JPH053346A - Pyroelectric array sensor - Google Patents

Pyroelectric array sensor

Info

Publication number
JPH053346A
JPH053346A JP3123496A JP12349691A JPH053346A JP H053346 A JPH053346 A JP H053346A JP 3123496 A JP3123496 A JP 3123496A JP 12349691 A JP12349691 A JP 12349691A JP H053346 A JPH053346 A JP H053346A
Authority
JP
Japan
Prior art keywords
electrode
substrate
pyroelectric
infrared
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3123496A
Other languages
Japanese (ja)
Other versions
JP3114235B2 (en
Inventor
Nobuyuki Yoshiike
信幸 吉池
Koji Arita
浩二 有田
Susumu Kobayashi
晋 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP03123496A priority Critical patent/JP3114235B2/en
Publication of JPH053346A publication Critical patent/JPH053346A/en
Priority to US08/232,857 priority patent/US5528038A/en
Application granted granted Critical
Publication of JP3114235B2 publication Critical patent/JP3114235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To provide a simple and inexpensive array sensor for radiant temperature distribution measuring instruments. CONSTITUTION:This pyroelectric array sensor is constituted in such a way that a plurality of electrode pairs, each of which is composed of a light receiving electrode 20 and compensating electrode 21, is arranged on the surface of a pyroelectric substrate 10 and paired electrodes 30 and 31 are provided at positions corresponding to the electrode pairs on the rear surface of the substrate 10. In addition the electrodes 20 are irradiated with infrared rays and the electrodes 21 are not irradiated with the infrared rays.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外線、特に熱線を検
知する焦電アレイセンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pyroelectric array sensor for detecting infrared rays, especially heat rays.

【0002】[0002]

【従来の技術】従来、赤外線、特に熱線を検知する焦電
センサは焦電効果を有する基材の両面に電極を設け、赤
外線照射により該電極間電位が変化することを利用して
検知するものである。材料としては硫酸グリシン系、ポ
リ弗化ビニリデン系、LiTaO3、PbTiO3などの
強誘電体材料が用いられ、また、基材の形態は硫酸グリ
シン系、LiTaO3等は結晶体が用いられ、PbTi
3系は結晶の形成が困難なことから焼結セラミックも
しくは薄膜技術により形成した薄膜を用いるのが一般的
である。
2. Description of the Related Art Conventionally, pyroelectric sensors for detecting infrared rays, particularly heat rays, are provided by providing electrodes on both sides of a base material having a pyroelectric effect and detecting by utilizing a change in potential between the electrodes due to infrared irradiation. Is. Ferroelectric materials such as glycine sulfate-based, polyvinylidene fluoride-based, LiTaO 3 and PbTiO 3 are used as the material, glycine sulfate-based material is used as the base material, and crystalline materials are used as LiTaO 3 and the like, and PbTi is used.
Since it is difficult to form crystals in the O 3 system, it is common to use a sintered ceramic or a thin film formed by a thin film technique.

【0003】[0003]

【発明が解決しょうとする課題】薄膜センサは感度は高
いがコストと信頼性の点で問題が有り、それとは逆に、
結晶体やセラミック体は生産性および信頼性の点で優れ
ているという特徴がある。該結晶体やセラミック体を切
削・研磨加工により薄板化し、外基板上に電極を形成し
てセンサ素子をライン状に並べたアレイセンサを形成す
る場合、基板の温度変化や振動に対し敏感に出力電圧が
変化するという課題が有った。
Although the thin film sensor has high sensitivity, it has problems in cost and reliability. On the contrary,
The crystal body and the ceramic body are characterized in that they are excellent in productivity and reliability. When the crystal body or ceramic body is thinned by cutting / polishing, and electrodes are formed on the outer substrate to form an array sensor in which sensor elements are arranged in a line, the output is sensitive to the temperature change and vibration of the substrate. There was a problem that the voltage changed.

【0004】本発明は、上述の問題に鑑みて試されたも
ので、結晶体もしくはセラミック体を用いて低コストで
信頼性が高いアレイセンサを提供するものである。
The present invention has been tried in view of the above-mentioned problems, and provides a low cost and highly reliable array sensor using a crystal body or a ceramic body.

