JPH05335315A - Manufacture of electrode - Google Patents

Manufacture of electrode

Info

Publication number
JPH05335315A
JPH05335315A JP14143192A JP14143192A JPH05335315A JP H05335315 A JPH05335315 A JP H05335315A JP 14143192 A JP14143192 A JP 14143192A JP 14143192 A JP14143192 A JP 14143192A JP H05335315 A JPH05335315 A JP H05335315A
Authority
JP
Japan
Prior art keywords
layer
electrode
zinc
plating
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14143192A
Other languages
Japanese (ja)
Inventor
Yasushi Karasawa
康史 柄沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP14143192A priority Critical patent/JPH05335315A/en
Publication of JPH05335315A publication Critical patent/JPH05335315A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)

Abstract

PURPOSE:To suppress short-circuiting between bump electrodes having high contact strength and small electrode pitch by covering he region other than that for an electrode with photosensitive resin, and by plating it with an acid zincate conversion plating liquid, at the time of manufacturing a bump electrode to be used for minutely mounting a semiconductor element through electroless plating process. CONSTITUTION:A conductive layer 3 composed of aluminum is formed on a silicon substrate 1 forming a circuit, and a nickel/phosphorus layer 5 is formed on the conductive layer 3, and a gold layer 6 is formed on the nickel/phosphorus layer 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子の細密実装
で用いられる突起形状の電極の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a projection-shaped electrode used for fine mounting of semiconductor elements.

【0002】[0002]

【従来の技術】半導体または絶縁体を使った素子を外部
回路に接続する方法は、TAB(テープオートメイテッ
ドボンディング)やフリップチップに代表される薄膜実
装法やパッケージで広く使われているワイヤーボンディ
ング法がある。中でもTABは、小型軽量実装が可能で
あることから利用分野を拡大している。
2. Description of the Related Art A method for connecting an element using a semiconductor or an insulator to an external circuit is a thin film mounting method typified by TAB (Tape Automated Bonding) or flip chip, or a wire bonding method widely used in packages. There is. Among them, TAB is expanding its field of application because it can be mounted in a small size and light weight.

【0003】このTABで必要となる半導体素子側への
突起電極(バンプ)は、製造工程を短縮するため、”プ
レイティング アンド フィニシング”誌7月号、19
88年、70ページに示されているように亜鉛置換法を
用いた活性化によって無電解めっき膜を形成する方法が
知られていた。
The protruding electrodes (bumps) required for the TAB on the side of the semiconductor element are required to shorten the manufacturing process, so that the "plating and finishing" magazine, July issue, 19
In 1988, as shown on page 70, a method of forming an electroless plated film by activation using a zinc substitution method was known.

【0004】しかしながら従来の亜鉛置換めっき技術
は、次のような課題を有した。
However, the conventional zinc displacement plating technique has the following problems.

【0005】第一に亜鉛置換法は、アルミニウムの酸化
膜を除去できるため、めっき強度の改善が可能であっ
た。ところが従来知られている亜鉛置換法は、強アルカ
リ性の亜鉛置換液を用いるため、電極であるアルミニウ
ム薄膜を瞬時にエッチングしてしまい、バンプ強度を得
るためアルミニウム層を厚くしなければならなかった。
さらに半導体素子のアルミニウム導電層は、半導体素子
のパターンルールの微細化によりその膜厚を薄くする傾
向にあるため、従来の亜鉛置換法ではバンプ強度が高
く、微細化された電極を製造することが困難であった。
First, the zinc substitution method can improve the plating strength because it can remove the aluminum oxide film. However, in the conventionally known zinc substitution method, since a strongly alkaline zinc substitution solution is used, the aluminum thin film which is an electrode is instantaneously etched, and the aluminum layer must be thickened in order to obtain bump strength.
Furthermore, since the aluminum conductive layer of the semiconductor element tends to be thinned due to the miniaturization of the pattern rule of the semiconductor element, the conventional zinc substitution method has a high bump strength and can manufacture a miniaturized electrode. It was difficult.

