれらに限定されるものではない。また、実施例中で記載した粒子径の測定の際に用いたDyFの屈折率は1.55とした。 Examples of the present invention will be described below, but the present invention is not limited thereto. In addition, the refractive index of DyF 3 used in the measurement of the particle diameter described in the examples was 1.55.

[実施例1]
(a)酢酸ジスプロシウム四水和物(和光純薬工業株式会社製):15gを、プラスチック製の容器に入れ、純水:240gを導入した。続いて、卓上型超音波洗浄器を用いて、この液を完全に溶解させた。
(b)上記酢酸ジスプロシウム水溶液を、攪拌羽根を有するモータを用いて、回転数:120回転/分で攪拌した。これにフッ化水素酸水溶液をDyFが生成する化学量論の90%当量で滴下した。
(c)10分間の攪拌終了後、ジスプロシウムフッ化物微粒子水溶液からゲル状の微粒子を濾過にて回収し、形成したジスプロシウムフッ化物微粒子のケークを、酢酸臭がしなくなるまでエタノール(和光純薬工業株式会社製、試薬特級、誘電率:24)で洗浄した。その後、トルエン(和光純薬工業株式会社製、試薬特級、誘電率2.4)で更に洗浄することで極性溶媒系から非極性溶媒へと溶媒を置換した。このようにして得たゲル状のジスプロシウムフッ化物微粒子を回収し、プラスチック製の容器に保管した。回収量は、65gであった。
(d)回収したゲル状のジスプロシウムフッ化物微粒子の固形分濃度を、示差熱・熱重量同時測定装置(TG−DTA、SIIナノテクノロジー社製、商品名:EXSTAR6000)を用いてN雰囲気下での質量減少率を測定することで固形分濃度を算出した。より具体的には、白金パンに採取したゲル状のジスプロシウムフッ化物微粒子:10〜20mgを詰めてN雰囲気下、昇温速度:10℃/分で加熱し、30〜600℃まで昇温させた際の質量変化を測定した。エタノールの沸点:78.4℃、トルエンの沸点:110℃であるため、200℃までの質量変化を、溶媒の減少のみと仮定することで固形分濃度を算出した。その結果、固形分濃度が、13質量%であった。また、ジスプロシウムに結合した水酸基の分解を示す質量減少と発熱を示すDTAピークが275℃付近に観測された。
(e)このように製造したジスプロシウムフッ化物微粒子と、界面活性剤としてのモノオレイン酸デカグリセリルをデカン(C1022)に添加して、ジスプロシウムフッ化物微粒子の固形分濃度:0.5質量%、界面活性剤:0.5質量%、非極性溶媒≧98質量%のジスプロシウムフッ化物微粒子分散液50gを調整した。調整した分散液を超音波攪拌器に移し、1時間ほど超音波を照射することで凝集した微粒子を再分散し、半透明状のジスプロシウムフッ化物微粒子分散液を作製した。尚、全体として100質量%となるが、1質量%の不足分は、当初使用した水分、洗浄を行った際の、エタノール、トルエン成分の在留成分となる。
(f)超音波照射後の分散液を直射日光の当らない平地に静置し、分散状態を観察した。
[Example 1]
(A) Dysprosium acetate tetrahydrate (manufactured by Wako Pure Chemical Industries, Ltd.): 15 g was put in a plastic container, and pure water: 240 g was introduced. Subsequently, this solution was completely dissolved using a desktop ultrasonic cleaner.
(B) The dysprosium acetate aqueous solution was stirred at a rotation speed of 120 rotations / minute using a motor having a stirring blade. An aqueous hydrofluoric acid solution was added dropwise to this at 90% equivalent of the stoichiometric amount of DyF 3 produced.
(C) After completion of stirring for 10 minutes, the gel-like fine particles are recovered from the aqueous dysprosium fluoride fine particle solution by filtration, and the formed dysprosium fluoride fine particle cake is ethanol (Wako Pure Chemical Industries Ltd. Washed with a company-made reagent special grade, dielectric constant: 24). Then, the solvent was substituted from the polar solvent system to the nonpolar solvent by further washing with toluene (manufactured by Wako Pure Chemical Industries, Ltd., reagent special grade, dielectric constant 2.4). The gel-like dysprosium fluoride fine particles thus obtained were collected and stored in a plastic container. The recovered amount was 65 g.
(D) The solid content concentration of the collected gel-like dysprosium fluoride fine particles is measured under a N 2 atmosphere using a differential thermal / thermogravimetric simultaneous measurement apparatus (TG-DTA, manufactured by SII Nanotechnology, trade name: EXSTAR6000). The solid content concentration was calculated by measuring the mass reduction rate. More specifically, gel-like dysprosium fluoride fine particles collected in a platinum pan: 10 to 20 mg are packed, heated in a N 2 atmosphere at a heating rate of 10 ° C./min, and heated to 30 to 600 ° C. The change in mass was measured. Since the boiling point of ethanol was 78.4 ° C. and the boiling point of toluene was 110 ° C., the solid content concentration was calculated by assuming that the mass change up to 200 ° C. was only a decrease in the solvent. As a result, the solid content concentration was 13% by mass. Further, a DTA peak indicating a mass decrease indicating the decomposition of a hydroxyl group bonded to dysprosium and an exotherm were observed at around 275 ° C.
(E) The dysprosium fluoride fine particles thus produced and decaglyceryl monooleate as a surfactant are added to decane (C 10 H 22 ), and the solid content concentration of the dysprosium fluoride fine particles: 0.5 mass %, Surfactant: 0.5 mass%, nonpolar solvent ≧ 98 mass% of dysprosium fluoride fine particle dispersion 50 g was prepared. The prepared dispersion was transferred to an ultrasonic stirrer and irradiated with ultrasonic waves for about 1 hour to redisperse the aggregated fine particles, thereby producing a translucent dysprosium fluoride fine particle dispersion. In addition, although it becomes 100 mass% as a whole, the deficiency of 1 mass% becomes the residence component of ethanol and a toluene component at the time of performing the water | moisture content used initially and washing | cleaning.
(F) The dispersion liquid after ultrasonic irradiation was allowed to stand on a flat ground not exposed to direct sunlight, and the dispersion state was observed.

