JPH05335435A - Package for accommodating semiconductor element - Google Patents

Package for accommodating semiconductor element

Info

Publication number
JPH05335435A
JPH05335435A JP13899292A JP13899292A JPH05335435A JP H05335435 A JPH05335435 A JP H05335435A JP 13899292 A JP13899292 A JP 13899292A JP 13899292 A JP13899292 A JP 13899292A JP H05335435 A JPH05335435 A JP H05335435A
Authority
JP
Japan
Prior art keywords
lid
axis
semiconductor element
package
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13899292A
Other languages
Japanese (ja)
Inventor
Mikihiro Umehara
幹裕 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP13899292A priority Critical patent/JPH05335435A/en
Publication of JPH05335435A publication Critical patent/JPH05335435A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To improve the transmittance of UV radiation, and keep sufficient strength when thickness is decreased, by applying the surface vertical to the a-axis of single-crystal sapphhire to a main surface, and making the c-axis direction coincide with the short side direction of a semiconductor element accommodation part. CONSTITUTION:A rectangular accommodation part 2 is formed in a rectangular insulating base body 1, and the respective long side directions are made to coincide with each other. When the long side direction of the insulating base body 1 is set parallel with the long side direction of the accommodation part 2 as shown in figure, the main surface L of a lid body 4 has a face orientation vertical to the a-axis of single-crystal sapphire. The lid body 4 is constituted of a sapphire plate wherein the face orientation and the axial orientation are so selected that the short side 4a is in the c-axis direction. Thereby the main surface L of the lid body 4 is a plane vertical to the a-axis, so that the strength to the external force can be increased. In the case of a package for accommodating a semiconductor element constituted in the above manner, the strength to residual stress also can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はメモリ素子等の半導体素
子を収納するためのパッケージに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a package for housing a semiconductor device such as a memory device.

【0002】[0002]

【従来の技術】記憶されたデータを紫外線照射により消
去し、書き込みができるEPROMのメモリ素子FAM
OS等の半導体装置においては、図1の分解斜視図に示
しているように絶縁基体1の収納部2に半導体素子(図
示せず)を収納し接着剤等により固着すると共に、半導
体素子の各電極を絶縁基体1の上面に装着されるリード
フレーム3にボンディングワイヤを介して接続し、これ
に紫外線透過率が良い材料から成る蓋体4を被せ、絶縁
基体1と蓋体4とに、それぞれ、相対向する主面に予め
被着させた封止用のガラス層5、5を溶融一体化させ、
絶縁基体と蓋体とを気密に接着し、封止している。上記
絶縁基体1は、通常アルミナ質焼結体より成り、主成分
であるアルミナ(Al2 3 )に、シリカ(SiO
2 )、マグネシア(MgO)、カルシア(CaO)等を
添加混合してなる原料粉末を乾式プレス成形し、約15
00゜Cの温度で焼成して得たものを用いる。一方、蓋
体4には紫外線透過率が良く、強度に優れているサファ
イア板、透光性アルミナ板、石英ガラス板等が用いられ
ているが、上記したようなガラス封止の場合は、絶縁基
体1の熱膨張率に近い熱膨張率を有するサファイア板、
叉は透光性アルミナを用いることが多い(特公昭57−
41102号公報等参照)。
2. Description of the Related Art EPROM memory element FAM in which stored data can be erased and written by ultraviolet irradiation.
In a semiconductor device such as an OS, as shown in the exploded perspective view of FIG. 1, a semiconductor element (not shown) is housed in a housing portion 2 of an insulating substrate 1 and fixed by an adhesive agent, and each semiconductor element The electrode is connected to a lead frame 3 mounted on the upper surface of the insulating base 1 via a bonding wire, and is covered with a lid 4 made of a material having a good ultraviolet transmittance, and the insulating base 1 and the lid 4 are respectively covered. , The glass layers 5 and 5 for sealing, which have been previously adhered to the opposite main surfaces, are melt-integrated,
The insulating base and the lid are airtightly bonded and sealed. The insulating substrate 1 is usually made of an alumina-based sintered body, and contains alumina (Al 2 O 3 ) as a main component and silica (SiO 2 ).
2 ), magnesia (MgO), calcia (CaO), etc. are added and mixed, and the raw material powder is dry-press molded to obtain about 15
A product obtained by firing at a temperature of 00 ° C is used. On the other hand, the lid 4 is made of a sapphire plate, a translucent alumina plate, a quartz glass plate, or the like, which has good ultraviolet transmittance and excellent strength. A sapphire plate having a coefficient of thermal expansion close to that of the substrate 1,
Alternatively, translucent alumina is often used (Japanese Patent Publication No. 57-
No. 41102).

【0003】[0003]

【発明が解決しようとする課題】ところで、上記したよ
うな半導体装置が、ICカードやメモリーカード等の厚
みが薄い電子装置に組み込まれる場合は、半導体装置自
体の厚さを薄くする必要があり、従って、パッケージす
なわち絶縁基体1や蓋体4を薄くする必要がある。
By the way, when the semiconductor device as described above is incorporated in an electronic device such as an IC card or a memory card having a small thickness, it is necessary to reduce the thickness of the semiconductor device itself. Therefore, it is necessary to thin the package, that is, the insulating base 1 and the lid 4.