【0006】第二にめっき電極が狭ピッチになると、め
っきの等方成長のため隣合う電極へ接触した。そのため
感光性樹脂を用い、接触を防止する方法が知られてい
る。しかし従来の亜鉛置換法は、アルカリ性のため樹脂
が溶解し、このような接触防止方法が採用できえないと
いう課題を有した。
Secondly, when the plating electrodes have a narrow pitch, they come into contact with adjacent electrodes due to isotropic growth of plating. Therefore, a method of preventing contact by using a photosensitive resin is known. However, the conventional zinc substitution method has a problem that the resin is dissolved due to its alkalinity and such a contact prevention method cannot be adopted.

【0007】第三にアルカリ性の亜鉛置換めっき液は、
アルミニウムのみならず絶縁層も溶解する働きがあり、
またレジスト等による絶縁層の溶解を防ぐ手段がとれな
かった。
Thirdly, the alkaline zinc displacement plating solution is
It has the function of melting not only aluminum but also the insulating layer,
In addition, no means has been taken to prevent dissolution of the insulating layer due to resist or the like.

【0008】そこでこれらの課題を解決する目的とし
て、アルミニウムのエッチング量がアルカリ性の亜鉛置
換めっき液に比べて少ない弗酸を含有した酸性の亜鉛置
換めっき液の応用が考えられた。
Therefore, for the purpose of solving these problems, it was considered to apply an acidic zinc displacement plating solution containing hydrofluoric acid, which has a smaller etching amount of aluminum than an alkaline zinc displacement plating solution.

【0009】[0009]

【発明が解決しようとする課題】しかしながら従来の技
術は、弗酸を使う亜鉛置換めっき液のため、酸性亜鉛置
換めっき液中の弗酸の作用によりレジストがダメージを
受け、めっき処理の途中レジストの剥離等が発生し、め
っきレジストとしての機能を発揮することができないと
いう課題を有していた。
However, since the conventional technique is a zinc displacement plating solution using hydrofluoric acid, the resist is damaged by the action of hydrofluoric acid in the acidic zinc displacement plating solution, and the resist during the plating treatment may be damaged. There is a problem that peeling or the like occurs and the function as a plating resist cannot be exhibited.

【0010】本発明はこれらの課題を解決するものでそ
の目的は、亜鉛置換めっき液を改善し、レジストの剥離
を防止し、レジストを使った電極面積の小さい狭ピッチ
の電極でも接続強度が高く、最終的に接続したとき信頼
性が高い電極の製造方法を提供するものである。
The present invention solves these problems, and an object thereof is to improve a zinc displacement plating solution, prevent resist peeling, and achieve high connection strength even in a narrow pitch electrode using a resist and having a small electrode area. A method for manufacturing an electrode having high reliability when finally connected is provided.

【0011】[0011]

【課題を解決するための手段】本発明の電極の製造方法
は、半導体基板上へ第一絶縁層を介してアルミニウムか
ら成る導電層を積層し、電極予定領域以外を第二絶縁層
で被覆した後、前記電極予定領域の導電層上へ亜鉛層を
めっきし該亜鉛層上へ電気的接続を可能とする接続金属
層を積層した電極の製造方法において、半導体基板上の
電極予定領域以外のアルミニウムから成る導電層及び第
二絶縁層の上へ感光性樹脂層を塗布し、前記亜鉛層を弗
酸及び弗化アンモニウムを含有する酸性の亜鉛置換めっ
き溶液へディッピングして形成し、接続金属層を無電解
めっき法により形成した後、前記感光性樹脂層を除去し
たことを特徴とする。
According to the method of manufacturing an electrode of the present invention, a conductive layer made of aluminum is laminated on a semiconductor substrate through a first insulating layer, and a region other than a predetermined electrode region is covered with a second insulating layer. Then, in the method for producing an electrode, in which a zinc layer is plated on the conductive layer in the electrode planned region and a connection metal layer is laminated on the zinc layer, the aluminum other than the electrode planned region on the semiconductor substrate is used. A photosensitive resin layer is applied onto the conductive layer and the second insulating layer, and the zinc layer is formed by dipping the zinc layer in an acidic zinc displacement plating solution containing hydrofluoric acid and ammonium fluoride, to form a connecting metal layer. It is characterized in that the photosensitive resin layer is removed after being formed by an electroless plating method.

