JPH0433399B2 - - Google Patents

Info

Publication number
JPH0433399B2
JPH0433399B2 JP61029827A JP2982786A JPH0433399B2 JP H0433399 B2 JPH0433399 B2 JP H0433399B2 JP 61029827 A JP61029827 A JP 61029827A JP 2982786 A JP2982786 A JP 2982786A JP H0433399 B2 JPH0433399 B2 JP H0433399B2
Authority
JP
Japan
Prior art keywords
infrared
output
mirror piece
condensing mirror
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61029827A
Other languages
Japanese (ja)
Other versions
JPS62187277A (en
Inventor
Noboru Masuda
Kenji Tomaki
Tetsuo Oosawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP61029827A priority Critical patent/JPS62187277A/en
Priority to US06/866,641 priority patent/US4745284A/en
Priority to DE8686116444T priority patent/DE3683843D1/en
Priority to EP19860116444 priority patent/EP0235372B1/en
Publication of JPS62187277A publication Critical patent/JPS62187277A/en
Publication of JPH0433399B2 publication Critical patent/JPH0433399B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明はデユアル構造の焦電形赤外線センサを
使用した焦電形赤外線検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a pyroelectric infrared detection device using a dual structure pyroelectric infrared sensor.

<従来の技術> 近年、発光受光形赤外線装置(LED)にかわ
つて人体等から放射される低レベルの熱線を感知
する焦電形の赤外線検出装置が多用される傾向に
ある。このような装置に使用される赤外線センサ
は、2個の赤外線素子から構成され、熱的外来雑
音の到来や周囲の温度変化による誤出力の発生を
防いでいる。即ち、2個の赤外線素子は分極方向
を逆にして直列或は並列に接続された所謂デユア
ル構造であり、2個の赤外線素子に同時に熱線が
入射したとき両素子の出力は互に打ち消し合い赤
外線センサから出力が発生しない構成である。
<Prior Art> In recent years, pyroelectric infrared detection devices that detect low-level heat rays emitted from the human body have been increasingly used instead of light-emitting/receiving infrared devices (LEDs). The infrared sensor used in such a device is composed of two infrared elements, and prevents the occurrence of erroneous output due to the arrival of external thermal noise or changes in ambient temperature. In other words, the two infrared elements have a so-called dual structure in which they are connected in series or parallel with their polarization directions reversed, and when a hot ray is incident on the two infrared elements at the same time, the outputs of both elements cancel each other out, resulting in infrared radiation. This is a configuration in which no output is generated from the sensor.

<発明が解決しようとする問題点> しかし、現在多用されている赤外線検出装置
は、焦電形赤外線センサの入力感度が低いので、
大きな面積の凹面状集光ミラーを用いその焦点附
近に赤外線センサを配置し、赤外線センサに対す
る入射熱線量を増大させてS/N比を改善してい
る。従つて、S/Nの良い赤外線検出装置は必然
的に大型になる欠点を有している。
<Problems to be solved by the invention> However, the currently widely used infrared detection devices have low input sensitivity of pyroelectric infrared sensors.
A concave condensing mirror with a large area is used, and an infrared sensor is placed near its focal point to increase the amount of heat rays incident on the infrared sensor, thereby improving the S/N ratio. Therefore, an infrared detection device with a good S/N ratio inevitably has the disadvantage of being large.

また、赤外線検出装置は、人体などの被検出体
が各方面から接近するのを感知するため集光ミラ
ーを多分割し多焦点集光ミラーを有するものがあ
る。しかし、この場合においても、赤外線センサ
の出力のS/Nを良好に維持する必要があるた
め、分割された各ミラー片自体が大きくなり、結
局、赤外線検出装置全体が大型となつて、その設
置場所が著しく制限されるものであつた。
Further, some infrared detection devices have a multi-focal condenser mirror in which the condensing mirror is divided into multiple parts in order to sense when a detected object such as a human body approaches from various directions. However, even in this case, it is necessary to maintain a good S/N ratio of the output of the infrared sensor, so each divided mirror piece itself becomes large, resulting in the overall size of the infrared detection device and its installation. Space was severely restricted.