【0004】しかし、このようなニーズに基づいて絶縁
基体1、及び蓋体4を薄くし、例えば、絶縁基体1の厚
さを0.6mm、蓋体4の厚さを0.2mm程度にした
場合、ICカード等の使用取扱い中に加えられがちな曲
げ応力や衝撃力等の外力、および絶縁基体1と蓋体4と
のガラス封着により発生する残留応力によってパッケー
ジに比較的容易にクラックや割れが発生する。その結
果、半導体装置の気密封止が破れて、内部に収納されて
いる半導体メモリ等の素子を長期にわたり正常かつ安定
に作動させることができなくなるという問題があった。
However, based on such needs, the insulating base 1 and the lid 4 are thinned, for example, the insulating base 1 has a thickness of 0.6 mm and the lid 4 has a thickness of about 0.2 mm. In this case, the package is relatively easily cracked or cracked by external force such as bending stress or impact force that is likely to be applied during handling and handling of the IC card, and residual stress generated by the glass sealing between the insulating base 1 and the lid 4. Cracks occur. As a result, there has been a problem that the hermetic sealing of the semiconductor device is broken and the elements such as the semiconductor memory housed inside cannot be normally and stably operated for a long period of time.

【0005】本発明は上記の状況に鑑みてなされたもの
で、その目的は、メモリ消去のための紫外線の透過が良
いパッケージであって、蓋体4の厚みを0.2mm以下
と薄くしても十分な強度を維持でき、外力や残留応力が
加わっても容易にはクラックや割れが発生しない信頼性
のある半導体素子収納用パッケージを提供することにあ
る。
The present invention has been made in view of the above situation, and an object thereof is to provide a package having good transmission of ultraviolet rays for erasing a memory, in which the thickness of the lid 4 is reduced to 0.2 mm or less. The object of the present invention is to provide a reliable package for accommodating semiconductor elements, which can maintain sufficient strength and does not easily crack or break even when external force or residual stress is applied.

【0006】[0006]

【課題を解決するための手段】上記に鑑みて本発明は、
絶縁基体に形成した半導体素子収納部を覆うように蓋体
を備えてなる半導体素子収納用パッケージにおいて、上
記蓋体をサファイア板により構成するとともに、その主
面をサファイア単結晶のa軸に垂直な面とし、かつその
c軸方向を上記半導体素子収納部の短辺方向と一致させ
たものである。
In view of the above, the present invention provides:
In a package for storing a semiconductor element, which is provided with a lid so as to cover a semiconductor element housing formed on an insulating substrate, the lid is made of a sapphire plate, and its main surface is perpendicular to the a-axis of the sapphire single crystal. It is a surface, and its c-axis direction is aligned with the short side direction of the semiconductor element housing portion.

【0007】[0007]

【作用】本発明の半導体素子収納用パッケージによれ
ば、蓋体の主面がa軸に垂直な面であるため、外力に対
する強度を大きくできる。また、このような半導体素子
収納用パッケージの場合、残留応力は絶縁基体に形成し
た収納部の短辺方向に最大となることから、この方向と
蓋体のc軸方向を一致させることで、残留応力に対する
強度も大きくできる。
According to the semiconductor element housing package of the present invention, the main surface of the lid is a surface perpendicular to the a-axis, and therefore the strength against external force can be increased. Further, in the case of such a package for housing a semiconductor element, the residual stress becomes maximum in the short side direction of the housing formed on the insulating base. Therefore, by matching this direction with the c-axis direction of the lid, the residual stress The strength against stress can also be increased.

【0008】[0008]

【実施例】以下本発明実施例を図によって説明する。Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1に本発明の半導体素子収納用パッケー
ジの分解斜視図を示すように、長方形状の絶縁基体1に
長方形状の収納部2を形成し、互いの長辺方向が一致す
るようにする。そして、上記収納部2に半導体素子(図
示せず)を収納し接着剤等により固着すると共に、この
半導体素子の各電極を絶縁基体1の上面に装着されるリ
ードフレーム3にボンディングワイヤを介して接続す
る。さらに、この絶縁基体1に紫外線透過率が良い材料
から成る長方形状の蓋体4を被せ、絶縁基体1と蓋体4
とに、それぞれ相対向する主面に予め被着させた封止用
のガラス層5、5を溶融一体化させ、絶縁基体1と蓋体
4とを気密に接着し、封止している。
As shown in an exploded perspective view of a package for housing a semiconductor element of the present invention in FIG. 1, a rectangular housing 2 is formed on a rectangular insulating substrate 1 so that their long side directions coincide with each other. To do. Then, a semiconductor element (not shown) is accommodated in the accommodating portion 2 and fixed by an adhesive or the like, and each electrode of the semiconductor element is attached to a lead frame 3 mounted on the upper surface of the insulating substrate 1 via bonding wires. Connecting. Further, the insulating base 1 is covered with a rectangular lid 4 made of a material having a good ultraviolet transmittance, and the insulating base 1 and the lid 4 are covered.
Further, the glass layers 5 and 5 for sealing, which have been adhered to the main surfaces facing each other in advance, are melted and integrated, and the insulating base 1 and the lid 4 are airtightly bonded and sealed.

【0010】そして、上記蓋体4は、酸化アルミニウム
の単結晶体であるサファイア板からなり、その主面Lが
サファイア単結晶のa軸に垂直な面となり、かつその短
辺4a方向がサファイア単結晶のc軸方向となってい
る。なお、ここで主面Lというのは、平板状の蓋体4の
上面及び下面を意味している。
The lid 4 is made of a sapphire plate which is a single crystal of aluminum oxide, the main surface L of which is a plane perpendicular to the a-axis of the sapphire single crystal, and the direction of its short side 4a is the sapphire single crystal. It is in the c-axis direction of the crystal. Here, the main surface L means the upper surface and the lower surface of the plate-shaped lid body 4.