(界面活性剤種の影響:実施例2〜6)
実施例1(e)項において、界面活性剤のみ変更して、実施例2〜6のジスプロシウムフッ化物微粒子分散液を作製した。分散安定性の評価と共に、下記表2に示す。
評価方法としては、合成から24時間後の分散液に、波長650nmのレーザー光(ワイテックデザイン株式会社製、レーザー半導体光源装置、商品名:LAPO−650)を照射し、コロイド粒子の散乱が生じ、分散状態が良好なものは『○』、コロイド粒子の散乱が弱く、沈降粒子が多いものは『△』、ほとんどの微粒子が沈降し、コロイド粒子の散乱が生じなかったものは『×』とした。
(Influence of surfactant type: Examples 2 to 6)
In Example 1 (e), only the surfactant was changed, and dysprosium fluoride fine particle dispersions of Examples 2 to 6 were prepared. It shows in following Table 2 with evaluation of dispersion stability.
As an evaluation method, the dispersion liquid 24 hours after the synthesis is irradiated with laser light having a wavelength of 650 nm (Latec Design Co., Ltd., laser semiconductor light source device, trade name: LAPO-650), and colloidal particle scattering occurs. “○” indicates that the dispersion state is good, “△” indicates that the colloidal particle scattering is weak and there are many precipitated particles, and “×” indicates that most of the fine particles have settled and no colloidal particle scattering has occurred. .

Figure 2011051851
Figure 2011051851

上記表2に示すように、界面活性剤を添加することで、非極性溶媒中でも希土類フッ化物微粒子を均一に分散させることができた。これらの中でも実施例2のペンタオレイン酸デカグリセリルを添加したものでは、数日間経過後も高い分散安定性を示した。ペンタオレイン酸デカグリセリルは、疎水基(オレイン酸残基)と、親水基(水酸基)の数がほぼ同等であり、粒子表面へ吸着する親水基と、立体反発をもたらす疎水基が、バランス良く存在していることが、高い分散性効果を生じさせたと考えられる。   As shown in Table 2 above, by adding a surfactant, the rare earth fluoride fine particles could be uniformly dispersed even in a nonpolar solvent. Among these, the addition of decaglyceryl pentaoleate of Example 2 showed high dispersion stability even after several days. Decaglyceryl pentaoleate has approximately the same number of hydrophobic groups (oleic acid residues) and hydrophilic groups (hydroxyl groups), and there is a good balance of hydrophilic groups that adsorb to the particle surface and hydrophobic groups that cause steric repulsion. This is considered to have caused a high dispersibility effect.

[比較例1]
実施例1と同様にして界面活性剤を含まない分散液を作製した。界面活性剤を含まない分散液では、静置後、直ちに沈降が生じ、レーザーを照射してもコロイド粒子の散乱が生じなかった。
[Comparative Example 1]
A dispersion containing no surfactant was prepared in the same manner as in Example 1. In the dispersion containing no surfactant, sedimentation occurred immediately after standing, and no colloidal particle scattering occurred even when irradiated with a laser.

[比較例2]
市販のDyF粉末(和光純薬工業株式会社製)を乳鉢で粉砕し、得られたDyF粉末:0.25gを、前述した実施例2にて分散性が良好であったペンタオレイン酸デカグリセリル:0.25gとデカン:49.5gとの混合物と混合し、超音波攪拌器を用いて1時間ほど超音波を照射した。
このように調整した分散液をレーザー回折にて粒度分布測定を行ったところ、D50=0.9μmであった。超音波照射後の分散液は、分散性に乏しく、静置後、直ちに微粒子の沈降が生じた。混合前のDyF粉末、分散液中のDyF粉末を採取し、それぞれについて示差熱・熱重量同時測定装置(TG−DTA)にて測定を行ったが、何れも275℃付近に実施例1、(d)項にて観測された粒子表面の水酸基の分解(質量減少、発熱のDTAピーク)が観測されなかった。このため、同じ界面活性剤を用いても、粒子表面に水酸基等の親水性基が存在しない場合には、界面活性剤の十分な吸着力が得られず、分散安定化効果も低いと推察される。
また、粉末をビーズミルや超音波等で物理的に粉砕するプロセスでは、ナノサイズの微粒子を得ることが難しく、サブミクロンオーダー程度の微粒子では沈降しやすいことも要因の一つと考えられる。
[Comparative Example 2]
A commercially available DyF 3 powder (manufactured by Wako Pure Chemical Industries, Ltd.) was pulverized in a mortar, and 0.25 g of the obtained DyF 3 powder: pentaoleic acid deca having good dispersibility in Example 2 described above. It mixed with the mixture of glyceryl: 0.25g and decane: 49.5g, and irradiated the ultrasonic wave for about 1 hour using the ultrasonic stirrer.
When the particle size distribution of the dispersion thus prepared was measured by laser diffraction, D 50 = 0.9 μm. The dispersion after ultrasonic irradiation was poor in dispersibility, and fine particles settled immediately after standing. DyF 3 powder before mixing, taken DyF 3 powder in the dispersion has been measured by differential thermal-thermogravimetric simultaneous measurement apparatus (TG-DTA) for each, both performed in the vicinity of 275 ° C. Example 1 No decomposition of the hydroxyl group on the particle surface (mass decrease, exothermic DTA peak) observed in the item (d) was observed. For this reason, even if the same surfactant is used, if there is no hydrophilic group such as a hydroxyl group on the particle surface, sufficient adsorption force of the surfactant cannot be obtained, and it is assumed that the dispersion stabilizing effect is low. The
Further, in the process of physically pulverizing the powder with a bead mill or ultrasonic waves, it is difficult to obtain nano-sized fine particles, and it is considered that one of the factors is that the fine particles of the order of submicron are likely to settle.