更に、赤外線検出装置は、主に人体の移動を感
知することを目的としており、人体の移動に伴う
赤外線センサの出力の周波数は0.1Hzから10Hz程
度となる。このような低い周波数の信号を処理す
る回路は、必然的にフイルタ回路のコンデンサの
容量が大きくなり、その収容空間を確保する上か
らも赤外線検出装置を小型化することは困難であ
つた。
Further, the infrared detection device is mainly intended to detect the movement of a human body, and the frequency of the output of the infrared sensor due to the movement of the human body is about 0.1 Hz to 10 Hz. In a circuit that processes such low frequency signals, the capacitance of the capacitor of the filter circuit inevitably becomes large, and it has been difficult to downsize the infrared detection device in order to secure the space for accommodating the filter circuit.

<問題を解決するための手段> 本発明は上述のような欠点を解決した焦電型赤
外線検出装置を提供することを目的とするもので
ある。
<Means for Solving the Problems> An object of the present invention is to provide a pyroelectric infrared detection device that solves the above-mentioned drawbacks.

本発明装置の原理を第1図を参照して述べる
と、赤外線センサ10は1枚の焦電板10cの上
に2個の赤外線素子10a,10bを配設した所
謂デユアル構造となつている。赤外線センサ10
の受光面側であつて、赤外線素子10a,10b
のほぼ中間に位置する平面上に、少なくとも1個
の集光ミラー片11が直立する如く配置されてい
る。集光ミラー片11は両表面が反射面となつて
おり、被検出体からの熱線(遠赤外線)を反射し
て赤外線素子10aまたは10bに入射する構成
となつている。
The principle of the apparatus of the present invention will be described with reference to FIG. 1. The infrared sensor 10 has a so-called dual structure in which two infrared elements 10a and 10b are disposed on one pyroelectric plate 10c. Infrared sensor 10
on the light-receiving surface side of the infrared elements 10a, 10b.
At least one condensing mirror piece 11 is arranged so as to stand upright on a plane located approximately in the middle of the plane. Both surfaces of the condensing mirror piece 11 are reflective surfaces, and are configured to reflect heat rays (far infrared rays) from the object to be detected and make them enter the infrared element 10a or 10b.

<作用> 被検出体が赤外線センサ10の受光面側を等速
度で平行に矢印方向へ移動すると仮定すると、第
2図に示すように、赤外線センサ10から離れた
地点Aでは被検出体12からの熱線13が直接赤
外線素子10a,10bに入射する。しかし、被
検出体12が、赤外線センサに近接したX地点に
於て、被検出体12からの熱線は、赤外線素子1
0aに対しては直接入射分14aに集光ミラー片
11からの反射分14bが加算されて入射し、一
方、赤外線素子10bに対しては熱線の入射が制
限され或は遮断される。被検出体12がB地点に
あるときは、両赤外線素子10a,10bに直接
的に熱線が入射するようになる。
<Function> Assuming that the object to be detected moves parallel to the direction of the arrow at a constant speed on the light-receiving surface side of the infrared sensor 10, as shown in FIG. The hot rays 13 directly enter the infrared elements 10a and 10b. However, at point X where the detected object 12 is close to the infrared sensor, the heat rays from the detected object 12
0a, the direct incident portion 14a and the reflected portion 14b from the condensing mirror piece 11 are added together, and the heat rays enter the infrared element 10b, while the incidence of the heat rays is restricted or blocked. When the detected object 12 is at point B, the heat rays are directly incident on both the infrared elements 10a and 10b.