【0012】本発明の亜鉛置換めっき液は、感光性樹脂
の耐弗酸性を高めるため、弗酸を含む亜鉛置換めっき液
へ弗化アンモニウムを添加し、無電解めっきの前処理で
ある亜鉛置換めっきへ用いた。
The zinc displacement plating solution of the present invention is prepared by adding ammonium fluoride to the zinc displacement plating solution containing hydrofluoric acid in order to enhance the hydrofluoric acid resistance of the photosensitive resin, which is a pretreatment for electroless plating. Used to.

【0013】[0013]

【実施例】以下実施例に基づいて、本発明の効果を説明
する。
EXAMPLES The effects of the present invention will be described below based on examples.

【0014】(実施例1)図1は、本実施例1で製造し
た電極の断面図である。シリコン基板1、酸化シリコン
から成る第一絶縁層2、アルミニウムから成る導電層
3、アルコキサイドやポリイミド等から成る第二絶縁層
4及びニッケル・リン層5、金層6の接続金属層で構成
されている電極構造である。
(Embodiment 1) FIG. 1 is a sectional view of an electrode manufactured in the present embodiment 1. It is composed of a silicon substrate 1, a first insulating layer 2 made of silicon oxide, a conductive layer 3 made of aluminum, a second insulating layer 4 made of alkoxide or polyimide, a nickel-phosphorus layer 5 and a connecting metal layer of a gold layer 6. The electrode structure is

【0015】図2から図4は、本実施例の電極の製造方
法に関する工程別の断面図である。まず、図2のように
第一絶縁層2を形成したシリコン基板1へスパッタ法ま
たは蒸着法を用い約1ミクロン厚みのアルミニウムから
成る導電層3を形成した。そして約1ミクロンのリンま
たはほう素含有の酸化シリコン、ポリイミドまたは窒化
シリコンの第二絶縁層4をスピンコートまたはCVD法
により形成し、複数個の40ミクロン間隔、20ミクロ
ン角の電極予定部分をフォトリソグラフィー法及びエッ
チング法により加工した。
2 to 4 are cross-sectional views for each step relating to the method of manufacturing the electrode of this embodiment. First, as shown in FIG. 2, a conductive layer 3 made of aluminum and having a thickness of about 1 micron was formed on a silicon substrate 1 on which a first insulating layer 2 was formed by a sputtering method or a vapor deposition method. Then, a second insulating layer 4 of about 1 micron of silicon oxide containing polyimide or boron, polyimide or silicon nitride is formed by spin coating or CVD method, and a plurality of 40 micron-spaced, 20 micron-square electrode planned portions are photoed. It was processed by the lithography method and the etching method.

【0016】次に図3のように感光性樹脂8を電極予定
領域以外の部分へ塗布し、次の組成の酸性亜鉛置換めっ
き溶液を用い、導電層3へ亜鉛層7をめっきした。
Next, as shown in FIG. 3, a photosensitive resin 8 was applied to a portion other than the electrode planned region, and a zinc layer 7 was plated on the conductive layer 3 using an acidic zinc displacement plating solution having the following composition.

【0017】 <酸性亜鉛置換めっき液> 硫酸亜鉛 820g/l 弗酸(48%) 17ml/l 弗化アンモニウム 10g/l 温度 摂氏25度 時間 90秒 このときアルミニウムのエッチング量は少なく、このめ
っき表面を観察すると、ち密な亜鉛の膜が形成されてい
た。
<Acid Zinc Substitution Plating Solution> Zinc sulfate 820 g / l Hydrofluoric acid (48%) 17 ml / l Ammonium fluoride 10 g / l Temperature 25 degrees Celsius Time 90 seconds At this time, the amount of aluminum etching is small, Upon observation, a dense zinc film was formed.