[比較例3]
実施例1と同様にして、界面活性剤を、ビックケミー・ジャパン株式会社製の溶剤系湿潤分散剤、商品名:DISPERBYK2020(変性アクリル系ブロック共重合物)に替えた分散液を作製した。得られた分散液の安定性は乏しく、静置後直ちに微粒子の沈降が見られた。超音波照射後、1時間後には、レーザー光を照射してもコロイド粒子の散乱は生じなかった。
[Comparative Example 3]
In the same manner as in Example 1, a dispersion was prepared by replacing the surfactant with a solvent-based wetting and dispersing agent manufactured by Big Chemie Japan, Inc., trade name: DISPERBYK2020 (modified acrylic block copolymer). The resulting dispersion was poor in stability, and fine particles settled immediately after standing. One hour after the ultrasonic irradiation, no colloidal particle scattering occurred even when laser light was irradiated.

[比較例4]
実施例1と同様にして、界面活性剤を、ビックケミー・ジャパン株式会社製の溶剤系湿潤分散剤、商品名:DISPERBYK166(ブロック共重合物)に替えた分散液を作製した。得られた分散液の安定性は乏しく、静置後直ちに微粒子の沈降が見られた。超音波照射後、1時間後には、レーザー光を照射してもコロイド粒子の散乱は生じなかった。
[Comparative Example 4]
In the same manner as in Example 1, a dispersion was prepared by replacing the surfactant with a solvent-based wetting and dispersing agent manufactured by Big Chemie Japan, Inc., trade name: DISPERBYK166 (block copolymer). The resulting dispersion was poor in stability, and fine particles settled immediately after standing. One hour after the ultrasonic irradiation, no colloidal particle scattering occurred even when laser light was irradiated.

[比較例5]
実施例1と同様にして、界面活性剤を、AGCセイミケミカル株式会社製、商品名:SURFLON S−386(パーフルオロアルキル含有オリゴマー)に替えた分散液を作製した。得られた分散液の安定性は乏しく、静置後直ちに微粒子の沈降が見られた。超音波照射後、1時間後には、レーザー光を照射してもコロイド粒子の散乱は生じなかった。
[Comparative Example 5]
In the same manner as in Example 1, a dispersion was produced in which the surfactant was changed to AGC Seimi Chemical Co., Ltd., trade name: SURFLON S-386 (perfluoroalkyl-containing oligomer). The resulting dispersion was poor in stability, and fine particles settled immediately after standing. One hour after the ultrasonic irradiation, no colloidal particle scattering occurred even when laser light was irradiated.

(溶媒の分散性への影響:実施例7〜14)
次に、界面活性剤として分散性の良好であったヘキサオレイン酸デカグリセリルを用いて実施例1(e)項において、分散媒をデカンから各種非極性溶媒に変更して、実施例7〜14のジスプロシウムフッ化物微粒子分散液を作製した。
分散安定性については、合成から24時間後の分散液に、波長650nmのレーザー光(ワイテックデザイン株式会社製、レーザー半導体光源装置、商品名:LAPO−650)を照射し、コロイド粒子の散乱が生じ、分散状態が良好なものは『○』、コロイド粒子の散乱が弱く、沈降粒子が多いものは『△』、ほとんどの微粒子が沈降し、コロイド粒子の散乱が生じなかったものは『×』とした。
また、分散性の評価として、超音波攪拌から24時間後の分散液の上澄み液を採取し、動的光散乱法(シスメックス株式会社、商品名:ゼータサイザーナノS、測定範囲:3nm〜3000nm)にて、Z平均粒子径を測定した。検討内容について、下記表3に示す。
(Influence on solvent dispersibility: Examples 7 to 14)
Next, the dispersion medium was changed from decane to various nonpolar solvents in Example 1 (e) using decaglyceryl hexaoleate, which had good dispersibility as the surfactant, and Examples 7 to 14 were used. A dysprosium fluoride fine particle dispersion was prepared.
Regarding dispersion stability, the dispersion liquid 24 hours after synthesis was irradiated with laser light having a wavelength of 650 nm (Latec Semiconductor Light Source, product name: LAPO-650, produced by Wytech Design Co., Ltd.), resulting in scattering of colloidal particles. , “○” indicates that the dispersion state is good, “△” indicates that the colloidal particle scattering is weak and there are many precipitated particles, and “×” indicates that most of the fine particles have settled and no colloidal particle scattering has occurred. did.
In addition, as an evaluation of dispersibility, the supernatant of the dispersion after 24 hours from ultrasonic stirring was collected, and the dynamic light scattering method (Sysmex Corporation, trade name: Zetasizer Nano S, measurement range: 3 nm to 3000 nm). The Z average particle size was measured. The examination contents are shown in Table 3 below.

Figure 2011051851
Figure 2011051851

上記表3より、デカンとトルエンの混合溶液(実施例8)、ヘキサン(実施例11)、シクロヘキサン(実施例12)、イソパラフィン系炭化水素(実施例13)などの非極性溶媒では、分散液の状態が良好であり、平均粒子径も小さくなる傾向が見られたが、極性溶媒と非極性溶媒を混合した分散媒(実施例7)では、粒子径が大きくなり、白濁と微量の沈降粒子が見られた。一方、トルエン(実施例9)、キシレン(実施例10)などの芳香族炭化水素では、超音波照射後の分散液が、透明になった。この透明は、粒子の沈降によりもたらされたものではなく、微粒子の屈折率と、溶媒の屈折率とが、共に約1.5であり、散乱が生じないか又は弱いために、そのように見えるものと推定される。
シリコーンオイル(実施例14)では、若干白濁が見られたが、SRX310(東レ・ダウコーニング株式会社製、商品名)は、粘性(100mPa・s)を示す材料であるため、界面活性剤の効果に加えて、分散媒の粘性からも沈降が抑制されている。そのため簡単な前処理(攪拌など)を行うことで実使用上問題ないと考えられる。
尚、参考例1は、溶媒として、極性の高い酢酸エチルを用いた例を記載してある。この場合、平均粒子径がやや大きく、分散安定性もそれ程望ましいものではなかった。
From Table 3 above, in a nonpolar solvent such as a mixed solution of decane and toluene (Example 8), hexane (Example 11), cyclohexane (Example 12), isoparaffin hydrocarbon (Example 13), Although the state was good and the average particle size tended to decrease, in the dispersion medium (Example 7) in which a polar solvent and a nonpolar solvent were mixed, the particle size was increased, and cloudiness and a small amount of precipitated particles were observed. It was seen. On the other hand, with aromatic hydrocarbons such as toluene (Example 9) and xylene (Example 10), the dispersion after ultrasonic irradiation became transparent. This transparency is not caused by particle sedimentation, as the refractive index of the microparticles and the refractive index of the solvent are both about 1.5, so that scattering does not occur or is weak. Presumed to be visible.
In the silicone oil (Example 14), some cloudiness was observed, but SRX310 (trade name, manufactured by Toray Dow Corning Co., Ltd.) is a material exhibiting viscosity (100 mPa · s). In addition, sedimentation is also suppressed by the viscosity of the dispersion medium. Therefore, it is considered that there is no problem in practical use by performing simple pretreatment (such as stirring).
Reference Example 1 describes an example in which highly polar ethyl acetate is used as a solvent. In this case, the average particle size was slightly large and the dispersion stability was not so desirable.