【0005】[0005]

【課題を解決するための手段】本発明は上述の課題を解
決するため、焦電効果を有する結晶体もしくはセラミッ
ク体基材の表面に赤外線受光部用電極と該電極と電気的
に接触した補償用の電極とを一対とした電極対を複数個
ライン状に所定間隔で配置し、該基板の裏面には該電極
対と対峙する位置に対極を各々設け、該対極から外部電
気回路への電極引出部をそれぞれ設けた構造とし、該赤
外線受光部用電極には赤外線照射状態となるよう受光窓
を設け、かつ、補償電極には赤外線遮光状態としたこと
を特徴とするものである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides an infrared ray receiving electrode on the surface of a crystal or ceramic body having a pyroelectric effect and a compensation for electrically contacting the electrode. A plurality of electrode pairs, each of which is a pair of electrodes for electrodes, are arranged in a line at predetermined intervals, and counter electrodes are provided on the back surface of the substrate at positions facing the electrode pairs, and electrodes from the counter electrodes to an external electric circuit are provided. It is characterized in that each of the lead-out portions is provided, a light-receiving window is provided in the infrared light-receiving portion electrode so that the infrared light is irradiated, and the compensating electrode is in the infrared light-shielding state.

【0006】[0006]

【作用】本発明は上述の構成によって、各センサ出力
が、基材の温度変化や、振動に影響されることなく、2
次元の入射赤外線量(熱量)を正確に測定することを可
能とするものである。
According to the present invention, with the above-described configuration, the output of each sensor is not affected by the temperature change and vibration of the base material.
This makes it possible to accurately measure the amount of incident infrared rays (heat amount).

【0007】[0007]

【実施例】図1、図2および図3は本発明の一実施例を
説明するための焦電体部の概略構成を示すものであっ
て、図1に示すように切削・研磨加工により薄板化した
PbTiO3等からなる焦電体基板10の表面には、蒸
着もしくはスパッター法により受光電極20と補償電極
21を複数個設け、電極は各々電極接続部22により電
気的に接続する構造とする。さらに、焦電体基板10の
裏面には、蒸着もしくはスパッター法により、受光電極
20と補償電極21とに各々対峙する位置に受光電極用
対極30および補償電極用対極31を設け、各々外部回
路へ接続するための電極引出部32を形成する。各電極
パターンはメタルマスク法でもホトリソグラフィによっ
てもよい。このとき、隣接する受光電極間距離は10か
ら200μmとし、受光電極20と補償電極21間隔、
すなわち、電極接続部22の長さは500μmから2m
mがよい。また、受光電極と補償電極は同一面積である
ことが望ましいい。電極接続部および電極引出部におけ
る線巾は20−100μmが良い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1, FIG. 2 and FIG. 3 show a schematic structure of a pyroelectric part for explaining an embodiment of the present invention. As shown in FIG. A plurality of light receiving electrodes 20 and compensating electrodes 21 are provided on the surface of the pyroelectric substrate 10 made of PbTiO 3 or the like by vapor deposition or sputtering, and the electrodes are electrically connected by electrode connecting portions 22. . Further, on the back surface of the pyroelectric substrate 10, a counter electrode 30 for the light receiving electrode and a counter electrode 31 for the compensation electrode are provided at positions facing the light receiving electrode 20 and the compensation electrode 21, respectively, by an evaporation method or a sputtering method, and each is connected to an external circuit. An electrode lead-out portion 32 for connection is formed. Each electrode pattern may be formed by a metal mask method or photolithography. At this time, the distance between adjacent light receiving electrodes is 10 to 200 μm, the distance between the light receiving electrode 20 and the compensating electrode 21,
That is, the length of the electrode connecting portion 22 is from 500 μm to 2 m.
m is good. Further, it is desirable that the light receiving electrode and the compensation electrode have the same area. The line width at the electrode connection portion and the electrode lead-out portion is preferably 20-100 μm.

【0008】次に、図2に示すように焦電体基板10の
受光表面前面には、赤外線選択透過窓41を有する赤外
線選択透過基板40を配置することにより、受光電極2
0にのみ赤外線50が照射されるようにし、補償電極2
1に遮光状態とする。
Next, as shown in FIG. 2, an infrared selective transmission substrate 40 having an infrared selective transmission window 41 is arranged on the front surface of the light receiving surface of the pyroelectric substrate 10 so that the light receiving electrode 2
The infrared ray 50 is irradiated only on 0, and the compensation electrode 2
The light-shielding state is set to 1.