このときの赤外線素子10a,10bの出力を
第3図に概念的に示すと、出力レベルaは熱線が
直接入射した場合の出力を、出力レベルbは赤外
線素子10aに集光ミラー片11により反射され
た熱線14bが加算されて入射した場合の出力を
示す。従つて、赤外線センサからの差動出力、即
ち極性反対に接続された赤外線素子10a,10
bの加算出力は、第4図のようになり、集光ミラ
ー片からの反射分が重畳されたときの出力信号b
は、直接入射分のみの場合の出力信号aに比較
し、出力レベルが2倍に近く、また信号の周波数
は高いものとなる。出力信号bの波高値は集光ミ
ラー片11の反射係数により定まる。また、出力
信号bのパルス幅は、第1図に示すように、受光
面からの集光ミラー片の高さh、集光ミラー片1
1の幅wおよび赤外線素子10aと10bの間隔
sにより定まる。通常は、間隔sは一定であるか
ら、高さhと幅wが設計のとき適宜に定められ
る。集光ミラー片の幅wは赤外線素子10a,1
0bに入射する熱線を一時的に制限し、好ましく
は遮断する幅があればよく、集光ミラー片は小さ
い形状で十分である。なお、第3図の点線a1,d1
は赤外線素子10a,10bに入射する熱線が間
隔sによる位相差が生ずる場合の出力で、差動出
力は第4図の点線a,bで示される。また、2点
破線15は2個の赤外線素子10a,10bを分
ける平面を示す。被検出体12が破線15を超え
て地点Yに移動すると赤外線素子10bには直接
入射分16aに反射分16bが重畳して入射し、
この結果、第3図および第4図から明らかなよう
に、出力は点Bに対し対称c,dとなることが理
解できる。
The outputs of the infrared elements 10a and 10b at this time are conceptually shown in FIG. 3. Output level a is the output when the heat ray is directly incident, and output level b is the output when the infrared element 10a is reflected by the condensing mirror piece 11. The output when the heated rays 14b are added and incident is shown. Therefore, the differential output from the infrared sensor, that is, the infrared elements 10a, 10 connected with opposite polarity.
The added output of b is as shown in Figure 4, and the output signal b when the reflection from the condensing mirror piece is superimposed.
The output level is nearly twice that of the output signal a in the case of direct incidence only, and the signal frequency is higher. The peak value of the output signal b is determined by the reflection coefficient of the condensing mirror piece 11. In addition, the pulse width of the output signal b is determined by the height h of the condensing mirror piece from the light receiving surface,
1 and the distance s between the infrared elements 10a and 10b. Since the interval s is usually constant, the height h and width w are determined as appropriate during design. The width w of the converging mirror piece is the infrared element 10a, 1
It is sufficient to have a width that temporarily restricts and preferably blocks the heat rays incident on 0b, and a small shape of the converging mirror piece is sufficient. Note that the dotted lines a 1 and d 1 in Figure 3
is the output when a phase difference occurs due to the interval s between the heat rays incident on the infrared elements 10a and 10b, and the differential output is shown by dotted lines a and b in FIG. Further, a two-dot broken line 15 indicates a plane that separates the two infrared elements 10a and 10b. When the detected object 12 moves beyond the broken line 15 to the point Y, the reflected portion 16b is superimposed on the directly incident portion 16a and is incident on the infrared element 10b.
As a result, as is clear from FIGS. 3 and 4, it can be seen that the outputs become symmetrical c and d with respect to point B.

<実施例> 以下本発明の実施例を添付図面を参照して詳細
に説明する。
<Examples> Examples of the present invention will be described in detail below with reference to the accompanying drawings.

第1図および第5図に於て、デユアル構造の赤
外線センサ10は、1枚の焦電板10cの上に2
個の赤外線素子10a,10bを配置して構成さ
れている。この赤外線センサ10は、図面には示
していないが、セラミツク基板の上に電極を介し
て焦電板10cの背面が固定され、入光窓を有す
るケース17の内部に収容されている。赤外線セ
ンサ10の受光面側18には、2個の赤外線素子
10a,10bを2分する平面であつて受光面の
上を横断する如くU形の集光ミラー片19を設け
る。この集光ミラー片19は両面が光学的反射面
となつており、その厚味は約0.5mm、受光面と垂
直方向の長さ(幅)は6〜7mm程度の形状寸法で
ある。ケース17はプラスチツクから作られてい
るが、この中にはFETやフイルタ回路等が収納
されている。20は端子である。
In FIGS. 1 and 5, the dual structure infrared sensor 10 has two pyroelectric plates placed on one pyroelectric plate 10c.
The infrared elements 10a and 10b are arranged. Although not shown in the drawings, this infrared sensor 10 has the back surface of a pyroelectric plate 10c fixed onto a ceramic substrate via an electrode, and is housed inside a case 17 having a light entrance window. On the light-receiving surface side 18 of the infrared sensor 10, a U-shaped condensing mirror piece 19 is provided, which is a plane that bisects the two infrared elements 10a and 10b, and extends across the light-receiving surface. Both surfaces of the condensing mirror piece 19 are optically reflective surfaces, and its thickness is about 0.5 mm, and its length (width) in the direction perpendicular to the light receiving surface is about 6 to 7 mm. The case 17 is made of plastic, and contains FETs, filter circuits, etc. 20 is a terminal.