(希土類フッ化物膜の作製)
[実施例15]
実施例9の希土類フッ化物微粒子分散液を金属基板に塗布し、室温(25℃)下、10mmHg以下で1時間乾燥・溶媒除去を行った。その後、同金属基板をN雰囲気下で200℃に加熱し、基板上に均一な希土類フッ化物薄膜を形成させた。形成されたジスプロシウムフッ化物微粒子膜表面のSEM画像を図1に示す。乾燥後の金属基板上には、均質な希土類フッ化物微粒子膜が形成された。
(Preparation of rare earth fluoride film)
[Example 15]
The rare earth fluoride fine particle dispersion of Example 9 was applied to a metal substrate, and dried at room temperature (25 ° C.) at 10 mmHg or less for 1 hour to remove the solvent. Thereafter, the metal substrate was heated to 200 ° C. in an N 2 atmosphere to form a uniform rare earth fluoride thin film on the substrate. An SEM image of the surface of the formed dysprosium fluoride fine particle film is shown in FIG. A homogeneous rare earth fluoride fine particle film was formed on the dried metal substrate.

[実施例16]
実施例13の希土類フッ化物微粒子分散液を金属基板に塗布し、室温(25℃)下、10mmHg以下で1時間乾燥・溶媒除去を行った。その後、同金属基板をN雰囲気下で200℃に加熱し、基板上に均一な希土類フッ化物薄膜を形成させた。形成されたジスプロシウムフッ化物微粒子膜表面のSEM画像を図2に示す。乾燥後の金属基板上には、均質な希土類フッ化物微粒子膜が形成された。
[Example 16]
The rare earth fluoride fine particle dispersion of Example 13 was applied to a metal substrate, and dried at room temperature (25 ° C.) at 10 mmHg or less for 1 hour to remove the solvent. Thereafter, the metal substrate was heated to 200 ° C. in an N 2 atmosphere to form a uniform rare earth fluoride thin film on the substrate. An SEM image of the surface of the formed dysprosium fluoride fine particle film is shown in FIG. A homogeneous rare earth fluoride fine particle film was formed on the dried metal substrate.

[比較例6]
比較例1の分散液を用いて、金属基板上に希土類フッ化物膜を作製した。製膜条件は、実施例15と同一であり、形成されたジスプロシウムフッ化物微粒子膜のSEM画像を図3に示す。比較例1の分散液は、微粒子の沈降が見られるため、超音波攪拌後直ちに塗布を行ったが、界面活性剤を含まない分散液では、溶媒乾燥後の粒子の凝集が強く、均一膜を作製することが困難であった。
[Comparative Example 6]
Using the dispersion liquid of Comparative Example 1, a rare earth fluoride film was produced on a metal substrate. The film forming conditions are the same as in Example 15, and the SEM image of the formed dysprosium fluoride fine particle film is shown in FIG. The dispersion of Comparative Example 1 was coated immediately after ultrasonic stirring because of the precipitation of fine particles. However, in the dispersion containing no surfactant, the aggregation of particles after solvent drying was strong and a uniform film was formed. It was difficult to produce.