【0009】図3には焦電体基板10と赤外線選択透過
基板40および受光電極20上に赤外線を集光するため
の赤外線透過レンズ60とチョッパ70との相対位置を
示す。当然のことながら、集光後の赤外線は赤外線選択
透過基板40によって、補償電極21側には照射され
ず、受光電極20側のみに照射されものである。また、
赤外線50はチョッパ70により、断続的に入射するこ
とにより、焦電出力を得る。
FIG. 3 shows the relative positions of the infrared transmission lens 60 and the chopper 70 for focusing infrared rays on the pyroelectric substrate 10, the infrared selective transmission substrate 40, and the light receiving electrode 20. As a matter of course, the infrared rays after focusing are not irradiated to the compensation electrode 21 side by the infrared selective transmission substrate 40, but to the light receiving electrode 20 side only. Also,
The infrared ray 50 is intermittently incident by the chopper 70 to obtain a pyroelectric output.

【0010】上述の赤外線選択透過基板40は、電磁波
の遮蔽効果を有する金属材料を用いるのが好ましく、さ
らには、赤外線選択透過窓41はシリコン薄板で覆って
もよい。また、赤外線選択透過基板40は赤外線透過レ
ンズ60と焦電体基板10との中間に設けるのがよく、
焦電体基板10上の数mm以下の位置に固定するのがよ
い。
The infrared selective transmission substrate 40 is preferably made of a metal material having an electromagnetic wave shielding effect, and the infrared selective transmission window 41 may be covered with a silicon thin plate. The infrared selective transmission substrate 40 is preferably provided in the middle of the infrared transmission lens 60 and the pyroelectric substrate 10.
It is preferable to fix the pyroelectric substrate 10 at a position of several mm or less.

【0011】図4には1つの受光部の等価回路の原理図
を示す。R1,R2,R3は抵抗を示し、60は増幅回
路であって、受光部25とは焦電体基板10を介して受
光電極20と受光電極用対極30とで形成されるもので
あり、補償部26とは焦電体基板10を介して補償電極
21と補償電極用対極31とで形成されるものである。
FIG. 4 shows a principle diagram of an equivalent circuit of one light receiving portion. R1, R2, and R3 represent resistances, 60 is an amplifier circuit, and the light receiving portion 25 is formed by the light receiving electrode 20 and the light receiving electrode counter electrode 30 through the pyroelectric substrate 10, and is compensated. The portion 26 is formed of the compensation electrode 21 and the compensation electrode counter electrode 31 with the pyroelectric substrate 10 interposed therebetween.

【0012】図4において、焦電体基板の表面電荷(焦
電出力)は、一般に焦電体の温度変化や振動、または吸
着ガス種によって変動するものであり、補償部26がな
い場合、受光部両端子の容量ドリフトがそのままVOUT
出力として、検出され、入射赤外線50のエネルギー変
化を正確に測定することができにくい。しかし、補償電
極部26を設けることにより、上述の要因による変動成
分は、お互いに相殺され、出力端子の容量ドリフは発生
せず、受光部25に赤外線が照射された場合にのみ、発
生し、受光部25の表面電荷の変化を増幅しVOUTとし
て検出可能となる。
In FIG. 4, the surface charge (pyroelectric output) of the pyroelectric substrate generally fluctuates due to the temperature change and vibration of the pyroelectric body, or the adsorbed gas species. The capacitance drift of both terminals is VOUT
It is difficult to accurately detect the energy change of the incident infrared ray 50 which is detected as the output. However, by providing the compensation electrode section 26, the fluctuation components due to the above-mentioned factors cancel each other out, the capacitive drift of the output terminal does not occur, and occurs only when the light receiving section 25 is irradiated with infrared rays, The change in the surface charge of the light receiving portion 25 can be amplified and detected as VOUT.