第2図および第6図を参照して動作を示す。人
体12が赤外線素子10a側から接近すると、人
体12から放射される熱線13は両赤外線素子1
0a,10bに入射し各赤外線素子には、第6図
に出力電圧a1,b1で示すようなゆるやかに上昇す
る出力電圧が現われる。人体12が更に接近しX
地点に到達すると、人体12から放出される熱線
は赤外線素子10bに対して遮蔽板として作用し
始め人体12が矢印方向に進むにつれてその度合
が増し、やがて完全に遮蔽され、その出力電圧は
零b2となる。一方、赤外線素子10aに対して
は、人体12から直接入射される熱線14aに加
えて人体12のX地点近傍到達からは集光ミラー
片11から反射された熱線14bが加算され、入
射される合計の熱線量は直接入射の場合のほぼ2
倍となる。従つて、赤外線素子10aに現われる
出力電圧は第6図にa2で示すように急激に増大し
たものとなる。更に人体12が矢印方向に進むと
赤外線素子10aに対する集光ミラー片11によ
る反射が終り直接入射分のみとなる。第6図の破
線21は人体12が集光ミラー片11の真上に位
置した場合で、赤外線素子10bにも直接熱線が
入射する状態となる。
The operation will be described with reference to FIGS. 2 and 6. When the human body 12 approaches from the infrared element 10a side, the heat rays 13 emitted from the human body 12 are transmitted to both infrared elements 1.
0a and 10b, output voltages that gradually rise as shown by output voltages a 1 and b 1 in FIG. 6 appear in each infrared element. Human body 12 approaches further
When reaching the point, the heat rays emitted from the human body 12 begin to act as a shield against the infrared element 10b, increasing in intensity as the human body 12 moves in the direction of the arrow, and eventually are completely shielded, and the output voltage becomes zero b It becomes 2 . On the other hand, for the infrared element 10a, in addition to the heat ray 14a directly incident from the human body 12, the heat ray 14b reflected from the condensing mirror piece 11 from the human body 12 reaching the vicinity of the X point is added, and the total incident amount is The heat ray dose is approximately 2 times that of direct incidence.
It will be doubled. Therefore, the output voltage appearing at the infrared element 10a increases rapidly as shown by a2 in FIG. When the human body 12 further advances in the direction of the arrow, the reflection by the condensing mirror piece 11 on the infrared element 10a ends, leaving only the direct incident light. A broken line 21 in FIG. 6 shows a case where the human body 12 is located directly above the condensing mirror piece 11, and the heat rays are also directly incident on the infrared element 10b.

人体12が更に進むと今度は赤外線素子10a
が集光ミラー片によつて遮蔽される状態となり、
その出力は第6図のa3の如く急早に低下し、この
後は集光ミラー片11の影響領域を脱して再び人
体からの熱線を直接入射するようになる。一方、
赤外線素子10bは人体の移動に伴つて集光ミラ
ー片からの反射された熱線16bを加え、その出
力は第3図b3の如く一時的に大きくなる。
As the human body 12 moves further, the infrared element 10a
is blocked by the condensing mirror piece,
The output rapidly decreases as shown in a 3 of FIG. 6, and after this, it leaves the area of influence of the condensing mirror piece 11 and is again directly exposed to the heat rays from the human body. on the other hand,
The infrared element 10b adds heat rays 16b reflected from the condensing mirror piece as the human body moves, and its output temporarily increases as shown in FIG. 3b3 .

従つて、赤外線センサから得られる出力は赤外
線素子10a,10bの差動出力となつて現われ
るから、第7図に示す如く波高値の高いパルス状
の出力a,bが得られる。この出力は、人体12
の移動速度に対し集光ミラー片11が短時間影響
するから赤外線素子に熱線が直接に入射する場合
の出力Va,Vbに比較し周波数の高いものとな
る。
Therefore, since the output obtained from the infrared sensor appears as a differential output of the infrared elements 10a and 10b, pulse-like outputs a and b with high peak values are obtained as shown in FIG. This output is the human body 12
Since the focusing mirror piece 11 has a short-term influence on the moving speed of the infrared element, the frequency is higher than that of the outputs Va and Vb when the heat rays are directly incident on the infrared element.