[比較例7]
(a)酢酸ジスプロシウム四水和物:15gを、プラスチック製の容器に入れ、純水:240gを導入した。続いて、卓上型超音波洗浄器を用いて、この液を完全に溶解させた。
(b)5℃に冷却した上記酢酸ジスプロシウム水溶液を、攪拌羽根を有するモータを用いて、回転数:500回転/分で攪拌した。これに5℃に冷却した2質量%フッ化水素酸水溶液をDyFが生成する化学量論の95%当量で滴下した。
(c)10分間の攪拌終了後、ジスプロシウムフッ化物微粒子水溶液からゲル状の微粒子を濾過にて回収し、形成したジスプロシウムフッ化物微粒子のケークを、酢酸臭がしなくなるまで数回に分けてエタノールで洗浄した。このようにして得たゲル状のジスプロシウムフッ化物微粒子を回収し、プラスチック製の容器に保管した。回収量は、72gであった。
(d)回収したゲル状のジスプロシウムフッ化物微粒子の固形分濃度を示差熱・熱重量同時測定装置で同様に算出した結果、固形分濃度が12質量%であった。このように製造したゲル状のジスプロシウムフッ化物微粒子をエタノールで更に希釈し、界面活性剤を添加せずにジスプロシウムフッ化物微粒子の固形分濃度0.5質量%のエタノール分散液50gを調整した。
(a)〜(d)にて作製したジスプロシウムフッ化物微粒子エタノール分散液を用いて実施例16と同様に塗布を行った。形成されたDyフッ化物微粒子膜表面のSEM画像を図4に示す。エタノールは揮発性が強く、塗布後、直ちに分散媒が蒸発してしまうため、実施例18に比べて塗り斑が強く、かつ再現性にも難があることが分かった。また、乾燥後のジスプロシウムフッ化物微粒子膜も接着性に乏しく、粒子の剥離が実施例18に比べて強いことも問題である。
[Comparative Example 7]
(A) Dysprosium acetate tetrahydrate: 15 g was put in a plastic container, and 240 g of pure water was introduced. Subsequently, this solution was completely dissolved using a desktop ultrasonic cleaner.
(B) The dysprosium acetate aqueous solution cooled to 5 ° C. was stirred at a rotation speed of 500 rotations / minute using a motor having a stirring blade. A 2% by mass hydrofluoric acid aqueous solution cooled to 5 ° C. was added dropwise thereto at a stoichiometric amount of 95% equivalent of DyF 3 .
(C) After completion of stirring for 10 minutes, gel-like fine particles are recovered from the aqueous solution of dysprosium fluoride fine particles by filtration, and the cake of the formed dysprosium fluoride fine particles is divided into ethanol several times until the odor of acetic acid disappears. Washed. The gel-like dysprosium fluoride fine particles thus obtained were collected and stored in a plastic container. The recovered amount was 72 g.
(D) The solid content concentration of the collected gel-like dysprosium fluoride fine particles was calculated in the same manner using a differential thermal and thermogravimetric simultaneous measurement apparatus. As a result, the solid content concentration was 12% by mass. The gel-like dysprosium fluoride fine particles produced in this way were further diluted with ethanol, and 50 g of an ethanol dispersion having a solid content concentration of 0.5% by mass of the dysprosium fluoride fine particles was prepared without adding a surfactant.
Application was performed in the same manner as in Example 16 using the dysprosium fluoride fine particle ethanol dispersion prepared in (a) to (d). FIG. 4 shows an SEM image of the surface of the formed Dy fluoride fine particle film. Since ethanol has strong volatility and the dispersion medium evaporates immediately after application, it was found that smear is stronger than Example 18 and reproducibility is also difficult. Further, the dysprosium fluoride fine particle film after drying also has poor adhesion, and the problem is that the particle peeling is stronger than that in Example 18.

(希土類フッ化物フィルムの作製)
[実施例17]
希土類フッ化物微粒子分散液と高分子化合物を混合し、溶媒を乾燥することにより得られる高分子化合物/希土類フッ化物複合フィルムを作製した。
実施例1(a)〜(e)項にて作製したゲル状のジスプロシウムフッ化物微粒子:10gを、酢酸エチル:トルエン=1:1の混合溶媒:10g、ペンタオレイン酸デカグリセリル:0.5gと混合し、氷冷しながら超音波攪拌器にて攪拌した。このように調整した分散液を固形分:6質量%のアクリルゴム(ナガセケムテックス株式会社製、商品名:HTR860−P3)と撹拌混合し、溶液Aを作製した。得られた溶液Aを、離型処理を施したポリエチレンテレフタレートフィルム上に塗布し、加熱乾燥を行うことで希土類磁石処理用フィルムを得た。乾燥後の厚みが30μmであった。
得られた希土類磁石処理用フィルムを、6mm×6mm×1mmの磁石表面に載置し、背面から100℃に加熱したロールで圧力を加えた。離型処理を施したポリエチレンテレフタレートフィルムを剥がしたところ、希土類磁石処理用フィルムが磁石に転写された。
(Preparation of rare earth fluoride film)
[Example 17]
A polymer compound / rare earth fluoride composite film obtained by mixing the rare earth fluoride fine particle dispersion and the polymer compound and drying the solvent was produced.
Gel dysprosium fluoride fine particles prepared in Example 1 (a) to (e): 10 g, mixed solvent of ethyl acetate: toluene = 1: 1: 10 g, decaglyceryl pentaoleate: 0.5 g The mixture was mixed and stirred with an ultrasonic stirrer while cooling with ice. The dispersion thus prepared was stirred and mixed with an acrylic rubber (trade name: HTR860-P3, manufactured by Nagase ChemteX Corporation) having a solid content of 6% by mass to prepare a solution A. The obtained solution A was applied onto a polyethylene terephthalate film that had been subjected to a mold release treatment, and heat-dried to obtain a rare earth magnet treatment film. The thickness after drying was 30 μm.
The obtained film for treating rare earth magnets was placed on a 6 mm × 6 mm × 1 mm magnet surface, and pressure was applied with a roll heated to 100 ° C. from the back surface. When the polyethylene terephthalate film subjected to the mold release treatment was peeled off, the rare earth magnet treatment film was transferred to the magnet.

(希土類磁石処理用フィルムの作製及びフィルムの転写方法)
ジスプロシウム及びテルビウム等のフッ化物微粒子を溶媒に分散させて、スラリー状にした後、磁石表面に付着させる方法では、溶媒を除去した際に微粒子同士又は微粒子と磁石表面との接着力に乏しく、搬出や熱処理(吸収処理)工程中に磁石表面の微粒子の剥離が生じうる。この現象は、スラリーの濃度が高くなるにつれてより顕著になり、貴重な原料が無駄になってしまう。
上記のように希土類フッ化物から選ばれる少なくとも1種以上の微粒子と高分子とを含むフィルムを用いることにより、磁石表面に希土類フッ化物の微粒子を均一に存在させることができ、磁石表面における塗布量を制御できる。また、高価な装置が必要なく、対象物表面の特定部位に選択的に塗布できること等の特徴を有し、希土類磁石の磁気特性改善の為に有用である。
(Preparation of rare earth magnet processing film and film transfer method)
In a method in which fluoride fine particles such as dysprosium and terbium are dispersed in a solvent and made into a slurry, and then adhered to the magnet surface, when the solvent is removed, the adhesion between the fine particles or between the fine particles and the magnet surface is poor, and it is carried out. During the heat treatment (absorption treatment) process, fine particles on the magnet surface may be peeled off. This phenomenon becomes more prominent as the slurry concentration increases, and valuable raw materials are wasted.
By using a film containing at least one kind of fine particles selected from rare earth fluorides and a polymer as described above, the fine particles of rare earth fluoride can be uniformly present on the magnet surface, and the coating amount on the magnet surface Can be controlled. In addition, it has features such that an expensive apparatus is not required and can be selectively applied to a specific part of the surface of the object, and is useful for improving the magnetic properties of the rare earth magnet.