【0013】なお、変化量は、周囲温度で若干異なる
が、焦電体部の温度をモニターしフィールドバックする
ことにより、正確な赤外線エネルギー変化を測定でき
る。
Although the amount of change is slightly different depending on the ambient temperature, an accurate infrared energy change can be measured by monitoring the temperature of the pyroelectric part and making a field back.

【0014】実際に、受光電極部および補償電極部を同
一焦電体基板上に10個アレイ状に形成し、画角80度
の赤外線レンズ系を用いて測定した結果、アレイ状の方
向の1次元の温度分布を±0.2℃の精度で空間分解能
10(8度)で正確に測定することができた。
Actually, ten light-receiving electrodes and compensating electrodes were formed in an array on the same pyroelectric substrate and measured using an infrared lens system having an angle of view of 80 °. It was possible to accurately measure the dimensional temperature distribution with an accuracy of ± 0.2 ° C. and a spatial resolution of 10 (8 degrees).

【0015】次に、焦電体基板10と赤外線選択透過基
板40と赤外線透過レンズ60とチョッパー70とを回
転部として一体化し、該回転部をステッピングモータに
機械的に接続し、受光電極のアレイ状方向(長軸方向)
を縦方向として、チョッピングをかけながら、ステッピ
ングモータを駆動させ、回転部を断続的に横方向に回転
させることによりセンサおよびレンズが面している方向
を左右に走査させながら、温度分布を測定した。測定
後、電気信号処理により各方向の縦の温度分布をつなぎ
合わせると、空間の2次元の反転温度分布が得られた。
横(左右)方向の空間分解能はステッピングモータの1
回の回転角に依存するものであり、例えば、3.6度回
転毎に信号入力し、トータル180度回転させた場合に
は、横方向の空間分解能は50となり、縦方向の空間分
解能は上述の如く10であるのでセンサ位置から見て縦
80度、横180度の空間を±0.2℃の精度で空間分
解能10×50の分解能で温度分布を測定できた。
Next, the pyroelectric substrate 10, the infrared selective transmission substrate 40, the infrared transmission lens 60, and the chopper 70 are integrated as a rotating portion, and the rotating portion is mechanically connected to a stepping motor to form an array of light receiving electrodes. Direction (long axis direction)
The temperature distribution was measured while the direction in which the sensor and the lens faced was scanned left and right by driving the stepping motor while chopping, and rotating the rotating part intermittently in the horizontal direction with the vertical direction as the vertical direction. . After the measurement, a vertical two-dimensional temperature distribution in each direction was obtained by connecting the vertical temperature distributions in each direction by electric signal processing.
The lateral (left and right) spatial resolution is 1 for stepping motors.
For example, when a signal is input every 3.6 ° rotation and a total of 180 ° rotation is performed, the spatial resolution in the horizontal direction is 50 and the spatial resolution in the vertical direction is as described above. As described above, the temperature distribution can be measured with a spatial resolution of 10 × 50 with an accuracy of ± 0.2 ° C. in a space of 80 ° vertically and 180 ° horizontally as seen from the sensor position.

【0016】以上、本発明のセンサを用いて、空間の2
次元温度分布測定が達成できた。なお、受光電極の形状
は入射画角の分解能で決定するものであり、上述の場
合、アレイ方向(縦):横方向=5:1とするのがよ
い。
As described above, by using the sensor of the present invention,
The dimensional temperature distribution measurement can be achieved. The shape of the light receiving electrode is determined by the resolution of the incident field angle, and in the above case, it is preferable that the array direction (vertical): horizontal direction = 5: 1.

【0017】実施例1に記載した焦電体電極形状に関し
て、図5に示すように焦電体基板裏面に形成する補償電
極用対極を1つの幅広い電極で補償電極用共通電極33
とする。このとき、補償電極用共通電極は焦電基板表面
に形成した全ての補償電極21に対峙するように配置す
る。以上の構成とすることにより、補償電極用電極の電
極引出部32が1つとなり、焦電体基板から外部の電気
回路への配線が極端に単純、簡単化することができた。
Regarding the shape of the pyroelectric electrode described in Embodiment 1, as shown in FIG. 5, the counter electrode for the compensation electrode formed on the back surface of the pyroelectric substrate is one wide electrode and the common electrode 33 for the compensation electrode.
And At this time, the common electrode for the compensation electrode is arranged so as to face all the compensation electrodes 21 formed on the surface of the pyroelectric substrate. With the above configuration, the number of the electrode lead-out portions 32 of the compensation electrode is one, and the wiring from the pyroelectric substrate to the external electric circuit can be extremely simple and simple.