【0018】次に図4のように次の無電解ニッケル・リ
ンめっき液により、接続金属層としてニッケル・リン層
5を約20ミクロン形成した。
Next, as shown in FIG. 4, a nickel / phosphorus layer 5 as a connecting metal layer was formed to a thickness of about 20 μm by the following electroless nickel / phosphorus plating solution.

【0019】 <めっき組成> 硫酸ニッケル・6水和物 30g/l 次亜りん酸ナトリウム・2水和物 10g/l くえん酸三ナトリウム・2水和物 10g/l 硫酸アンモニウム 66g/l チオジグリコール酸 10ppm <めっき条件> pH 5.5 温度 70度(摂氏) 続いて、公知の無電解金めっき液を用いて金層6を約5
00オングストローム置換めっきし、感光性樹脂層8を
剥離し、電極を完成させた。
<Plating Composition> Nickel Sulfate Hexahydrate 30 g / l Sodium Hypophosphite Dihydrate 10 g / l Trisodium Citrate Dihydrate 10 g / l Ammonium Sulfate 66 g / l Thiodiglycolic Acid 10 ppm <Plating conditions> pH 5.5 Temperature 70 degrees (Celsius) Subsequently, the gold layer 6 was about 5 by using a known electroless gold plating solution.
The photosensitive resin layer 8 was peeled off by the displacement plating of 00 angstrom to complete the electrode.

【0020】本実施例の電極高さばらつきは、少なく、
良好な電極構造であった。
The variation in electrode height of this embodiment is small,
It had a good electrode structure.

【0021】(実施例2)まず第一絶縁層を形成したシ
リコン基板へスパッタ法または蒸着法を用い約1ミクロ
ン厚みのアルミニウムから成る導電層を形成する。そし
て約1ミクロンのリンまたはほう素含有の酸化シリコ
ン、ポリイミドまたは窒化シリコンの第二絶縁層をスピ
ンコートまたはCVD法により形成し、複数個の20ミ
クロン間隔、50ミクロン角の電極予定部分をフォトリ
ソグラフィー法及びエッチング法により加工した。
(Embodiment 2) First, a conductive layer made of aluminum and having a thickness of about 1 micron is formed on a silicon substrate having a first insulating layer formed thereon by a sputtering method or a vapor deposition method. Then, a second insulating layer of silicon oxide containing polyimide or boron of about 1 micron, polyimide or silicon nitride is formed by spin coating or CVD method, and a plurality of electrode portions having a 20 micron interval and 50 micron square are to be photolithographically formed. Processed by the etching method and the etching method.

【0022】次に感光性樹脂を電極の予定高さまで電極
予定領域以外の部分へ塗布し、次の組成の酸性亜鉛置換
めっき溶液を用い、導電層へ亜鉛層をめっきした。
Next, a photosensitive resin was applied to a portion other than the electrode planned area up to a predetermined electrode height, and a zinc layer was plated on the conductive layer using an acidic zinc displacement plating solution having the following composition.

【0023】 <酸性亜鉛置換めっき液> 硫酸亜鉛 700g/l 弗酸(48%) 15ml/l 弗化アンモニウム 10g/l 温度 摂氏15度 処理時間 60秒 本めっき液は、酸性であるため、樹脂は溶解せず、亜鉛
が置換めっきできた。次に、下記の無電解ニッケル・ほ
う素めっき液により、接続金属層であるニッケル・ほう
素層を約20ミクロン形成し、電極を完成させた。
<Acidic zinc displacement plating solution> Zinc sulfate 700 g / l Hydrofluoric acid (48%) 15 ml / l Ammonium fluoride 10 g / l Temperature 15 degrees Celsius Treatment time 60 seconds Since this plating solution is acidic, the resin is It did not melt, and zinc could be subjected to displacement plating. Next, an electroless nickel / boron plating solution described below was used to form a nickel / boron layer, which is a connecting metal layer, to a thickness of about 20 μm to complete the electrode.