【0011】上記蓋体4を成すサファイア板は、面方位
及び軸方位の取り方により強度が異なり、図1のように
絶縁基体1の長辺方向と収納部2の長辺方向を平行に設
定する場合、蓋体4の主面Lがサファイア単結晶のa軸
に垂直な面方位であって、c軸方向を短辺4aとなるよ
うに面方位、軸方位を選んだサファイア板により蓋体を
構成する場合が、最も大きい強度を有することを本発明
者は見出したのである。
The strength of the sapphire plate forming the lid 4 varies depending on the plane orientation and the axial orientation. As shown in FIG. 1, the long side direction of the insulating base 1 and the long side direction of the storage section 2 are set parallel to each other. In this case, the main surface L of the lid body 4 has a plane orientation perpendicular to the a-axis of the sapphire single crystal, and the lid body is made of a sapphire plate whose plane orientation and axial orientation are selected so that the short side 4a is in the c-axis direction. The present inventor has found that the above-mentioned structure has the highest strength.

【0012】つまり、図1のように絶縁基体1の収納部
2の長辺方向を、絶縁基体1自体の長辺方向と一致する
ように配置して、絶縁基体1、リ−ドフレ−ム3、蓋体
4をガラス封着する場合、蓋体4においては、収納部2
の短辺2a方向(蓋体4の短辺4a方向)に沿って最大
主応力が分布することが応力分布解析によりわかってい
る。この最大主応力は、ガラス封着により発生する残留
応力と、パッケ−ジの表面から圧力がかかった場合に発
生する応力とを足し合わせたものである。すなわち、蓋
体4の短辺4a方向に最大の引っ張り応力がかかり、割
れようとする事がわかる。そのため、蓋体4の主面L
が、サファイア単結晶のa軸に垂直な面方位であるA面
を選び、かつc軸方向を主面Lの短辺4a方向とする場
合が、最も蓋体4の強度を高めることができ、その結果
蓋体4を0.2mm以下と薄くすることができるもので
ある。
That is, as shown in FIG. 1, the insulating base 1 and the lead frame 3 are arranged so that the long side direction of the housing 2 of the insulating base 1 coincides with the long side direction of the insulating base 1 itself. When the lid body 4 is glass-sealed, in the lid body 4, the storage portion 2
It is known from the stress distribution analysis that the maximum principal stress is distributed along the direction of the short side 2a (direction of the short side 4a of the lid 4). This maximum principal stress is the sum of the residual stress generated by glass sealing and the stress generated when pressure is applied from the surface of the package. That is, it can be seen that the maximum tensile stress is applied in the direction of the short side 4a of the lid body 4 and the lid body 4 tends to crack. Therefore, the main surface L of the lid 4
However, when the A plane which is the plane orientation perpendicular to the a-axis of the sapphire single crystal is selected and the c-axis direction is the short side 4a direction of the main surface L, the strength of the lid body 4 can be increased most, As a result, the lid body 4 can be thinned to 0.2 mm or less.

【0013】次に、本発明の他の実施例を説明する。Next, another embodiment of the present invention will be described.

【0014】図2に半導体素子収納用パッケージの分解
斜視図を示すように、長方形状の絶縁基体1に長方形状
の収納部2を形成し、この収納部2の長辺方向を絶縁基
体1の短辺方向と平行にする。そして、上記収納部2に
半導体素子(図示せず)を収納し接着剤等により固着す
ると共に、この半導体素子の各電極を絶縁基体1の上面
に装着されるリードフレーム3にボンディングワイヤを
介して接続する。さらに、この絶縁基体1に紫外線透過
率が良い材料から成る長方形状の蓋体4を被せ、絶縁基
体1と蓋体4とに、それぞれ相対向する主面に予め被着
させた封止用のガラス層5、5を溶融一体化させ、絶縁
基体1と蓋体4とを気密に接着し、封止している。
As shown in an exploded perspective view of the package for accommodating semiconductor elements in FIG. 2, a rectangular accommodating portion 2 is formed in a rectangular insulating substrate 1, and the long side direction of the accommodating portion 2 is the insulating substrate 1. Make parallel to the short side direction. Then, a semiconductor element (not shown) is accommodated in the accommodating portion 2 and fixed by an adhesive or the like, and each electrode of the semiconductor element is attached to a lead frame 3 mounted on the upper surface of the insulating substrate 1 via bonding wires. Connecting. Further, the insulating base 1 is covered with a rectangular lid 4 made of a material having a good ultraviolet transmittance, and the insulating base 1 and the lid 4 are preliminarily adhered to the main surfaces facing each other for sealing. The glass layers 5 and 5 are fused and integrated, and the insulating base 1 and the lid 4 are airtightly adhered and sealed.

【0015】そして、上記蓋体4は、酸化アルミニウム
の単結晶体であるサファイア板からなり、その主面Lが
サファイア単結晶のa軸に垂直な面となり、かつその長
辺4bがサファイア単結晶のc軸方向となっている。な
お、ここで主面Lというのは、平板状の蓋体4の上面及
び下面を意味している。
The lid 4 is made of a sapphire plate which is a single crystal of aluminum oxide, its main surface L is a plane perpendicular to the a-axis of the sapphire single crystal, and its long side 4b is a sapphire single crystal. Is in the c-axis direction. Here, the main surface L means the upper surface and the lower surface of the plate-shaped lid body 4.