Claims (15)

(A)構造内に親水性基を有する希土類フッ化物微粒子と、(B)非極性溶媒と、(C)ノニオン系界面活性剤とを含む、希土類フッ化物微粒子分散液。   A rare earth fluoride fine particle dispersion comprising (A) a rare earth fluoride fine particle having a hydrophilic group in the structure, (B) a nonpolar solvent, and (C) a nonionic surfactant. 請求項1において、(B)非極性溶媒が、誘電率10以下の非極性溶媒、又は、この誘電率10以下の非極性溶媒を含む2種類以上の混合溶液である希土類フッ化物微粒子分散液。   2. The rare earth fluoride fine particle dispersion according to claim 1, wherein (B) the nonpolar solvent is a nonpolar solvent having a dielectric constant of 10 or less, or a mixed solution of two or more kinds containing a nonpolar solvent having a dielectric constant of 10 or less. 請求項1又は2において、希土類が、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sc、Yの内、少なくとも一種類以上を含むものである希土類フッ化物微粒子分散液。   3. The rare earth according to claim 1, wherein the rare earth is at least one of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, and Y. A rare earth fluoride fine particle dispersion containing 請求項1乃至3の何れかにおいて、希土類の内、Tb又はDyが、50atm%以上含まれている希土類フッ化物微粒子分散液。   4. The rare earth fluoride fine particle dispersion according to claim 1, wherein Tb or Dy is contained in an amount of 50 atm% or more among the rare earths. 請求項1乃至4の何れかにおいて、希土類フッ化物微粒子の親水性基が、水酸基である希土類フッ化物微粒子分散液。   5. The rare earth fluoride fine particle dispersion according to claim 1, wherein the hydrophilic group of the rare earth fluoride fine particles is a hydroxyl group. 請求項1乃至5の何れかにおいて、希土類フッ化物微粒子が、その平均粒子径を、0.01〜10μmとする希土類フッ化物微粒子分散液。   6. The rare earth fluoride fine particle dispersion according to claim 1, wherein the rare earth fluoride fine particles have an average particle size of 0.01 to 10 [mu] m. 請求項1乃至6の何れかにおいて、(C)ノニオン系界面活性剤が、炭素数12以上の高級脂肪酸のエステル又はエーテルを、少なくとも1種以上含む希土類フッ化物微粒子分散液。   7. The rare earth fluoride fine particle dispersion according to claim 1, wherein the (C) nonionic surfactant contains at least one ester or ether of a higher fatty acid having 12 or more carbon atoms. 請求項1乃至6の何れかにおいて、(C)ノニオン系界面活性剤が、ポリグリセリンのヒドロキシ基の内1つ以上に、脂肪酸がエステル化したものを含む希土類フッ化物微粒子分散液。   The rare earth fluoride fine particle dispersion according to any one of claims 1 to 6, wherein (C) the nonionic surfactant contains a fatty acid esterified in one or more of the hydroxy groups of polyglycerol. 請求項1乃至8の何れかにおいて、25℃における分散液の粘度が、10mPa・s以下である希土類フッ化物微粒子分散液。   9. The rare earth fluoride fine particle dispersion according to claim 1, wherein the viscosity of the dispersion at 25 ° C. is 10 mPa · s or less. 請求項1乃至9の何れかにおいて、分散液全体を100質量%として、希土類フッ化物の含有量が、10質量%以下、界面活性剤の含有量が、10質量%以下である希土類フッ化物微粒子分散液。   10. The rare earth fluoride fine particle according to claim 1, wherein the total dispersion is 100 mass%, the rare earth fluoride content is 10 mass% or less, and the surfactant content is 10 mass% or less. Dispersion. 請求項1乃至10の何れかに記載のフッ化物微粒子分散液を用いた希土類焼結磁石。   A rare earth sintered magnet using the fluoride fine particle dispersion according to any one of claims 1 to 10. 請求項1乃至10の何れかに記載のフッ化物微粒子分散液を用いた希土類磁粉。   Rare earth magnetic powder using the fluoride fine particle dispersion according to any one of claims 1 to 10. 請求項1乃至10の何れかに記載の希土類フッ化物微粒子分散液と、高分子化合物とを混合し、溶媒を乾燥することにより得られる高分子化合物/希土類フッ化物複合フィルム。   A polymer compound / rare earth fluoride composite film obtained by mixing the rare earth fluoride fine particle dispersion liquid according to claim 1 and a polymer compound and drying the solvent. 以下の工程により製造される希土類フッ化物微粒子分散液の製造方法。
(a)希土類の塩が溶解する水溶液にフッ化水素酸水溶液を滴下して、希土類フッ化物微粒子を合成する工程。
(b)希土類フッ化物粒子を、ノニオン系の界面活性剤を用いて疎水化する工程。
(c)疎水化した希土類フッ化物粒子を、非極性溶媒中に再分散させる工程。
A method for producing a rare earth fluoride fine particle dispersion produced by the following steps.
(A) A step of adding hydrofluoric acid aqueous solution dropwise to an aqueous solution in which a rare earth salt is dissolved to synthesize rare earth fluoride fine particles.
(B) A step of hydrophobizing the rare earth fluoride particles using a nonionic surfactant.
(C) A step of redispersing the hydrophobized rare earth fluoride particles in a nonpolar solvent.
請求項1乃至10の何れかに記載の希土類フッ化物微粒子分散液を、対象物表面に塗布し、乾燥・溶媒除去後、真空又は不活性ガス雰囲気下にて熱処理して、対象物表面に均一な薄膜を形成させる希土類フッ化物薄膜の製造方法。   The rare earth fluoride fine particle dispersion according to any one of claims 1 to 10 is applied to the surface of an object, dried and solvent-removed, and then heat-treated in a vacuum or an inert gas atmosphere so that the surface of the object is uniform. Method for producing a rare earth fluoride thin film to form a thin film.
JP2009203575A 2009-09-03 2009-09-03 Rare earth fluoride fine particle dispersion, method for producing the dispersion, method for producing rare earth fluoride thin film using the dispersion, method for producing polymer compound/rare earth fluoride composite film using the dispersion, and rare earth sintered magnet using the dispersion Pending JP2011051851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009203575A JP2011051851A (en) 2009-09-03 2009-09-03 Rare earth fluoride fine particle dispersion, method for producing the dispersion, method for producing rare earth fluoride thin film using the dispersion, method for producing polymer compound/rare earth fluoride composite film using the dispersion, and rare earth sintered magnet using the dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009203575A JP2011051851A (en) 2009-09-03 2009-09-03 Rare earth fluoride fine particle dispersion, method for producing the dispersion, method for producing rare earth fluoride thin film using the dispersion, method for producing polymer compound/rare earth fluoride composite film using the dispersion, and rare earth sintered magnet using the dispersion