【0024】 <めっき組成> 硫酸ニッケル・6水和物 30g/l DMAB 5g/l くえん酸ナトリウム 50g/l <めっき条件> pH 7 温度 70度(摂氏) 本実施例の電極は、狭ピッチであっても電極が接触する
ことはなかった。また電極の高さばらつきは少なかっ
た。
<Plating Composition> Nickel Sulfate Hexahydrate 30 g / l DMAB 5 g / l Sodium Citrate 50 g / l <Plating Conditions> pH 7 Temperature 70 ° C. (degrees Celsius) The electrode of this example has a narrow pitch. However, the electrodes did not come into contact with each other. In addition, the height variation of the electrodes was small.

【0025】(実施例3)まず第一絶縁層を形成したシ
リコン基板へスパッタ法または蒸着法を用い約1ミクロ
ン厚みのアルミニウム層を形成する。そして約1ミクロ
ンのリンまたはほう素含有の酸化シリコン、ポリイミド
または窒化シリコンの第二絶縁層をスピンコートまたは
CVD法により形成し、複数個の20ミクロン間隔、5
0ミクロン角の電極予定部分をフォトリソグラフィー法
及びエッチング法により加工した。次に下記の亜鉛置換
めっき溶液を用い、アルミニウムから成る導電層上へ亜
鉛を置換めっきした。
(Embodiment 3) First, an aluminum layer having a thickness of about 1 micron is formed on a silicon substrate on which a first insulating layer is formed by a sputtering method or a vapor deposition method. Then, a second insulating layer of silicon oxide, polyimide or silicon nitride containing phosphorus or boron having a thickness of about 1 micron is formed by spin coating or a CVD method.
A portion of the electrode having a square of 0 micron was processed by a photolithography method and an etching method. Then, the following zinc displacement plating solution was used to perform displacement plating of zinc on the conductive layer made of aluminum.

【0026】 <酸性亜鉛置換めっき液> 硫酸亜鉛 600g/l 弗酸(48%) 20ml/l 弗化アンモニウム 5g/l 温度 摂氏10度 処理時間 60秒 このときアルミニウムのエッチング量は少なく、このめ
っき表面を観察すると、ち密な亜鉛の膜が形成されてい
た。
<Acid Zinc Substitution Plating Solution> Zinc sulfate 600 g / l Hydrofluoric acid (48%) 20 ml / l Ammonium fluoride 5 g / l Temperature 10 degrees Celsius Treatment time 60 seconds At this time, the etching amount of aluminum was small, and this plating surface When observed, a dense zinc film was formed.

【0027】次に下記の無電解ニッケル・レニウム・リ
ンめっき液により、接続金属層を約20ミクロン形成し
た。
Next, a connection metal layer was formed to a thickness of about 20 μm using the following electroless nickel-rhenium-phosphorus plating solution.

【0028】 <めっき組成> 硫酸ニッケル・6水和物 30g/l 過レニウム酸アンモニウム 0.1g/l 次亜りん酸ナトリウム・2水和物 10g/l くえん酸三ナトリウム・2水和物 10g/l 硫酸アンモニウム 66g/l チオジグリコール酸 10ppm <めっき条件> pH 8.5 温度 70度(摂氏) 続いて、公知の無電解金めっき液を用いて金層を約50
0オングストローム置換めっきし、電極を完成させた。
<Plating Composition> Nickel Sulfate Hexahydrate 30 g / l Ammonium Perrhenate 0.1 g / l Sodium Hypophosphite Dihydrate 10 g / l Trisodium Citrate Dihydrate 10 g / l ammonium sulfate 66 g / l thiodiglycolic acid 10 ppm <plating conditions> pH 8.5 temperature 70 ° C. (celsius) Subsequently, a known electroless gold plating solution was used to form about 50 gold layers.
The electrode was completed by performing 0 angstrom displacement plating.

【0029】本実施例の電極高さばらつきは、少なく、
良好な電極構造であった。さらにレニウムを含むため、
ハロゲンイオン雰囲気で耐食性が良好であった。
There is little variation in electrode height in this embodiment,
It had a good electrode structure. Furthermore, because it contains rhenium,
The corrosion resistance was good in a halogen ion atmosphere.