【0016】サファイア板は、面方位及び軸方位の取り
方により強度が異なり、図2のように絶縁基体1の収納
部2の長辺方向を、絶縁基体1の短辺と平行に設定する
場合、蓋体4の主面Lがサファイア単結晶のa軸に垂直
な面方位であって、かつc軸方向を主面Lの長辺4bと
なるように面方位、軸方位を選んだサファイア板により
蓋体4を構成する場合が、最も大きい強度を有すること
を本発明者は見出したのである。
When the sapphire plate has different strengths depending on the plane orientation and the axial orientation, and the long side direction of the accommodating portion 2 of the insulating base 1 is set parallel to the short side of the insulating base 1 as shown in FIG. A sapphire plate in which the major surface L of the lid body 4 has a plane orientation perpendicular to the a-axis of the sapphire single crystal and the plane orientation and axial orientation are selected so that the c-axis direction is the long side 4b of the major surface L. The present inventor has found that the case where the lid body 4 is formed of has the highest strength.

【0017】つまり、図2のように絶縁基体1の収納部
2の長辺方向を、絶縁基体1自体の短辺方向と一致する
ように配置して、絶縁基体1、リ−ドフレ−ム3、蓋体
4をガラス封着する場合、蓋体4においては、収納部2
の短辺2a方向(蓋体4の長辺4b方向)に沿って最大
主応力が分布することが応力分布解析によりわかってい
る。この最大主応力は、ガラス封着により発生する残留
応力と、パッケ−ジの表面から圧力がかかった場合に発
生する応力とを足し合わせたものである。すなわち、蓋
体4の長辺4b方向に最大の引っ張り応力がかかり、割
れようとする事がわかる。そのため、蓋体4の主面L
が、サファイア単結晶のa軸に垂直な面方位であるA面
を選び、かつc軸方向を主面Lの長辺4b方向とする場
合が、蓋体4の強度を最も高めることができ、その結果
蓋体4を0.2mm以下と薄くすることができるもので
ある。
That is, as shown in FIG. 2, the insulating base 1 and the lead frame 3 are arranged such that the long side direction of the housing 2 of the insulating base 1 coincides with the short side direction of the insulating base 1 itself. When the lid body 4 is glass-sealed, in the lid body 4, the storage portion 2
It is known from the stress distribution analysis that the maximum principal stress is distributed along the short side 2a direction (the long side 4b direction of the lid 4). This maximum principal stress is the sum of the residual stress generated by glass sealing and the stress generated when pressure is applied from the surface of the package. That is, it can be seen that the maximum tensile stress is applied in the direction of the long side 4b of the lid body 4 and the lid body 4 tends to crack. Therefore, the main surface L of the lid 4
However, when the A plane which is the plane orientation perpendicular to the a-axis of the sapphire single crystal is selected and the c-axis direction is the long side 4b direction of the main surface L, the strength of the lid body 4 can be maximized, As a result, the lid body 4 can be thinned to 0.2 mm or less.

【0018】これらの実施例のように、図1、2のいず
れの形状であっても、蓋体4のc軸方向を、絶縁基体1
の収納部2の短辺2a方向と一致させれば、最も蓋体4
の強度を高められることがわかる。
In any of the shapes shown in FIGS. 1 and 2 as in these examples, the c-axis direction of the lid body 4 is defined by the insulating base 1
If it coincides with the direction of the short side 2a of the storage portion 2 of
It can be seen that the strength of can be increased.

【0019】ここで、サファイア単結晶(六方晶)の代
表的な面方位、及び軸方位を図3に示す。軸a1 、a2
及びa3 は、結晶的に等価であり、本発明でいうa軸
は、これらのa1 、a2 、及びa3 軸を意味する。ま
た、図示しているA面(11バー20)は、a3 軸に垂
直であり、本発明で言うa軸に垂直な面方位に該当す
る。一方、c軸は、図示の通りa1 、a2 及びa3 軸に
垂直な軸であり、C面(0001)はc軸に垂直な面で
ある。
Here, a typical plane orientation and axial orientation of a sapphire single crystal (hexagonal crystal) are shown in FIG. Axes a 1 , a 2
And a 3 are crystallographically equivalent, and the a axis in the present invention means these a 1 , a 2 , and a 3 axes. The A surface (11 bar 20) shown in the figure is perpendicular to the a 3 axis and corresponds to the plane orientation perpendicular to the a axis referred to in the present invention. On the other hand, the c-axis is an axis perpendicular to the a 1 , a 2 and a 3 axes as shown in the figure, and the C plane (0001) is a plane perpendicular to the c axis.

【0020】サファイア単結晶の面方位、及び軸方位を
上記のように特定したサファイア板を得るには、サファ
イア単結晶体から方位を測定して切り出せば良いが、こ
のようにして切り出したサファイア板を種子結晶として
EFG(Edge defined film fed
growth)法により、溶融アルミナから成長結晶
をリボン状に引き上げ(この場合、リボンの幅方向がc
軸方向になる。)、これをチップ状に切断することによ
り、主面が単結晶のa軸に垂直な面方位であって、平板
面の長辺または短辺がc軸方向であるサファイア板を得
ることができる。
In order to obtain a sapphire plate in which the plane orientation and axial orientation of the sapphire single crystal are specified as described above, it is sufficient to measure the orientation from the sapphire single crystal body and cut it out. The sapphire plate cut out in this way As seed crystals of EFG (Edge defined film fed)
The grown crystal is pulled from the fused alumina into a ribbon shape by the growth method (in this case, the width direction of the ribbon is c
Axial direction. ), By cutting this into chips, a sapphire plate whose main surface has a plane orientation perpendicular to the a-axis of the single crystal and whose long side or short side of the flat plate surface is the c-axis direction can be obtained. ..