第8図は本発明装置に使用され、ケース17に
収納される増幅回路の一例を示している。赤外線
素子10a,10bは極性反対の直列に接続さ
れ、その出力は電界効果トランジスタ(FET)
からなるインピーダンス変換回路を通つて増幅器
(AMP)に与えられる。増幅器の入力側にはコン
デンサCと抵抗Rからなるフイルタ回路が接続さ
れ、また増幅器の負帰還回路は、コンデンサC1
と抵抗R1から構成されている。即ち、増幅器は、
第9図に示す如く、赤外線センサから得られた信
号に対する帯域幅を設けられている。帯域幅の下
限の周波数f1はコンデンサCと抵抗Rにより定め
られ、また上限の周波数f2はC1とR1により定めら
れる。
FIG. 8 shows an example of an amplifier circuit used in the device of the present invention and housed in the case 17. The infrared elements 10a and 10b are connected in series with opposite polarity, and their output is a field effect transistor (FET).
It is applied to the amplifier (AMP) through an impedance conversion circuit consisting of. A filter circuit consisting of a capacitor C and a resistor R is connected to the input side of the amplifier, and the negative feedback circuit of the amplifier is connected to a capacitor C 1
and resistor R1 . That is, the amplifier is
As shown in FIG. 9, a bandwidth is provided for the signal obtained from the infrared sensor. The lower limit frequency f 1 of the bandwidth is determined by the capacitor C and the resistor R, and the upper limit frequency f 2 is determined by C 1 and R 1 .

本発明装置においては、赤外線センサの出力の
周波数は、従来の1Hzと比較して10Hz程度と高く
することができるので、例えば下限の周波数f1
決定するコンデンサCの値を体積比で約1/13と小
型にすることができ装置全体を著しく小型に作る
ことができる。
In the device of the present invention, the frequency of the output of the infrared sensor can be increased to about 10 Hz compared to the conventional 1 Hz. Therefore, for example, the value of the capacitor C that determines the lower limit frequency f 1 can be set to about 1 in volume ratio. /13, making it possible to make the entire device extremely compact.

第10図および第11図は集光ミラー片19を
設けた本発明装置の感知領域を示す。第5図に示
す如くX,Y,Zの座標を定めたとき、X軸とY
軸の平面における感知領域は、集光ミラー片19
の平面方向、即ちX軸方向に広く、集光ミラー片
19の平面と直角方向、即ちY軸方向に狭いもの
となる。また、Y軸とZ軸の平面における感知領
域は、受光面18に対し垂直な方向、即ちZ軸方
向に突出した伸びとなつている。上述のように、
集光ミラー片を設けることにより感知領域に方向
性を持つものとなる。この特徴を利用して本発明
装置を、例えば廊下の天井に設置すれば、廊下を
横断する監視空間を設けることができる。
10 and 11 show the sensing area of the device according to the invention provided with a condensing mirror piece 19. FIG. When the X, Y, and Z coordinates are determined as shown in Figure 5,
The sensing area in the plane of the axis is the focusing mirror piece 19
It is wide in the plane direction of the converging mirror piece 19, that is, in the X-axis direction, and narrow in the direction perpendicular to the plane of the condensing mirror piece 19, that is, in the Y-axis direction. Further, the sensing region in the Y-axis and Z-axis plane extends in a direction perpendicular to the light-receiving surface 18, that is, in the Z-axis direction. As mentioned above,
By providing a condensing mirror piece, the sensing area has directionality. By utilizing this feature and installing the device of the present invention, for example, on the ceiling of a hallway, it is possible to provide a monitoring space that crosses the hallway.