【0030】(実施例4)実施例2の接続金属層を次の
組成、条件のパラジウム・リンの無電解めっき膜へ変更
した以外、実施例2と同様に電極を完成させた。
(Example 4) An electrode was completed in the same manner as in Example 2 except that the connection metal layer of Example 2 was changed to an electroless plating film of palladium / phosphorus having the following composition and conditions.

【0031】 <めっき組成> 塩化パラジウム 0.01モル/l 亜リン酸ナトリウム 0.02モル/l チオ尿素 10mg/l エチレンジアミン 0.01モル/l <めっき条件> pH 6 温度 摂氏70度 (実施例5)実施例2の接続金属層を次の組成、条件の
無電解金めっき膜へ変更した以外、実施例2と同様に電
極を完成させた。
<Plating Composition> Palladium chloride 0.01 mol / l Sodium phosphite 0.02 mol / l Thiourea 10 mg / l Ethylenediamine 0.01 mol / l <Plating conditions> pH 6 temperature 70 ° C. (Example 5) An electrode was completed in the same manner as in Example 2 except that the connection metal layer of Example 2 was changed to an electroless gold plating film having the following composition and conditions.

【0032】 <めっき組成> 塩化金酸カリウム 2g/l 亜硫酸カリウム 30g/l チオ尿素 10g/l 硫酸カリウム 10g/l <めっき条件> 温度 摂氏70度 以上製造した電極を使い、錫めっきしたテープへ従来の
方式でTAB接続した。そして接続強度の最小値が30
g/電極未満を不良、30g/電極以上を良として判定
した結果、表1のように実施例1及び2及び3及び4及
び5の電極は、良好な接続状態を示した。
<Plating composition> Potassium chloroaurate 2 g / l Potassium sulfite 30 g / l Thiourea 10 g / l Potassium sulfate 10 g / l <Plating conditions> Temperature: 70 degrees Celsius or more TAB connection was made by the method. And the minimum value of connection strength is 30
As a result of judging less than g / electrode as poor and 30 g / electrode or more as good, the electrodes of Examples 1 and 2 and 3 and 4 and 5 showed a good connection state as shown in Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】また実施例の電極の高さばらつきが少ない
ため、半導体素子を異方性導電膜または異方性接着剤を
用いたフリップチップ方法によっても良好な接続状態が
得られ、TABを含め温度サイクル及び通電耐湿試験に
より長期信頼性を調査したが、いずれも良好であった。
Further, since there is little variation in the height of the electrodes of the embodiment, a good connection state can be obtained even by a flip chip method using a semiconductor element with an anisotropic conductive film or an anisotropic adhesive, and the temperature including TAB can be improved. Long-term reliability was examined by a cycle test and an electric humidity test, and they were all good.

【0035】なお本実施例で示した亜鉛置換、ニッケル
めっき液組成、処理条件、バンプの高さ、電極各組成や
半導体基板材料以外でも、本実施例の効果に変わりがな
かった。
It should be noted that the effects of this example were the same except for the zinc substitution, nickel plating solution composition, processing conditions, bump height, electrode composition and semiconductor substrate material shown in this example.

【0036】また無電解めっき液は、ニッケル・リンの
他ニッケル・ほう素、ニッケル・リン、パラジウム・リ
ンまたはニッケル・ほう素のめっき液にタングステン、
モリブデン、マンガン、銅、パラジウム、コバルト、亜
鉛、タリウム、ビスマスのいずれか一つ以上の金属イオ
ンを含有するめっき液でも効果に変わりなかった。
The electroless plating solution includes nickel-phosphorus, nickel-boron, nickel-phosphorus, palladium-phosphorus or nickel-boron plating solutions and tungsten.
Even the plating solution containing one or more metal ions of molybdenum, manganese, copper, palladium, cobalt, zinc, thallium, and bismuth did not change the effect.

【0037】ニッケルめっき液は、本実施例以外に公知
の無電解めっき液組成や他の市販めっき液を用いても効
果に変わりがなかった。
With respect to the nickel plating solution, even if a known electroless plating solution composition or other commercially available plating solution is used other than this embodiment, the effect remains the same.