【0021】なお、本発明において、蓋体4の主面Lが
a軸に垂直であるとは、主面Lの法線とa軸との成す角
度が±2°以下であることを意味する。また、蓋体4の
短辺4aまたは長辺4bがc軸と一致するとは、互いの
成す角度が±2°以下であることを意味する。
In the present invention, the fact that the main surface L of the lid 4 is perpendicular to the a-axis means that the angle between the normal line of the main surface L and the a-axis is ± 2 ° or less. .. Further, the fact that the short side 4a or the long side 4b of the lid body 4 coincides with the c-axis means that the angle formed by each other is ± 2 ° or less.

【0022】さらに、サファイア板から成る蓋体4の表
面は、研磨処理した方が紫外線の透過率が良くなるが、
本発明者の研究によれば、サファイア板の曲げ強度は表
面粗さによっても変わり、表面粗さが小さいほど曲げ強
度が増大する。従って、サファイア板の表面は、表面粗
さRaが1.0μm以下となるように十分に研磨処理を
行うことが望ましい。更に、研磨レベルを上げ、表面粗
さを小さくすることにより、強度を向上させることがで
きる。
Further, the surface of the lid body 4 made of a sapphire plate has a better ultraviolet transmittance when it is polished,
According to the research by the present inventor, the bending strength of a sapphire plate also changes depending on the surface roughness, and the smaller the surface roughness, the more the bending strength increases. Therefore, it is desirable that the surface of the sapphire plate be sufficiently polished so that the surface roughness Ra becomes 1.0 μm or less. Further, the strength can be improved by increasing the polishing level and decreasing the surface roughness.

【0023】また、サファイア板から成る蓋体の表面の
加工方向を、蓋体4の最大引っ張り応力がかかる方向と
平行にすることにより、更に強度を向上させることがで
きる。即ち、図1示すパッケージの場合は、加工方向を
蓋体4の短辺方向と平行にすれば良く、図2に示すパッ
ケージの場合は、加工方向を蓋体4の長辺方向と平行に
すればよい。
Further, by making the processing direction of the surface of the lid body made of the sapphire plate parallel to the direction in which the maximum tensile stress of the lid body 4 is applied, the strength can be further improved. That is, in the case of the package shown in FIG. 1, the processing direction may be parallel to the short side direction of the lid body 4, and in the case of the package shown in FIG. 2, the processing direction may be parallel to the long side direction of the lid body 4. Good.

【0024】さらに、サファイア板からなる蓋体4を、
加工終了後、熱処理(アニ−ル)することにより、更
に、強度を向上させ、加えて、透過率も向上させること
ができる。
Furthermore, the lid 4 made of a sapphire plate is
By heat-treating (annealing) after the completion of processing, the strength can be further improved, and in addition, the transmittance can be improved.

【0025】なお、上記実施例において、半導体素子収
納用パッケージを構成する絶縁基体1は、アルミナ質焼
結体、窒化アルミニウム質焼結体などの他、サファイア
単結晶体を用いることもできる。
In the above embodiment, the insulating substrate 1 constituting the semiconductor element housing package may be made of a sapphire single crystal body in addition to an alumina sintered body, an aluminum nitride sintered body or the like.

【0026】実験例 まず、主面の面方位、及び主面の長辺の軸方位を種々に
選んだサファイア平板試料について、図4の説明図に示
すようなJISR1601による3点曲げ強度試験を行
った。各試料11は、幅4mm、長さ40mm、厚さ3
mmの寸法を有し、表面はダイヤモンド砥石により研削
仕上げされ、表面粗さ(Ra)は0.5μm程度であ
り、また、試料を支持する支点間の距離は30mmとし
た。結果は表1に示す通りである。
Experimental Example First, a sapphire flat plate sample in which the plane orientation of the principal surface and the axial orientation of the long side of the principal surface were variously selected was subjected to a three-point bending strength test according to JIS R1601 as shown in the explanatory view of FIG. It was Each sample 11 has a width of 4 mm, a length of 40 mm and a thickness of 3
The surface was ground by a diamond grindstone, the surface roughness (Ra) was about 0.5 μm, and the distance between the fulcrums supporting the sample was 30 mm. The results are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】なお、表1の面方位、及び軸方位におい
て、A面、C面、c軸、a軸は、図3に基づき既に説明
した通りであり、R面は図3に示す(1バー102)面
であり、M面は六角柱の側面に平行な面(10バー1
0)面であり、m軸はM面に垂直な軸である。
In the plane orientation and the axis orientation of Table 1, the A plane, the C plane, the c axis, and the a axis are as described above with reference to FIG. 3, and the R plane is shown in FIG. 102) plane, and the M plane is a plane parallel to the side surface of the hexagonal prism (10 bar 1
0) plane, and the m-axis is an axis perpendicular to the M-plane.