【0018】図6には、焦電体基板上に形成する電極パ
ターンの1例を示す。図を示すように焦電体基板表面1
1には受光電極20、電極接続部22および補償電極2
1からなる電極群を2列設けた。このとき、列間の隣接
距離は受光電極間で10−200μmとした。焦電基板
裏面12には受光電極徒歩焦電極にそれぞれ対峙する位
置に受光電極用対極30と補償電極用対極31を設け
る。32は各電極から外部電気回路へ接続するための電
極引出し部である。各電極の寸法は実施例1と同様であ
る。
FIG. 6 shows an example of the electrode pattern formed on the pyroelectric substrate. Pyroelectric substrate surface 1 as shown
1 includes a light receiving electrode 20, an electrode connecting portion 22, and a compensating electrode 2.
Two rows of electrode groups consisting of 1 were provided. At this time, the adjacent distance between the columns was set to 10 to 200 μm between the light receiving electrodes. On the back surface 12 of the pyroelectric substrate, a light-receiving electrode counter electrode 30 and a compensation electrode counter electrode 31 are provided at positions facing the light-receiving electrode walking focus electrode. Reference numeral 32 is an electrode lead-out portion for connecting each electrode to an external electric circuit. The size of each electrode is the same as that of the first embodiment.

【0019】実際に、受光電極部および補償電極部を同
一焦電体基板上に10個アレイ状に2列形成し、受光電
極部にのみ、赤外線照射を可能とする赤外線選択透過基
板を上部に配することにより、画角80度の赤外線レン
ズ系を用いて測定した結果、2次元の温度分布を±0.
2℃の精度で空間分解能2×10で正確に測定すること
ができた。
Actually, 10 rows of light-receiving electrodes and compensating electrodes are formed in two rows on the same pyroelectric substrate in the form of an array, and only the light-receiving electrodes have an infrared selective transmission substrate on the top that allows infrared irradiation. As a result of measurement using an infrared lens system having an angle of view of 80 degrees, the two-dimensional temperature distribution is ± 0.
It was possible to accurately measure with a spatial resolution of 2 × 10 at an accuracy of 2 ° C.

【0020】次に、実施例1と同様に、焦電体基板と赤
外線選択透過基板と赤外線透過レンズとチョッパーとを
回転部として一体化し、該回転部をステッピングモータ
に機械的に接続し、受光電極のアレイ状方向(長軸方
向)を縦方向として、チョッピングをかけながら、ステ
ッピングモータを駆動させ、回転部を断続的に横方向に
回転させることによりセンサおよびレンズが面している
方向を左右に走査させながら、温度分布を測定した。測
定後、電気信号処理により各方向の縦の温度分布をつな
ぎ合わせると、空間の2次元の反転温度分布が得られ
た。横(左右)方向の空間分解能はステッピングモータ
の1回の回転角に依存するものであり、例えば、1ステ
ップ3.6度回転毎に信号入力し、トータル180度回
転させた場合には、横方向の空間分解能は100とな
り、縦方向の空間分解能は上述の如く10であるのでセ
ンサ位置から見て縦80度、横180度の空間を±0.
2℃の精度で空間分解能10*100の分解能で温度分
布を測定できた。
Next, as in the first embodiment, the pyroelectric substrate, the infrared selective transmission substrate, the infrared transmission lens and the chopper are integrated as a rotating portion, and the rotating portion is mechanically connected to a stepping motor to receive light. The direction in which the sensor and the lens are facing is left or right by driving the stepping motor while intermittently rotating the rotating part while chopping with the electrode array direction (long axis direction) as the vertical direction. The temperature distribution was measured while being scanned. After the measurement, a vertical two-dimensional temperature distribution in each direction was obtained by connecting the vertical temperature distributions in each direction by electric signal processing. The spatial resolution in the lateral (left-right) direction depends on the rotation angle of the stepping motor once. For example, when a signal is input at every step of rotation of 3.6 degrees and the total rotation is 180 degrees, The spatial resolution in the vertical direction is 100, and the spatial resolution in the vertical direction is 10 as described above, so a space of 80 degrees in the vertical direction and 180 degrees in the horizontal direction is ± 0.
The temperature distribution could be measured with an accuracy of 2 ° C. and a spatial resolution of 10 * 100.