【0038】亜鉛置換法は、二回以上置換操作をしても
効果に変わり無かった。
The zinc substitution method did not change the effect even if the substitution operation was performed twice or more.

【0039】さらにニッケル合金または金めっき上へ、
はんだを無電解めっき法または溶融したはんだ槽への浸
漬法で積層しても、接続に関する効果に変わりがなかっ
た。
Further onto the nickel alloy or gold plating,
Even when the solder was laminated by the electroless plating method or the dipping method in a molten solder bath, the effect on the connection was not changed.

【0040】[0040]

【発明の効果】以上説明したように本発明によれば、電
極の製造において弗酸及び弗化アンモニウムを含む酸性
の亜鉛置換液を用いる事により、電極予定領域以外の部
分へ被覆した感光性樹脂がめっき処理中、剥離等を起こ
すことがなく、信頼性の高い電極の製造を実現した。そ
して、電極予定部分以外の感光性樹脂がめっき処理中に
剥離することがなくなったので、間隔を狭くした電極で
も短絡が発生せず、TABやフリップチップ接続法にお
いて、安定な接続が実現できた。
As described above, according to the present invention, by using an acidic zinc substitution solution containing hydrofluoric acid and ammonium fluoride in the production of an electrode, a photosensitive resin coated on a portion other than the electrode planned area is used. It has been possible to manufacture highly reliable electrodes without causing peeling during plating. Then, since the photosensitive resin other than the electrode planned portion is not peeled off during the plating process, a short circuit does not occur even in the electrode with a narrow interval, and stable connection can be realized in the TAB or flip chip connection method. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1における電極の断面図。FIG. 1 is a sectional view of an electrode according to a first embodiment of the present invention.

【図2】本発明の実施例1における電極の製造工程の断
面図。
FIG. 2 is a cross-sectional view of the manufacturing process of the electrode according to the first embodiment of the present invention.

【図3】本発明の実施例1における電極の製造工程の断
面図。
FIG. 3 is a cross-sectional view of the manufacturing process of the electrode according to the first embodiment of the present invention.

【図4】本発明の実施例1における電極の製造工程の断
面図。
FIG. 4 is a cross-sectional view of the manufacturing process of the electrode according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 第一絶縁層 3 導電層 4 第二絶縁膜 5 ニッケル・リン層 6 金層 7 亜鉛層 8 感光性樹脂層 1 Silicon Substrate 2 First Insulating Layer 3 Conductive Layer 4 Second Insulating Film 5 Nickel Phosphorus Layer 6 Gold Layer 7 Zinc Layer 8 Photosensitive Resin Layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上へ第一絶縁層を介してアル
ミニウムから成る導電層を積層し、電極予定領域以外を
第二絶縁層で被覆した後、前記電極予定領域の導電層上
へ亜鉛層をめっきし該亜鉛層上へ電気的接続を可能とす
る接続金属層を積層した電極の製造方法において、半導
体基板上の電極予定領域以外のアルミニウムから成る導
電層及び第二絶縁層の上へ感光性樹脂層を塗布し、前記
亜鉛層を弗酸及び弗化アンモニウムを含有する酸性の亜
鉛置換めっき溶液へディッピングして形成し、接続金属
層を無電解めっき法により形成した後、前記感光性樹脂
層を除去したことを特徴とする電極の製造方法。
1. A conductive layer made of aluminum is laminated on a semiconductor substrate with a first insulating layer interposed therebetween, and a portion other than a predetermined electrode region is covered with a second insulating layer, and then a zinc layer is formed on the conductive layer in the predetermined electrode region. In a method of manufacturing an electrode in which a connection metal layer for plating an electric connection on the zinc layer is laminated, a photosensitive layer is formed on a conductive layer and a second insulating layer made of aluminum other than a predetermined electrode region on a semiconductor substrate. Conductive resin layer is applied, the zinc layer is formed by dipping in an acidic zinc displacement plating solution containing hydrofluoric acid and ammonium fluoride, and a connecting metal layer is formed by electroless plating, and then the photosensitive resin is formed. A method for manufacturing an electrode, wherein the layer is removed.
JP14143192A 1992-06-02 1992-06-02 Manufacture of electrode Pending JPH05335315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14143192A JPH05335315A (en) 1992-06-02 1992-06-02 Manufacture of electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14143192A JPH05335315A (en) 1992-06-02 1992-06-02 Manufacture of electrode