【0029】表1からサファイア板の抗折強度は、本発
明におけるように主面の面方位を結晶のa軸に垂直なA
面に選び、主面の長辺の軸方位をc軸とした場合に最大
となることがわかる。
From Table 1, the bending strength of the sapphire plate is as shown in the present invention, in which the plane orientation of the main surface is A which is perpendicular to the a-axis of the crystal.
It can be seen that the maximum value is obtained when the surface is selected and the axial direction of the long side of the main surface is the c-axis.

【0030】実施例1 図1に示す本発明の半導体素子収納用パッケージを試作
した。絶縁基体1は、アルミナ質焼結体より成り、厚さ
0.5mm、幅11.0mm、長さ20.15mmの寸
法を有し、中央部に深さ0.3mm、幅9.5mm、長
さ15.0mmの半導体素子収納部2を備えている。
Example 1 A semiconductor element housing package of the present invention shown in FIG. 1 was prototyped. The insulating base 1 is made of an alumina sintered body, and has a thickness of 0.5 mm, a width of 11.0 mm, and a length of 20.15 mm, and a central portion has a depth of 0.3 mm, a width of 9.5 mm, and a length of 9.5 mm. The semiconductor device housing 2 having a size of 15.0 mm is provided.

【0031】一方蓋体4は、厚さ0.18mm、幅1
1.0mm、長さ20.15mmのサファイア板で構成
し、その主面Lは、サファイア単結晶のa軸に垂直な面
方位であって、c軸方向を短辺4aとするものである。
また、蓋体4の表面は、ダイヤモンド砥石により短辺4
aと平行に研削仕上げを行い、表面粗さがRa0.5μ
m以下となるようにした。さらに、全ての加工終了後、
真空炉(1680℃)でアニ−ル処理を行った。
On the other hand, the lid 4 has a thickness of 0.18 mm and a width of 1
It is composed of a sapphire plate having a length of 1.0 mm and a length of 20.15 mm, and its main surface L has a plane orientation perpendicular to the a-axis of the sapphire single crystal and has a short side 4a in the c-axis direction.
In addition, the surface of the lid 4 is formed by a diamond grindstone on the short side 4
Grinding finish is done in parallel with a and surface roughness is Ra 0.5μ
It was set to be m or less. Furthermore, after all processing is completed,
Annealing was performed in a vacuum furnace (1680 ° C.).

【0032】この蓋体4と絶縁基体1をガラス封着し、
封着後の熱膨張差より生ずる残留応力に加えて、表面か
ら6kg/cm2 の圧力で0.5時間He加圧し、蓋体
4の割れやクラック発生の有無を調べた。さらに、比較
例として、蓋体4の面方位、軸方位を種々に変化させた
ものについても同様の実験を行った。
The lid 4 and the insulating substrate 1 are glass-sealed,
In addition to the residual stress caused by the difference in thermal expansion after sealing, the surface of the lid 4 was pressed with He at a pressure of 6 kg / cm 2 for 0.5 hour, and the presence or absence of cracks or cracks in the lid 4 was examined. Further, as a comparative example, the same experiment was performed for the lid 4 with various plane orientations and axial orientations.

【0033】結果は表2に示す通り、本発明実施例の半
導体素子収納用パッケージは、蓋体4に割れやクラック
が発生せず、優れた結果を示した。
The results are shown in Table 2, and the package for semiconductor element storage of the embodiment of the present invention showed excellent results without cracks or cracks in the lid 4.

【0034】[0034]

【表2】 [Table 2]

【0035】実施例2 図2に示す半導体素子収納用パッケージを試作した。絶
縁基体1は、アルミナ質焼結体より成り、厚さ0.5m
m、幅11.0mm、長さ20.15mmの寸法を有
し、中央部に深さ0.3mm、幅9.5mm、長さ1
5.0mmの半導体素子収納部2を備えている。
Example 2 A prototype of the semiconductor element housing package shown in FIG. 2 was manufactured. The insulating base 1 is made of an alumina sintered body and has a thickness of 0.5 m.
m, width 11.0 mm, length 20.15 mm, depth 0.3 mm, width 9.5 mm, length 1 at the center.
It is equipped with a semiconductor element housing 2 of 5.0 mm.

【0036】一方蓋体4は、厚さ0.18mm、幅1
1.0mm、長さ20.15mmのサファイア板で構成
し、その主面Lは、サファイア単結晶のa軸に垂直な面
方位であって、c軸方向を長辺4bとするものである。
また、蓋体4の表面は、ダイヤモンド砥石により長辺4
bと平行に研削仕上げを行い、表面粗さがRa0.5μ
m以下となるようにした。さらに、全ての加工終了後、
真空炉(1680℃)でアニ−ル処理を行った。
On the other hand, the lid 4 has a thickness of 0.18 mm and a width of 1
It is made of a sapphire plate having a length of 1.0 mm and a length of 20.15 mm, and its main surface L has a plane orientation perpendicular to the a-axis of the sapphire single crystal and has the c-axis direction as the long side 4b.
In addition, the surface of the lid 4 has a long side 4 formed by a diamond grindstone.
Grinding finish is performed in parallel with b, and the surface roughness is Ra 0.5μ.
It was set to be m or less. Furthermore, after all processing is completed,
Annealing was performed in a vacuum furnace (1680 ° C.).