<他の実施例> 上記実施例においては、赤外線センサの受光面
側に受光制限板を設けない場合について説明した
が、第12図に示すように受光面側に受光制限板
22を設けても良い。このように構成すると、熱
線が赤外線素子10a,10bに入射する際に、
赤外線素子10aと10bの間隔で決る位相差が
生ずる。例えば、第12図において被検出体が矢
印方向に移動すると、赤外線素子10bには素子
10aより位相遅れの出力が現われ、赤外線セン
サ10からの差動出力は、第13図の如く、波高
値が低く且つ周波数の低い信号c,dと波高値が
高く且つ周波数の高い信号a,bの混在した出力
となる。低い周波数の信号は第8図の如き帯域フ
イルタで除去され高い周波数の信号が赤外線検出
装置の出力となる。
<Other Embodiments> In the above embodiments, a case has been described in which a light receiving limiting plate 22 is not provided on the light receiving surface side of the infrared sensor, but a light receiving limiting plate 22 may be provided on the light receiving surface side as shown in FIG. good. With this configuration, when the heat rays enter the infrared elements 10a and 10b,
A phase difference occurs that is determined by the distance between the infrared elements 10a and 10b. For example, when the object to be detected moves in the direction of the arrow in FIG. 12, an output with a phase lag than that of the element 10a appears on the infrared element 10b, and the differential output from the infrared sensor 10 has a peak value as shown in FIG. The output is a mixture of signals c and d that are low and have a low frequency, and signals a and b that have a high peak value and a high frequency. The low frequency signal is removed by a bandpass filter as shown in FIG. 8, and the high frequency signal becomes the output of the infrared detection device.

<効果> 本発明装置は、上述の如き構成であるから次の
効果を有する。
<Effects> Since the device of the present invention has the above-described configuration, it has the following effects.

(1) 従来に比較し集光ミラー片が著しく小形であ
るにも拘わらず高いS/N比の出力が得られ、
また装置全体を極めて小さく構成することがで
き、装置を設置する際にその取付場所の制限を
受けない利点がある。
(1) Even though the condensing mirror piece is significantly smaller than conventional models, a high S/N ratio output can be obtained.
Further, the entire device can be configured to be extremely small, and there is an advantage that there are no restrictions on the installation location when installing the device.

(2) 被検出体の移動速度が0.1〜1Hz程度と極め
て遅い場合であつても集光ミラー片自体が赤外
線センサに差動的に熱線を入射させ且つ熱線反
射作用を有するから、赤外線の出力信号の周波
数を著しく高め且つ高い波高値の出力が得られ
る。このため帯域フイルタに使用するコンデン
サの値を1/10程度と小さくでき、結局コンデン
サ形状寸法が極めて小さくて良いので、装置に
組込む回路の占有空間が狭くて良く、装置全体
を極めて小型に構成できる。
(2) Even when the moving speed of the object to be detected is extremely slow, approximately 0.1 to 1 Hz, the condensing mirror piece itself allows heat rays to enter the infrared sensor differentially and has a heat ray reflection effect, so the output of infrared rays is reduced. It is possible to significantly increase the signal frequency and obtain an output with a high peak value. Therefore, the value of the capacitor used in the bandpass filter can be reduced to about 1/10, and the shape and dimensions of the capacitor can be extremely small, so the space occupied by the circuit incorporated into the device is small, and the entire device can be configured extremely compact. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の原理を説明するための基
本構成図、第2図は本発明装置の動作説明図、第
3図は本発明装置に係る赤外線素子の出力の概略
説明図、第4図は本発明装置の赤外線センサの出
力の概略説明図、第5図は本発明装置の実施例を
示す斜視図、第6図は第5図の装置における各赤
外線素子の出力特性図、第7図は第5図の装置に
おける赤外線センサの出力特性図、第8図は第5
図の装置に使用する増幅回路の一例を示す結線
図、第9図は第8図の回路における周波数帯域特
性説明図、第10図および第11図は第5図の装
置の感知領域の説明図、第12図は本発明の他の
実施例を示す概略構成図、第13図は第12図の
装置における赤外線センサの出力の概略説明図で
ある。 図中の10は赤外線センサ、10a,10bは
赤外線素子、11,23は集光ミラー片、12は
被検出体、22は受光制限板、C,C1はコンデ
ンサ、R,R1は抵抗である。
FIG. 1 is a basic configuration diagram for explaining the principle of the device of the present invention, FIG. 2 is an explanatory diagram of the operation of the device of the present invention, FIG. 3 is a schematic diagram of the output of the infrared element according to the device of the present invention, and FIG. 5 is a perspective view showing an embodiment of the inventive device, FIG. 6 is an output characteristic diagram of each infrared element in the device of FIG. 5, and FIG. The figure shows the output characteristics of the infrared sensor in the device shown in Fig. 5, and Fig. 8 shows the output characteristics of the infrared sensor in the device shown in Fig. 5.
A wiring diagram showing an example of an amplifier circuit used in the device shown in the figure, FIG. 9 is an explanatory diagram of frequency band characteristics in the circuit of FIG. 8, and FIGS. 10 and 11 are explanatory diagrams of the sensing area of the device of FIG. 5. , FIG. 12 is a schematic configuration diagram showing another embodiment of the present invention, and FIG. 13 is a schematic explanatory diagram of the output of the infrared sensor in the apparatus of FIG. 12. In the figure, 10 is an infrared sensor, 10a and 10b are infrared elements, 11 and 23 are condensing mirror pieces, 12 is an object to be detected, 22 is a light reception limiting plate, C and C 1 are capacitors, and R and R 1 are resistors. be.