【0021】以上、本発明のセンサを用いて、空間の2
次元温度分布を測定する場合、実施例1より2倍の分解
能を向上させることができた。また、分解能を同じとす
るならば、走査時間を半減させることが可能であった。
As described above, by using the sensor of the present invention,
When measuring the dimensional temperature distribution, the resolution could be improved by a factor of two compared to Example 1. Further, if the resolution is the same, the scanning time could be reduced by half.

【0022】図7は受光電極および補償電極と各対極と
の対峙状態を示すものであり、各々の引出電極および電
極接続部が極力対峙しないように設計することにより誤
動作を最小限に抑えることができる。
FIG. 7 shows the confronting state of the light receiving electrode and the compensating electrode with each counter electrode. The malfunction can be minimized by designing the extraction electrode and the electrode connecting portion so as not to confront each other as much as possible. it can.

【0023】さらに、受光電極と補償電極は同一形状が
好ましいが、場合によっては図8に示す実施例のよう
に、受光電極と補償電極の面積を等しいものであれば、
形状は異ってもよく、そうすることによって、焦電体基
板裏面32における電極引出部のひきまわしが容易とな
り、両サイドから電極を引き出すことができる。また、
引出し電極部を削減することを目的として、図9に示す
ように焦電体基板裏面に形成する補償電極用対極を1つ
の幅広い電極で補償電極用共通電極33とする。このと
き、該補償電極用共通電極は焦電基板表面に形成した全
ての補償電極21に対峙するように配置する。以上の構
成とすることにより、補償電極用電極の電極引出し部3
2が2つとなり、焦電体基板から外部の電気回路への配
線が極端に単純、簡単化することができた。
Further, it is preferable that the light receiving electrode and the compensating electrode have the same shape, but in some cases, if the light receiving electrode and the compensating electrode have the same area as in the embodiment shown in FIG.
The shapes may be different, and by doing so, it becomes easy to separate the electrode lead-out portions on the back surface 32 of the pyroelectric substrate, and the electrodes can be led out from both sides. Also,
For the purpose of reducing the number of lead-out electrode portions, as shown in FIG. 9, the compensating electrode counter electrode formed on the back surface of the pyroelectric substrate is a wide electrode to form the compensating electrode common electrode 33. At this time, the common electrode for compensation electrodes is arranged so as to face all the compensation electrodes 21 formed on the surface of the pyroelectric substrate. With the above structure, the electrode lead-out portion 3 of the compensation electrode is formed.
Since there are two, the wiring from the pyroelectric substrate to the external electric circuit can be extremely simple and simplified.

【0024】[0024]

【発明の効果】以上のように、本発明の赤外線を検知す
るアレイセンサにおいては、次に示すような効果があ
る。(1) 基材の温度変化や、振動によって発生する焦電
体表面の電荷密度変化は電気回路上、補償電極によって
相殺され、受光電極に照射された入射赤外線量(熱量)
を正確に測定することを可能とするものである。(2) 受
光部を2列とし、各々の引出し電極および電極接続部が
対峙しないようにすることにより、2次元でありながら
温度変化や、振動に左右されない誤動作を最小限に抑え
たセンサができる。
As described above, the array sensor for detecting infrared rays according to the present invention has the following effects. (1) A change in the temperature of the base material and a change in the charge density on the surface of the pyroelectric body caused by vibration are canceled by the compensation electrode on the electric circuit, and the amount of incident infrared light (heat amount) irradiated to the light receiving electrode
It is possible to measure accurately. (2) By forming the light-receiving part in two rows so that the extraction electrodes and electrode connection parts do not face each other, it is possible to create a sensor that is two-dimensional and minimizes malfunctions that are not affected by temperature changes or vibrations. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の焦電センサ−の焦電体部の
概略図
FIG. 1 is a schematic view of a pyroelectric body portion of a pyroelectric sensor according to an embodiment of the present invention.