【0037】この蓋体4と絶縁基体1をガラス封着し、
封着後の熱膨張差より生ずる残留応力に加えて、表面か
ら6kg/cm2 の圧力で0.5時間He加圧し、蓋体
4の割れやクラック発生の有無を調べた。さらに、比較
例として、蓋体4の面方位、軸方位を種々に変化させた
ものについても同様の実験を行った。
The lid 4 and the insulating substrate 1 are glass-sealed,
In addition to the residual stress caused by the difference in thermal expansion after sealing, the surface of the lid 4 was pressed with He at a pressure of 6 kg / cm 2 for 0.5 hour, and the presence or absence of cracks or cracks in the lid 4 was examined. Further, as a comparative example, the same experiment was performed for the lid 4 with various plane orientations and axial orientations.

【0038】結果は表3に示す通り、本発明実施例の半
導体素子収納用パッケージは、蓋体4に割れやクラック
が発生せず、優れた結果を示した。
The results are shown in Table 3, and the packages for semiconductor element accommodating of the present invention showed excellent results without cracks or cracks in the lid 4.

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【発明の効果】本発明の半導体素子収納用パッケ−ジに
おいては、蓋体の主面がサファイア単結晶のa軸と垂直
な面方位であって、かつ主面の短辺方向または長辺方向
がc軸方向であるサファイア板により構成されているの
で、蓋体の機械的強度を大きくできることから、蓋体の
厚みを0.2mm以下と薄くしても、十分な強度を保つ
ことができ、収納された半導体素子を長期にわたり正常
かつ安定に作動させることができる信頼性の高いパッケ
−ジが得られる。
In the package for accommodating semiconductor elements of the present invention, the main surface of the lid body has a plane orientation perpendicular to the a-axis of the sapphire single crystal, and the short side direction or the long side direction of the main surface. Since it is composed of a sapphire plate that is in the c-axis direction, the mechanical strength of the lid can be increased. Therefore, even if the thickness of the lid is reduced to 0.2 mm or less, sufficient strength can be maintained, It is possible to obtain a highly reliable package that can operate the stored semiconductor elements normally and stably for a long period of time.

【0041】また、パッケ−ジ自体の厚さをかなり減少
でき、ICカ−ド、メモリ−カ−ドの厚さを薄くできる
ようになるため、これらの商品価値を高めることも可能
になる。更に、本発明のパッケ−ジは、蓋体を薄くでき
ることから紫外線透過性がよいのでEPROMのパッケ
−ジとして用いれば、紫外線照射によるメモリ−消去を
確実に行うことができる。
Further, since the thickness of the package itself can be considerably reduced and the thickness of the IC card and the memory card can be reduced, the commercial value of these can be enhanced. Further, since the package of the present invention has a thin lid and thus has a good UV transparency, it can be surely erased by ultraviolet irradiation when used as a package of EPROM.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体素子収納用パッケージを示す分
解斜視図である。
FIG. 1 is an exploded perspective view showing a package for housing a semiconductor device of the present invention.

【図2】本発明の半導体素子収納用パッケージを示す分
解斜視図である。
FIG. 2 is an exploded perspective view showing a semiconductor element housing package of the present invention.

【図3】サファイア単結晶の面方位及び軸方位の説明図
である。
FIG. 3 is an explanatory diagram of plane orientation and axis orientation of a sapphire single crystal.

【図4】3点曲げ抗折強度試験の説明図である。FIG. 4 is an explanatory diagram of a three-point bending bending strength test.

【符号の説明】[Explanation of symbols]

1:絶縁基体 2:収納部 3:リ−ドフレ−ム 4:蓋体 5:ガラス層 1: Insulating substrate 2: Storage part 3: Lead frame 4: Lid body 5: Glass layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】絶縁基体に形成した半導体素子収納部を覆
うように蓋体を備えてなる半導体素子収納用パッケージ
において、上記蓋体をサファイア板により構成するとと
もに、その主面をサファイア単結晶のa軸に垂直な面と
し、かつc軸方向を上記半導体素子収納部の短辺方向と
一致させて取着してなる半導体素子収納用パッケージ。
1. A package for storing a semiconductor element, comprising a lid so as to cover a semiconductor element containing portion formed on an insulating substrate, wherein the lid is made of a sapphire plate and its main surface is made of sapphire single crystal. A package for housing a semiconductor element, which is mounted on a surface perpendicular to the a-axis and with the c-axis direction aligned with the short side direction of the semiconductor element housing.
JP13899292A 1992-05-29 1992-05-29 Package for accommodating semiconductor element Pending JPH05335435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13899292A JPH05335435A (en) 1992-05-29 1992-05-29 Package for accommodating semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13899292A JPH05335435A (en) 1992-05-29 1992-05-29 Package for accommodating semiconductor element

Publications (1)

Publication Number Publication Date
JPH05335435A true JPH05335435A (en) 1993-12-17

Family

ID=15234956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13899292A Pending JPH05335435A (en) 1992-05-29 1992-05-29 Package for accommodating semiconductor element

Country Status (1)