Publications (1)

Publication Number Publication Date
JPH05335315A true JPH05335315A (en) 1993-12-17

Family

ID=15291817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14143192A Pending JPH05335315A (en) 1992-06-02 1992-06-02 Manufacture of electrode

Country Status (1)

Country Link
JP (1) JPH05335315A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355280B2 (en) 2000-09-04 2008-04-08 Seiko Epson Corporation Method for forming a bump, semiconductor device and method of fabricating same, semiconductor chip, circuit board, and electronic instrument
JP2008160158A (en) * 2008-03-21 2008-07-10 Fujitsu Ltd Semiconductor device
WO2014010662A1 (en) * 2012-07-13 2014-01-16 東洋鋼鈑株式会社 Electroless gold plating method and gold-plate-coated material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355280B2 (en) 2000-09-04 2008-04-08 Seiko Epson Corporation Method for forming a bump, semiconductor device and method of fabricating same, semiconductor chip, circuit board, and electronic instrument
US7579692B2 (en) 2000-09-04 2009-08-25 Seiko Epson Corporation Method for forming a bump, semiconductor device and method of fabricating same, semiconductor chip, circuit board, and electronic instrument
JP2008160158A (en) * 2008-03-21 2008-07-10 Fujitsu Ltd Semiconductor device
WO2014010662A1 (en) * 2012-07-13 2014-01-16 東洋鋼鈑株式会社 Electroless gold plating method and gold-plate-coated material
CN104471109A (en) * 2012-07-13 2015-03-25 东洋钢钣株式会社 Electroless gold plating method and gold-plate-coated material
JPWO2014010662A1 (en) * 2012-07-13 2016-06-23 東洋鋼鈑株式会社 Electroless gold plating method and gold plating coating material
US9388497B2 (en) 2012-07-13 2016-07-12 Toyo Kohan Co., Ltd. Method of electroless gold plating
US10006125B2 (en) 2012-07-13 2018-06-26 Toyo Kohan Co., Ltd. Gold plate coated material

Similar Documents

Publication Publication Date Title
US4970571A (en) Bump and method of manufacturing the same
US5583073A (en) Method for producing electroless barrier layer and solder bump on chip
JP3949505B2 (en) CONNECTION TERMINAL, ITS MANUFACTURING METHOD, SEMICONDUCTOR DEVICE, AND ITS MANUFACTURING METHOD
US5527734A (en) Method of manufacturing a semiconductor device by forming pyramid shaped bumps using a stabilizer
JPH05335315A (en) Manufacture of electrode
JP3274381B2 (en) Method for forming bump electrode of semiconductor device
JP2000038682A (en) Nickel plating method and semiconductor device
JPS63305532A (en) Forming method for bump
JP3679001B2 (en) Semiconductor device and manufacturing method thereof
JPH0697663B2 (en) Method for manufacturing semiconductor device
JPS5850421B2 (en) thin film circuit
JP2633580B2 (en) Bump, bump forming method, and semiconductor element
KR101137757B1 (en) Method for forming projection electrode and substituted gold plating solution
JPH0582524A (en) Manufacture of electrode and its connecting method
JPH05335314A (en) Manufacture of electrode
JPS6331138A (en) Manufacture of semiconductor device
JPH0969524A (en) Method for nickel plating onto aluminum electrode
CN1103119C (en) Process for single mask C4 solder bump fabrication
JPS5826175B2 (en) Manufacturing method of semiconductor device
JPH04318935A (en) Electrode and manufacture thereof and connecting method thereof
JP4038985B2 (en) Tape carrier for semiconductor devices
JP2839513B2 (en) Method of forming bump
JP3308882B2 (en) Method for manufacturing electrode structure of semiconductor device
JPH04146624A (en) Manufacture of electrode of semiconductor device
JPS5821430B2 (en) Manufacturing method of semiconductor device