Claims (1)

【特許請求の範囲】[Claims] 1 2個の赤外線素子を有するデユアル構造の焦
電型赤外線センサを用いた焦電型赤外線検出装置
において、前記赤外線センサの受光面側であつ
て、前記2個の赤外線素子のほぼ中間に位置する
平面上に、板状で両表面が反射面となつた少なく
とも1個の集光ミラー片を設けたことを特徴とす
る焦電型赤外線検出装置。
1. In a pyroelectric infrared detection device using a dual-structure pyroelectric infrared sensor having two infrared elements, the sensor is located on the light receiving surface side of the infrared sensor and approximately midway between the two infrared elements. A pyroelectric infrared detection device characterized in that at least one condensing mirror piece, which is plate-shaped and has both surfaces serving as reflective surfaces, is provided on a plane.
JP61029827A 1985-05-27 1986-02-12 Pyroelectric infrared detector Granted JPS62187277A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61029827A JPS62187277A (en) 1986-02-12 1986-02-12 Pyroelectric infrared detector
US06/866,641 US4745284A (en) 1985-05-27 1986-05-27 Infrared ray detector
DE8686116444T DE3683843D1 (en) 1986-02-12 1986-11-26 INFRARED BEAM DETECTOR.
EP19860116444 EP0235372B1 (en) 1986-02-12 1986-11-26 Infrared ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61029827A JPS62187277A (en) 1986-02-12 1986-02-12 Pyroelectric infrared detector

Publications (2)

Publication Number Publication Date
JPS62187277A JPS62187277A (en) 1987-08-15
JPH0433399B2 true JPH0433399B2 (en) 1992-06-02

Family

ID=12286855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61029827A Granted JPS62187277A (en) 1985-05-27 1986-02-12 Pyroelectric infrared detector

Country Status (1)

Country Link
JP (1) JPS62187277A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227987A (en) * 1988-03-08 1989-09-12 Matsushita Electric Ind Co Ltd Human body position detector
JP2857278B2 (en) * 1992-04-07 1999-02-17 松下精工株式会社 Human body detection device
KR101073468B1 (en) * 2009-06-19 2011-10-17 주식회사 센서프로 Sensing apparatus of moving way with infrared
JP5226883B2 (en) 2011-02-01 2013-07-03 Necトーキン株式会社 Pyroelectric infrared sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4729566U (en) * 1971-05-04 1972-12-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4729566U (en) * 1971-05-04 1972-12-04

Also Published As

Publication number Publication date
JPS62187277A (en) 1987-08-15

Similar Documents

Publication Publication Date Title
KR970010976B1 (en) Infrared array sensor system
US5045702A (en) Infrared intrustion detector
US4769545A (en) Motion detector
US5126718A (en) Intrusion detection system
EP0797090A2 (en) Integrally formed surface plasmon resonance sensor
JPH023150B2 (en)
JPS6146768B2 (en)
US4404468A (en) Pyrodetector
US4882491A (en) Infrared detector
JPH0433399B2 (en)
US6583415B2 (en) Method and system for dynamically polarizing electro-optic signals
US4933560A (en) Pyroelectric infrared sensors
JPS637611B2 (en)
JPH05508911A (en) photodetector
JP2642963B2 (en) Infrared detector
JPH0224523A (en) Pyroelectric type infrared-ray detector
JPS58151698A (en) Infrared ray infiltration detector with pyro-electric light receiver
JPS637612B2 (en)
JPS634652B2 (en)
JPH02272330A (en) Infrared sensor for detecting mobile object
JPS62209325A (en) Pyroelectric type infrared detector
JPS61259128A (en) Pyroelectricity detector
JPS60140129A (en) Converging type infrared ray detection apparatus
RU2097711C1 (en) Photodetector
JPH09105668A (en) Pyroelectric type infrared sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term