Publications (1)

Publication Number Publication Date
JP2011051851A true JP2011051851A (en) 2011-03-17

Family

ID=43941264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009203575A Pending JP2011051851A (en) 2009-09-03 2009-09-03 Rare earth fluoride fine particle dispersion, method for producing the dispersion, method for producing rare earth fluoride thin film using the dispersion, method for producing polymer compound/rare earth fluoride composite film using the dispersion, and rare earth sintered magnet using the dispersion

Country Status (1)

Country Link
JP (1) JP2011051851A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014063996A (en) * 2012-08-31 2014-04-10 Shin Etsu Chem Co Ltd Method for producing rare earth permanent magnet
JP2014063998A (en) * 2012-08-31 2014-04-10 Shin Etsu Chem Co Ltd Method for producing rare earth permanent magnet
JP2014177443A (en) * 2013-03-15 2014-09-25 Tokuyama Dental Corp Inorganic agglomerated particles, organic-inorganic composite filler, and production method thereof
JP2015154051A (en) * 2014-02-19 2015-08-24 信越化学工業株式会社 Method for manufacturing rare earth permanent magnet
JP2016122861A (en) * 2015-08-28 2016-07-07 ティアンヘ (パオトウ) アドヴァンスト テック マグネット カンパニー リミテッド Manufacturing method for rare earth permanent magnet material
KR101733905B1 (en) * 2013-03-18 2017-05-08 인터메탈릭스 가부시키가이샤 RFeB-BASED MAGNET PRODUCTION METHOD, RFeB-BASED MAGNET, AND COATING MATERIAL FOR GRAIN BOUNDARY DIFFUSION PROCESS
US10017871B2 (en) 2014-02-19 2018-07-10 Shin-Etsu Chemical Co., Ltd. Electrodepositing apparatus and preparation of rare earth permanent magnet
US10181377B2 (en) 2012-08-31 2019-01-15 Shin-Etsu Chemical Co., Ltd. Production method for rare earth permanent magnet
CN110408926A (en) * 2019-08-30 2019-11-05 泮敏翔 A kind of preparation method of obdurability high-performance samarium-cobalt magnet
JP2020013998A (en) * 2018-07-20 2020-01-23 煙台首鋼磁性材料株式有限公司 HEAVY RARE EARTH ELEMENT DIFFUSION TREATMENT METHOD FOR Nd-Fe-B SYSTEM SINTERED PERMANENT MAGNET
CN114914077A (en) * 2022-05-18 2022-08-16 北京工业大学 Coating slurry and preparation method of high-performance neodymium iron boron magnet
WO2022249730A1 (en) * 2021-05-26 2022-12-01 ステラケミファ株式会社 Liquid dispersion of fluoride particles, composition for forming optical film, and optical film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103904A (en) * 1987-02-25 1989-04-21 Nippon Shokubai Kagaku Kogyo Co Ltd Production of inorganic globular particulates
JPH02158691A (en) * 1988-10-21 1990-06-19 Rhone Poulenc Chim Rare earth element halide dispersion
JPH08239202A (en) * 1994-11-23 1996-09-17 Eastman Kodak Co Metal halide prepared by sol/gel method,its film and method of preparing them
JPH11279537A (en) * 1998-03-25 1999-10-12 C I Kasei Co Ltd Aqueous dispersion of cerium oxide ultramicroparticle and its production
WO2005044773A1 (en) * 2003-10-09 2005-05-19 Murata Manufacturing Co.,Ltd. Rare earth metal compound in aqueous solvent, method for producing same, and method for producing ceramic powder using same
JP2006282503A (en) * 2006-04-10 2006-10-19 Tohoku Techno Arch Co Ltd Organically modified fine particles
JP2008081380A (en) * 2006-09-29 2008-04-10 Hitachi Chem Co Ltd Processing liquid and method for forming fluoride-coated film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103904A (en) * 1987-02-25 1989-04-21 Nippon Shokubai Kagaku Kogyo Co Ltd Production of inorganic globular particulates
JPH02158691A (en) * 1988-10-21 1990-06-19 Rhone Poulenc Chim Rare earth element halide dispersion
JPH08239202A (en) * 1994-11-23 1996-09-17 Eastman Kodak Co Metal halide prepared by sol/gel method,its film and method of preparing them
JPH11279537A (en) * 1998-03-25 1999-10-12 C I Kasei Co Ltd Aqueous dispersion of cerium oxide ultramicroparticle and its production
WO2005044773A1 (en) * 2003-10-09 2005-05-19 Murata Manufacturing Co.,Ltd. Rare earth metal compound in aqueous solvent, method for producing same, and method for producing ceramic powder using same
JP2006282503A (en) * 2006-04-10 2006-10-19 Tohoku Techno Arch Co Ltd Organically modified fine particles
JP2008081380A (en) * 2006-09-29 2008-04-10 Hitachi Chem Co Ltd Processing liquid and method for forming fluoride-coated film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013040489; Hui Zhang et.al.: 'Synthesis and characterization of ultrafine CeF3 nanoparticles modified by catanionic surfactant via' Journal of Colloid and Interface Science Volume 302, Issue 2, 20061015, P.509-515 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10138564B2 (en) 2012-08-31 2018-11-27 Shin-Etsu Chemical Co., Ltd. Production method for rare earth permanent magnet
JP2014063998A (en) * 2012-08-31 2014-04-10 Shin Etsu Chem Co Ltd Method for producing rare earth permanent magnet
JP2014063996A (en) * 2012-08-31 2014-04-10 Shin Etsu Chem Co Ltd Method for producing rare earth permanent magnet
US10179955B2 (en) 2012-08-31 2019-01-15 Shin-Etsu Chemical Co., Ltd. Production method for rare earth permanent magnet
US10181377B2 (en) 2012-08-31 2019-01-15 Shin-Etsu Chemical Co., Ltd. Production method for rare earth permanent magnet
JP2014177443A (en) * 2013-03-15 2014-09-25 Tokuyama Dental Corp Inorganic agglomerated particles, organic-inorganic composite filler, and production method thereof
US10475561B2 (en) 2013-03-18 2019-11-12 Intermetallics Co., Ltd. RFeB system magnet production method, RFeB system magnet, and coating material for grain boundary diffusion treatment
KR101733905B1 (en) * 2013-03-18 2017-05-08 인터메탈릭스 가부시키가이샤 RFeB-BASED MAGNET PRODUCTION METHOD, RFeB-BASED MAGNET, AND COATING MATERIAL FOR GRAIN BOUNDARY DIFFUSION PROCESS
US10017871B2 (en) 2014-02-19 2018-07-10 Shin-Etsu Chemical Co., Ltd. Electrodepositing apparatus and preparation of rare earth permanent magnet
US9845545B2 (en) 2014-02-19 2017-12-19 Shin-Etsu Chemical Co., Ltd. Preparation of rare earth permanent magnet
JP2015154051A (en) * 2014-02-19 2015-08-24 信越化学工業株式会社 Method for manufacturing rare earth permanent magnet
US10526715B2 (en) 2014-02-19 2020-01-07 Shin-Etsu Chemical Co., Ltd. Preparation of rare earth permanent magnet
JP2016122861A (en) * 2015-08-28 2016-07-07 ティアンヘ (パオトウ) アドヴァンスト テック マグネット カンパニー リミテッド Manufacturing method for rare earth permanent magnet material
JP2020013998A (en) * 2018-07-20 2020-01-23 煙台首鋼磁性材料株式有限公司 HEAVY RARE EARTH ELEMENT DIFFUSION TREATMENT METHOD FOR Nd-Fe-B SYSTEM SINTERED PERMANENT MAGNET
CN110408926A (en) * 2019-08-30 2019-11-05 泮敏翔 A kind of preparation method of obdurability high-performance samarium-cobalt magnet
CN110408926B (en) * 2019-08-30 2021-03-30 中国计量大学 Preparation method of high-toughness high-performance samarium-cobalt magnet
WO2022249730A1 (en) * 2021-05-26 2022-12-01 ステラケミファ株式会社 Liquid dispersion of fluoride particles, composition for forming optical film, and optical film
CN114914077A (en) * 2022-05-18 2022-08-16 北京工业大学 Coating slurry and preparation method of high-performance neodymium iron boron magnet