【図2】同焦電センサ−における焦電基板と赤外線選択
透過基板との相対位置関係図
FIG. 2 is a relative positional relationship diagram between a pyroelectric substrate and an infrared selective transmission substrate in the same pyroelectric sensor.

【図3】同焦電センサ−を構成要素とする測定装置の概
念図
FIG. 3 is a conceptual diagram of a measuring device having the same pyroelectric sensor as a constituent element.

【図4】同測定装置の電気回路図FIG. 4 is an electric circuit diagram of the measuring device.

【図5】本発明の異なる実施例の焦電体部の概略図FIG. 5 is a schematic view of a pyroelectric part according to another embodiment of the present invention.

【図6】焦電センサ−における具体的な電極パターンの
概略図
FIG. 6 is a schematic view of a specific electrode pattern in the pyroelectric sensor.

【図7】焦電センサ−における具体的な電極パターンの
概略図
FIG. 7 is a schematic view of a specific electrode pattern in the pyroelectric sensor.

【図8】焦電センサ−における具体的な電極パターンの
概略図
FIG. 8 is a schematic view of a specific electrode pattern in the pyroelectric sensor.

【図9】焦電センサ−における具体的な電極パターンの
概略図
FIG. 9 is a schematic view of a specific electrode pattern in the pyroelectric sensor.

【符号の説明】[Explanation of symbols]

10 焦電体基板 11 焦電体基板表面 12 焦電体基板裏面 20 受光電極 21 補償電極 22 電極接続部 25 受光部 26 補償部 30 受光電極用対極 31 補償電極用対極 32 電極引出部 33 補償電極用共通対極 40 赤外線選択透過基板 41 赤外線選択透過窓 50 赤外線 60 赤外線透過レンズ 70 チョッパ 80 増幅回路 10 Pyroelectric substrate 11 Pyroelectric substrate surface 12 Back side of pyroelectric substrate 20 Light receiving electrode 21 Compensation electrode 22 Electrode connection part 25 Light receiving part 26 Compensation Department 30 Counter electrode for light receiving electrode 31 Counter electrode for compensation electrode 32 Electrode extraction part 33 Common counter electrode for compensation electrode 40 Infrared selective transmission substrate 41 Infrared selective transmission window 50 infrared 60 infrared transparent lens 70 chopper 80 amplifier circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 焦電効果を有する基板の表面に赤外線受
光電極と前記電極と電極接続部を介して電気的に接触し
た補償電極とを一対とした電極対を複数個ライン状に所
定間隔で配置し、前記基板の裏面には前記電極対と対峙
する位置に各々対極を設け、前記対極から外部電気回路
への取出用電極引出部をそれぞれ設け、前記赤外線受光
電極を赤外線照射用状態とし前記補償電極を赤外線遮光
状態とする赤外線選択透過基板を設けたことを特徴とす
る焦電アレイセンサ。
1. A plurality of electrode pairs, each of which has a pair of an infrared ray receiving electrode and a compensating electrode electrically contacting the electrode through an electrode connecting portion, are formed on a surface of a substrate having a pyroelectric effect at predetermined intervals in a line form. Arranged, on the back surface of the substrate, a counter electrode is provided at a position facing the electrode pair, respectively, an extraction electrode lead-out portion from the counter electrode to an external electric circuit is provided, and the infrared light receiving electrode is set to an infrared irradiation state. A pyroelectric array sensor characterized by comprising an infrared selective transmission substrate which makes a compensation electrode in a state of blocking infrared rays.
【請求項2】 電極対を複数個ライン状に所定間隔で2
列配置し、基板の裏面には前記電極対と対峙する位置に
対極を設け、前記対極から外部電気回路への取出用電極
引出部を前記基板表面に形成した電極接続部と非対峙状
態に設けたことを特徴とする請求項1記載の焦電アレイ
センサ。
2. A plurality of electrode pairs arranged in a line at predetermined intervals.
Arranged in rows, a counter electrode is provided on the back surface of the substrate at a position facing the electrode pair, and an electrode lead-out portion for extracting from the counter electrode to an external electric circuit is provided in a state not facing the electrode connection portion formed on the surface of the substrate. The pyroelectric array sensor according to claim 1, wherein
【請求項3】 焦電効果を有する基板の裏面には受光電
極に対峙した位置にそれぞれ対極を設け、補償電極に対
峙する位置には1つの幅広い電極で共通の対極としたこ
とを特徴とする請求項1または2記載の焦電アレイセン
サ。
3. A back electrode of a substrate having a pyroelectric effect is provided with a counter electrode at a position facing a light receiving electrode, and a common electrode having a wide electrode is provided at a position facing a compensation electrode. The pyroelectric array sensor according to claim 1 or 2.
JP03123496A 1991-05-07 1991-05-28 Pyroelectric array sensor Expired - Fee Related JP3114235B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP03123496A JP3114235B2 (en) 1991-05-28 1991-05-28 Pyroelectric array sensor
US08/232,857 US5528038A (en) 1991-05-07 1994-04-22 Temperature distribution measurement apparatus and its application to a human body detecting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03123496A JP3114235B2 (en) 1991-05-28 1991-05-28 Pyroelectric array sensor