Country Link
JP (1) JPH05335435A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207537A (en) * 2013-04-12 2014-10-30 京セラ株式会社 Substrate for portable electronic apparatus and portable electronic apparatus
US8977329B1 (en) 2014-02-26 2015-03-10 Kyocera Corporation Electronic apparatus
US8988886B1 (en) 2014-02-26 2015-03-24 Kyocera Corporation Electronic apparatus
US9001503B1 (en) 2013-11-27 2015-04-07 Kyocera Corporation Electronic apparatus
WO2015098944A1 (en) * 2013-12-25 2015-07-02 京セラ株式会社 Mobile terminal and sapphire panel
WO2015098840A1 (en) * 2013-12-24 2015-07-02 京セラ株式会社 Electronic device
JP2016071032A (en) * 2014-09-29 2016-05-09 京セラ株式会社 Electronic device
JP2016103825A (en) * 2015-12-04 2016-06-02 京セラ株式会社 Electronic apparatus
US9632537B2 (en) 2013-09-23 2017-04-25 Apple Inc. Electronic component embedded in ceramic material
US9678540B2 (en) 2013-09-23 2017-06-13 Apple Inc. Electronic component embedded in ceramic material
US9692113B2 (en) 2014-02-12 2017-06-27 Apple Inc. Antenna on sapphire structure
US10052848B2 (en) 2012-03-06 2018-08-21 Apple Inc. Sapphire laminates
US10324496B2 (en) 2013-12-11 2019-06-18 Apple Inc. Cover glass arrangement for an electronic device
WO2023058103A1 (en) * 2021-10-05 2023-04-13 三菱電機株式会社 Hermetic package element, and element module

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10052848B2 (en) 2012-03-06 2018-08-21 Apple Inc. Sapphire laminates
JP2014207537A (en) * 2013-04-12 2014-10-30 京セラ株式会社 Substrate for portable electronic apparatus and portable electronic apparatus
US9632537B2 (en) 2013-09-23 2017-04-25 Apple Inc. Electronic component embedded in ceramic material
US9678540B2 (en) 2013-09-23 2017-06-13 Apple Inc. Electronic component embedded in ceramic material
US9001503B1 (en) 2013-11-27 2015-04-07 Kyocera Corporation Electronic apparatus
US9693473B2 (en) 2013-11-27 2017-06-27 Kyocera Corporation Electronic apparatus with cover panel
US10324496B2 (en) 2013-12-11 2019-06-18 Apple Inc. Cover glass arrangement for an electronic device
WO2015098840A1 (en) * 2013-12-24 2015-07-02 京セラ株式会社 Electronic device
JP2015122629A (en) * 2013-12-24 2015-07-02 京セラ株式会社 Electronic apparatus
WO2015098944A1 (en) * 2013-12-25 2015-07-02 京セラ株式会社 Mobile terminal and sapphire panel
US9692113B2 (en) 2014-02-12 2017-06-27 Apple Inc. Antenna on sapphire structure
US9354665B2 (en) 2014-02-26 2016-05-31 Kyocera Corporation Electronic apparatus
US9438296B2 (en) 2014-02-26 2016-09-06 Kyocera Corporation Electronic apparatus
US9595992B2 (en) 2014-02-26 2017-03-14 Kyocera Corporation Electronic apparatus
US9991925B2 (en) 2014-02-26 2018-06-05 Kyocera Corporation Electronic apparatus
US8988886B1 (en) 2014-02-26 2015-03-24 Kyocera Corporation Electronic apparatus
US8977329B1 (en) 2014-02-26 2015-03-10 Kyocera Corporation Electronic apparatus
JP2016071032A (en) * 2014-09-29 2016-05-09 京セラ株式会社 Electronic device
JP2016103825A (en) * 2015-12-04 2016-06-02 京セラ株式会社 Electronic apparatus
WO2023058103A1 (en) * 2021-10-05 2023-04-13 三菱電機株式会社 Hermetic package element, and element module

Similar Documents

Publication Publication Date Title
JPH05335435A (en) Package for accommodating semiconductor element
US4367426A (en) Ceramic transparent piezoelectric transducer
US6447937B1 (en) Ceramic materials resistant to halogen plasma and components using the same
US6767749B2 (en) Method for making piezoelectric resonator and surface acoustic wave device using hydrogen implant layer splitting
US9771303B2 (en) Cordierite sintered body, method for manufacturing the same, composite substrate, and electronic device
EP1538132B1 (en) Ceramic and method for production thereof
CN1381742A (en) Base plate for fixing optical fibre and its manufacture method and optical device
WO2003056613A1 (en) Semiconductor device and method for fabricating the same
EP2871668A1 (en) Handle substrate for compound substrate for use with semiconductor
US9469571B2 (en) Handle substrates of composite substrates for semiconductors
KR20180015581A (en) Window member for optical device package, optical device package, making methods, and optical device-mountable package
US12095442B2 (en) Composite substrate, piezoelectric device, and method for manufacturing composite substrate
US6465344B1 (en) Crystal thinning method for improved yield and reliability
JPH05243410A (en) Semiconductor device
JPH09235197A (en) Single crystal sapphire substrate and division of single crystal sapphire and single crystal sapphire body
EP2390685A1 (en) Method for manufacturing single crystal optical lens
CN113098431A (en) Composite substrate for manufacturing acoustic wave resonator, surface acoustic wave resonator and manufacturing method
JP2001298170A (en) Sapphire substrate and substrate for device using the same
CN116936338A (en) Ultrathin chip and preparation method and application thereof
JPH07111435A (en) Production of crystal piezoelectric device
JP7266036B2 (en) Temporary fixing substrate, temporary fixing method, and method for manufacturing electronic component
US20240195359A1 (en) Piezoelectric oscillator
US20230352454A1 (en) Bonded body, method of manufacturing the bonded body, and light-emitting device
JP4637566B2 (en) Masking spacer and manufacturing method thereof
US20240258983A1 (en) Acoustic wave device and method for producing same