Similar Documents

Publication Publication Date Title
JP2011051851A (en) Rare earth fluoride fine particle dispersion, method for producing the dispersion, method for producing rare earth fluoride thin film using the dispersion, method for producing polymer compound/rare earth fluoride composite film using the dispersion, and rare earth sintered magnet using the dispersion
AU752438B2 (en) Magnetorheological fluid
Wang et al. Synthesis of carbon-encapsulated superparamagnetic colloidal nanoparticles with magnetic-responsive photonic crystal property
RU2115967C1 (en) Magnetorheologic material
Xiong et al. Ultrasonic dispersion of nano TiC powders aided by Tween 80 addition
Raghuwanshi et al. Self-assembly of gold nanoparticles on deep eutectic solvent (DES) surfaces
KR20100027100A (en) Method for production of silver fine powder covered with organic substance, and silver fine powder
WO2012120842A1 (en) Fluid with magnetic viscosity and clutch using same
JP6057938B2 (en) Magnetorheological fluid and clutch using the same
Chu et al. Effect of silica particle surface chemistry on the shear thickening behaviour of concentrated colloidal suspensions
Wang et al. Improvement in dispersion stability of alumina suspensions and corresponding chemical mechanical polishing performance
JP5695588B2 (en) Magnetorheological fluid and clutch using the same
Yan et al. Synthesis and Assembly of Monodisperse High‐Coercivity Silica‐Capped FePt Nanomagnets of Tunable Size, Composition, and Thermal Stability from Microemulsions
Sun et al. Effect of MXene nanosheets attached to carbonyl iron microspheres on the performance and stability of magnetorheological fluid
Zhao et al. Control of the Micro-defects on the surface of silicon wafer in chemical mechanical polishing
US8808568B2 (en) Magnetorheological materials, method for making, and applications thereof
JP6147948B1 (en) Magnetorheological fluid
US8444280B2 (en) Magnetically deformable ferrofluids and mirrors
JP4969074B2 (en) Method for producing fullerene nanoparticle dispersion
JP5913154B2 (en) Magnetorheological fluid and clutch using the same
EP2118915A2 (en) Production method for nanocomposite magnet
Kim et al. Highly Dispersed Fe3+-Substituted Colloidal Silica Nanoparticles for Defect-Free Tungsten Chemical Mechanical Planarization
O’Kelly et al. Single crystal iron nanocube synthesis via the surface energy driven growth method
JP5969905B2 (en) Method for producing alignment film of thin layer graphite or thin layer graphite compound
JP2004323568A (en) Method for preparing dispersion of superfine particle of copper oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140206