Publications (2)

Publication Number Publication Date
JPH053346A true JPH053346A (en) 1993-01-08
JP3114235B2 JP3114235B2 (en) 2000-12-04

Family

ID=14862070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03123496A Expired - Fee Related JP3114235B2 (en) 1991-05-07 1991-05-28 Pyroelectric array sensor

Country Status (1)

Country Link
JP (1) JP3114235B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012056943A1 (en) * 2010-10-25 2012-05-03 Necトーキン株式会社 Pyroelectric sensor array and pyroelectric infrared detection device
WO2017221718A1 (en) * 2016-06-23 2017-12-28 株式会社村田製作所 Infrared detection element and infrared detection device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012056943A1 (en) * 2010-10-25 2012-05-03 Necトーキン株式会社 Pyroelectric sensor array and pyroelectric infrared detection device
CN103229028A (en) * 2010-10-25 2013-07-31 Nec东金株式会社 Pyroelectric sensor array and pyroelectric infrared detection device
US8766187B2 (en) 2010-10-25 2014-07-01 Nec Tokin Corporation Pyroelectric sensor array and pyroelectric infrared detection device
TWI507667B (en) * 2010-10-25 2015-11-11 Nec Tokin Corp Pyroelectric sensor array and pyroelectric infrared sensor device
JP5901533B2 (en) * 2010-10-25 2016-04-13 Necトーキン株式会社 Pyroelectric sensor array and pyroelectric infrared detector
WO2017221718A1 (en) * 2016-06-23 2017-12-28 株式会社村田製作所 Infrared detection element and infrared detection device
US10823620B2 (en) 2016-06-23 2020-11-03 Murata Manufacturing Co., Ltd. Infrared detection element and infrared detection device

Also Published As

Publication number Publication date
JP3114235B2 (en) 2000-12-04

Similar Documents

Publication Publication Date Title
KR970010976B1 (en) Infrared array sensor system
JP3409848B2 (en) Thermal infrared detector
US5528038A (en) Temperature distribution measurement apparatus and its application to a human body detecting system
TWI567370B (en) Pyroelectric infrared radiation sensor
US4404468A (en) Pyrodetector
US7868292B2 (en) Thermal infrared image detector
US3932753A (en) Pyroelectric device with coplanar electrodes
EP0919794B1 (en) Thermal type infrared sensing device, fabrication method and infrared imaging apparatus
GB2149912A (en) Infrared ray detector
JPH053346A (en) Pyroelectric array sensor
JP3175321B2 (en) Pyroelectric array sensor
US5021660A (en) Pyroelectric infrared detector and driving method therefor
JPS637611B2 (en)
JPH06273228A (en) Pyroelectric array sensor and temperature distribution measuring device
JPH0518816A (en) Pyroelectric array sensor
JPH0510817A (en) Pyroelectric array sensor
JP3147856B2 (en) Linear infrared detector
JPH08178748A (en) Pyroelectric array sensor
JP2922098B2 (en) Semiconductor radiation detector
JPH06258137A (en) Pyroelectric infrared ray sensor
JPH06120569A (en) Infrared detector
JPH07301568A (en) Infrared detector
JPH0433399B2 (en)
JP3303482B2 (en) Optical position detector
JP2001094161A (en) Pyroelectric element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees