JPH05332916A - Cell for detector for monitoring of particle - Google Patents

Cell for detector for monitoring of particle

Info

Publication number
JPH05332916A
JPH05332916A JP4138565A JP13856592A JPH05332916A JP H05332916 A JPH05332916 A JP H05332916A JP 4138565 A JP4138565 A JP 4138565A JP 13856592 A JP13856592 A JP 13856592A JP H05332916 A JPH05332916 A JP H05332916A
Authority
JP
Japan
Prior art keywords
wear particles
sampling
sampling window
particles
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4138565A
Other languages
Japanese (ja)
Inventor
Tadashi Fukushima
正 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4138565A priority Critical patent/JPH05332916A/en
Publication of JPH05332916A publication Critical patent/JPH05332916A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To improve the reliability and the accuracy by detecting abraded particles in a fluid of a quick flow velocity as a clear image and cleaning the dirt of a sampling window at all times. CONSTITUTION:A fluid is supplied into a main body 3 of a cell via a sampling piping 2 from a system piping 1. A stay part 4 to settle abraded particles 11 is provided in the main body 3. A sampling window 6 for photographing the settling abraded particles 11 is formed at the bottom of the main body 3. There are also provided a flushing line 8, flow rate regulating valves 9, 10 and a supersonic vibrator 7 to remove the settling abraded particles 11 and to keep tone sampling window 6 clean.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は原子力発電所等における
配管、回転機器等から発生した摩耗粒子が系統配管内を
流体とともに流動している状態をインラインで監視で
き、また経時的変化をも把握でき、回転機器等の破損、
および異常兆候の事前予知を検知するための粒子モニタ
用検出器セルに関する。
The present invention can in-line monitor wear particles generated from piping, rotating equipment, etc. in nuclear power plants, etc. flowing with the fluid in the system piping, and also grasp changes over time. Yes, damage to rotating equipment,
And a particle monitor detector cell for detecting advance prediction of anomalous symptoms.

【0002】[0002]

【従来の技術】従来、原子力発電所においては機器の振
動監視や系統配管内を流動している系統水の水質分析に
より異常事象の監視が行われているが、これらの方法で
は回転機器等から発生した摩耗粒子を直接検知すること
は不可能であり、それらデータは事後の診断、解析にお
ける参考情報として用いられていた。
2. Description of the Related Art Conventionally, in a nuclear power plant, abnormal events are monitored by monitoring the vibration of equipment and analyzing the quality of system water flowing in system piping. It is impossible to directly detect the generated wear particles, and these data have been used as reference information in subsequent diagnosis and analysis.

【0003】また、水質分析の結果から得られる導電
率、イオン種等の情報では摩耗粒子の発生を迅速に検知
することは不可能であり、機器材料にカーボン等を使用
している場合においても導電率、イオン種等で検知する
ことは不可能であった。
Further, it is impossible to quickly detect the generation of wear particles based on information such as conductivity and ionic species obtained from the results of water quality analysis, and even when carbon or the like is used as a material for equipment. It was impossible to detect by conductivity, ionic species, etc.

【0004】その他の方法として濁度計を用いる方法が
あるが、鉄酸化物等の粒径 0.1μm〜10μmの範囲には
適しているが、図3に示したように数μm〜 100μmの
大きさになる摩耗粒子11には、この方法は適していな
い。
Another method is to use a turbidimeter, which is suitable for iron oxide particles having a particle size of 0.1 μm to 10 μm, but has a size of several μm to 100 μm as shown in FIG. This method is not suitable for the worn wear particles 11.

【0005】これに対して、これらの摩耗粒子11を粒子
モニタで静止画像として取り込んで検知する方法が考え
られているが、流速の速い流体中の摩耗粒子を鮮明な画
像で取り込むことは非常に難しいこと、およびサンプリ
ング窓の汚れ等による妨害も加わり、インラインで常時
監視することは難しいのが現状である。
On the other hand, a method has been considered in which these wear particles 11 are captured by a particle monitor as a still image and detected, but it is very difficult to capture wear particles in a fluid having a high flow velocity with a clear image. At present, it is difficult to constantly monitor in-line due to difficulties and interference due to contamination of the sampling window.

【0006】原子力発電所等の水平配管底部および配
管、サンプリングラインのバルブ、分岐部等の水滞留部
において摩耗粒子よりもさらに小粒径のクラッドが沈積
することが知られている。本発明はこの知見に基づき摩
耗粒子が流体滞留部において沈積する事象を利用してい
る。
It is known that a clad having a particle size smaller than that of wear particles is deposited at the bottom of horizontal pipes and pipes of nuclear power plants and the like, valves of sampling lines, and water retention portions such as branches. The present invention utilizes the fact that wear particles are deposited in the fluid retention portion based on this finding.

【0007】[0007]

【発明が解決しようとする課題】従来の技術ではストロ
ボを光源として用い、摩耗粒子を発光させ画像カメラで
静止画像として取り込むものである。しかし、このよう
な画像カメラは摩耗粒子11を拡大して取り込むため、被
写解深度が非常に狭い特性をもっていること、流体の流
速がカメラの分解性能に対して速いことにより、流体中
の摩耗粒子をとらえ、静止画像にすることは難しかっ
た。
In the prior art, a strobe is used as a light source, and wear particles are caused to emit light to be captured as a still image by an image camera. However, since such an image camera enlarges and captures the wear particles 11, the depth of resolution is very narrow and the flow velocity of the fluid is fast with respect to the decomposition performance of the camera. It was difficult to capture the particles and make them still images.

【0008】また、このような光学系のサンプリング窓
は摩耗粒子やこれより細かい腐食生成物粒子(クラッ
ド)等の付着により汚れてしまい、サンプリングができ
なくなる課題がある。
Further, there is a problem that the sampling window of such an optical system becomes soiled due to the adhesion of wear particles and finer particles of corrosion products (clads) and the like, making it impossible to perform sampling.

【0009】本発明は上記課題を解決するためになされ
たもので、回転機器等の不具合により発生する摩耗粒子
を常に監視して、回転体等の異常兆候を迅速に事前検知
する粒子モニタ用検出器セルを提供することにある。
The present invention has been made to solve the above problems, and is a particle monitor detection that constantly monitors wear particles generated due to a malfunction of a rotating device or the like to promptly detect an abnormal sign of a rotating body or the like in advance. To provide a container cell.

【0010】[0010]

【課題を解決するための手段】本発明はセル本体と、こ
のセル本体内にサンプリングされた流体中に混入してい
る摩耗粒子を沈積する滞留部と、この滞留部の底部に摩
耗粒子の静止画像を撮影するストロボ同調内蔵カメラを
取り付けるサンプリング窓と、このサンプリング窓上の
沈積摩耗粒子を除去し、かつ前記サンプリング窓を清浄
に保持するフラッシングライン、バルブおよび超音波振
動子とを具備したことを特徴とする。
SUMMARY OF THE INVENTION The present invention is directed to a cell body, a retention portion for depositing wear particles mixed in the fluid sampled in the cell body, and a stationary portion of the wear particles at the bottom of the retention portion. A sampling window for mounting a camera with a built-in strobe tuning for taking an image, a flushing line for removing deposited wear particles on the sampling window, and keeping the sampling window clean, a valve, and an ultrasonic transducer are provided. Characterize.

【0011】[0011]

【作用】流体流路中のセル本体に滞留部を設けることに
より流体中に混入している摩耗粒子の流速を遅くし、流
れに変化を与え滞留させることにより摩耗粒子がセル本
体の底部サンプリング窓に沈積する。サンプリング窓に
摩耗粒子を沈積させることにより、粒子の動きを抑える
ことおよび摩耗粒子の静止画像を撮影するためのカメラ
の被写解深度の範囲に多くの粒子を集めることができ、
粒子の検出感度が向上する。
[Function] By providing a retention portion in the cell body in the fluid flow path, the flow velocity of wear particles mixed in the fluid is slowed, and the flow particles are changed to retain the wear particles, whereby the wear particles are collected at the bottom sampling window of the cell body. Sink to. By depositing wear particles in the sampling window, it is possible to suppress the movement of the particles and collect many particles within the depth of field of the camera for taking a static image of the wear particles.
The detection sensitivity of particles is improved.

【0012】フラッシングラインとそれをコントロール
するバルブおよび超音波振動子を摩耗粒子画像のサンプ
リングと連動させることによりサンプリング窓上の沈積
摩耗粒子を剥離、除去し、サンプリング画像を更新し、
時間変化を追って画像解析により摩耗粒子の濃度(粒子
数)、粒度分布、粒子形状等を監視することができる。
またサンプリング窓上の沈積摩耗粒子を時間ごとに除去
し、サンプリング窓を清浄に保ち検出精度の向上、装置
メンテナンスの軽減が図れる。フラッシングラインのバ
ルブ操作と超音波振動子の作動は画像サンプリングの頻
度に合わせてコントロールできる。
By interlocking a flushing line, a valve controlling the flushing line, and an ultrasonic transducer with the sampling of the wear particle image, the deposited wear particles on the sampling window are separated and removed, and the sampling image is updated.
It is possible to monitor the concentration (number of particles) of wear particles, the particle size distribution, the particle shape, etc. by image analysis while tracking the change over time.
Further, the deposited wear particles on the sampling window are removed every time, the sampling window is kept clean, the detection accuracy is improved, and the apparatus maintenance is reduced. The valve operation of the flushing line and the operation of the ultrasonic transducer can be controlled according to the frequency of image sampling.

【0013】[0013]

【実施例】図1および図2に用いて本発明に係る粒子モ
ニタ用検出器セルの一実施例を説明する。なお、図1は
フラッシングラインを閉じてサンプリング窓に摩耗粒子
11が蓄積した状態で、図2はフラッシングライン通水時
(超音波清浄作動)の状態を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the particle monitor detector cell according to the present invention will be described with reference to FIGS. It should be noted that in FIG. 1, the flushing line is closed and wear particles are collected in the sampling window.
FIG. 2 shows a state in which 11 is accumulated and water is being passed through the flushing line (ultrasonic cleaning operation).

【0014】図1中符号1は原子炉プラントの系統配管
の一部を示しており、この系統配管1にサンプリング用
配管2を接続し、このサンプリング用配管2に粒子モニ
タ用検出器セル本体3を設置する。このセル本体3には
流体滞留部4が設けてあり、その底部にはストロボ同調
内蔵撮像カメラ5が接続できるサンプリング窓6が設け
てある。
Reference numeral 1 in FIG. 1 shows a part of system piping of a nuclear reactor plant. A sampling piping 2 is connected to the system piping 1, and a particle monitoring detector cell body 3 is connected to the sampling piping 2. Set up. The cell body 3 is provided with a fluid retention portion 4, and a sampling window 6 to which the imaging camera 5 with a built-in strobe tuning can be connected is provided at the bottom portion thereof.

【0015】セル本体3の外壁面には超音波振動子7が
設置されており、セル本体3が超音波洗浄器になってい
る。セル本体3の底部下流にはフラッシングライン8が
接続され、フラッシングライン8およびサンプリング用
配管2にはそれぞれの流量をコントロールできる第1の
流量調節バルブ9、第2の流量調節バルブ10が設けられ
ている。
An ultrasonic transducer 7 is installed on the outer wall surface of the cell body 3, and the cell body 3 serves as an ultrasonic cleaner. A flushing line 8 is connected downstream of the bottom of the cell body 3, and the flushing line 8 and the sampling pipe 2 are provided with a first flow rate control valve 9 and a second flow rate control valve 10 capable of controlling the respective flow rates. There is.

【0016】この系統配管1内には機器等の不具合によ
り発生した摩耗粒子が原子炉冷却材中に混入して浮遊し
ながら流動している。この系統配管1に直接サンプリン
グ窓6を設置しても流速が速いこと、撮像カメラの被写
解深度の範囲が狭いことより摩耗粒子を静止画像として
とらえることは困難である。
In this system pipe 1, wear particles generated due to malfunctions of equipment are mixed in the reactor coolant and flow while floating. Even if the sampling window 6 is directly installed in the system pipe 1, it is difficult to capture the wear particles as a still image because of the high flow velocity and the narrow depth of field of the imaging camera.

【0017】そこで、摩耗粒子をサンプリング用配管2
からセル本体3へ導き滞留部4で流速を落とし流れを変
え滞留させ、一定時間通水することにより流体である原
子炉冷却材はそのまま下流へ流れるが、摩耗粒子は底部
のサンプリング窓6で沈積する。
Therefore, the wear particle sampling pipe 2 is used.
From the fuel cell to the cell body 3, the flow velocity is reduced in the retention section 4 to change the flow and retain it, and by passing water for a certain period of time, the reactor coolant, which is a fluid, flows downstream as it is, but wear particles are deposited at the bottom sampling window To do.

【0018】このとき、サンプリング用配管2に設置し
た第2の流量調節バルブ10は全開、フラッシングライン
8に設置した第1の流量調節バルブ9は全閉である。沈
積した摩耗粒子をストロボ同調内蔵撮像カメラ5で静止
画像として取り込み、コンピュータと画像解析装置を用
いて、摩耗粒子の濃度(粒子数)、粒度分布、粒子形状
等を測定するものである。
At this time, the second flow rate control valve 10 installed in the sampling pipe 2 is fully opened, and the first flow rate control valve 9 installed in the flushing line 8 is fully closed. The accumulated wear particles are captured as a still image by the imaging camera 5 with built-in strobe tuning, and the concentration (number of particles), particle size distribution, particle shape, etc. of wear particles are measured using a computer and an image analysis device.

【0019】図3は模擬摩耗粒子による静止画像の一例
を示している。サンプリング窓6上へ沈積した摩耗粒子
の静止画像のサンプリングを終了した後、それに連動さ
せて超音波振動子7が作動するように制御し、続いてフ
ラッシングライン8に設置した第1の流量調節バルブ9
が通常閉の状態にあるものが開となり、サンプリング用
配管2に設置した第2の流量調節バルブ10の流量が絞り
込まれるように制御される。
FIG. 3 shows an example of a still image with simulated wear particles. After the sampling of the static image of the wear particles deposited on the sampling window 6 is completed, the ultrasonic transducer 7 is controlled to operate in conjunction with it, and then the first flow rate control valve installed in the flushing line 8 9
Is normally closed and is opened, and the flow rate of the second flow rate control valve 10 installed in the sampling pipe 2 is controlled to be narrowed.

【0020】検出器セル底部の摩耗粒子は超音波洗浄の
効果と流体の流れにより、フラッシングライン8を通し
て一掃される。一定時間この摩耗粒子の検出器セルから
の排除が行われた後、第1の流量調節バルブ9が閉の状
態に第2の流量調節バルブ10は全開の状態に戻り、次の
サンプリングを開始することとなる。
The wear particles at the bottom of the detector cell are swept through the flushing line 8 due to the effect of ultrasonic cleaning and the flow of fluid. After the wear particles are removed from the detector cell for a certain period of time, the first flow rate control valve 9 is closed and the second flow rate control valve 10 is returned to the fully open state to start the next sampling. It will be.

【0021】この方法においては絶対値としての摩耗粒
子の定量は難しいが、流体を滞留させておくサンプリン
グ時間を長くすることによりセル本体3内で摩耗粒子の
濃度が濃縮されることになり、検出感度が向上される利
点がある。
In this method, it is difficult to quantify the wear particles as an absolute value, but by prolonging the sampling time in which the fluid is retained, the concentration of the wear particles is concentrated in the cell body 3, and the detection is performed. There is an advantage that the sensitivity is improved.

【0022】なお、実施例では配管径の大きな系統配管
1からサンプリング用配管2によりセル本体3に摩耗粒
子を導いているが、小径の配管は直接セル本体3を接続
するか、あるいはポンプ軸受シール水等は直接機器から
サンプリング配管を導くことにより効果的である。
In the embodiment, the wear particles are introduced from the system pipe 1 having a large pipe diameter to the cell body 3 by the sampling pipe 2, but the pipe having a small diameter is directly connected to the cell body 3 or the pump bearing seal is used. Water, etc. is more effective if the sampling pipe is directly led from the equipment.

【0023】[0023]

【発明の効果】本発明によれば、系統配管内を浮遊、流
動する摩耗粒子をインラインで静止画像として取り込
め、実時間で処理できる粒子モニタの信頼性、精度が向
上する。これにより回転機器等の異常の兆候を迅速に検
出することができ、機器異常の早期発見に有効な手段と
なる。
According to the present invention, the wear particles floating and flowing in the system piping can be captured inline as a still image, and the reliability and accuracy of the particle monitor that can be processed in real time are improved. As a result, it is possible to quickly detect the sign of abnormality of the rotating equipment and the like, which is an effective means for early detection of equipment abnormality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る粒子モニタ用検出器セルの一実施
例における摩耗粒子蓄積時、フラッシングライン閉時を
示す系統図。
FIG. 1 is a system diagram showing wear particle accumulation and a flushing line closed in an embodiment of a particle monitor detector cell according to the present invention.

【図2】図1においてフラッシングライン通水時、超音
波洗浄作動時を示す系統図。
FIG. 2 is a system diagram showing a flushing line in FIG. 1 and an ultrasonic cleaning operation.

【図3】模擬摩耗粒子による静止画像の一例を示す模写
図。
FIG. 3 is a copy diagram showing an example of a still image using simulated wear particles.

【符号の説明】[Explanation of symbols]

1…系統配管、2…サンプリング用配管、3…セル本
体、4…滞留部、5…撮像カメラ、6…サンプリング
窓、7…超音波振動子、8…フラッシングライン、9…
第1の流量調節バルブ、10…第2の流量調節バルブ、11
…摩耗粒子。
DESCRIPTION OF SYMBOLS 1 ... System piping, 2 ... Sampling piping, 3 ... Cell main body, 4 ... Retaining part, 5 ... Imaging camera, 6 ... Sampling window, 7 ... Ultrasonic transducer, 8 ... Flushing line, 9 ...
1st flow control valve, 10 ... 2nd flow control valve, 11
... wear particles.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G21C 17/003 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location G21C 17/003

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 セル本体と、このセル本体内にサンプリ
ングされた流体中に混入している摩耗粒子を沈積する滞
留部と、この滞留部の底部に摩耗粒子の静止画像を撮影
するストロボ同調内蔵カメラを取り付けるサンプリング
窓と、このサンプリング窓上の沈積摩耗粒子を除去し、
かつ前記サンプリング窓を清浄に保持するフラッシング
ライン、バルブおよび超音波振動子とを具備したことを
特徴とする粒子モニタ用検出器セル。
1. A cell main body, a retention part for accumulating wear particles mixed in a fluid sampled in the cell main body, and a strobe tuning built-in for taking a static image of the wear particles at the bottom of the retention part. The sampling window to which the camera is attached and the accumulated wear particles on this sampling window are removed,
A particle monitor detector cell, further comprising a flushing line for keeping the sampling window clean, a valve, and an ultrasonic transducer.
JP4138565A 1992-05-29 1992-05-29 Cell for detector for monitoring of particle Pending JPH05332916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4138565A JPH05332916A (en) 1992-05-29 1992-05-29 Cell for detector for monitoring of particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4138565A JPH05332916A (en) 1992-05-29 1992-05-29 Cell for detector for monitoring of particle

Publications (1)

Publication Number Publication Date
JPH05332916A true JPH05332916A (en) 1993-12-17

Family

ID=15225119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4138565A Pending JPH05332916A (en) 1992-05-29 1992-05-29 Cell for detector for monitoring of particle

Country Status (1)

Country Link
JP (1) JPH05332916A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010407A (en) * 2005-06-29 2007-01-18 Shikoku Electric Power Co Inc Continuous iron analyzing method and analyzer therefor
WO2012128164A1 (en) * 2011-03-23 2012-09-27 株式会社 荏原製作所 Abrasion monitoring device for mechanical seal
CN104897529A (en) * 2015-06-16 2015-09-09 神华集团有限责任公司 Method for evaluating abrasion resistance of catalyst for Fischer-Tropsch synthesis reaction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010407A (en) * 2005-06-29 2007-01-18 Shikoku Electric Power Co Inc Continuous iron analyzing method and analyzer therefor
WO2012128164A1 (en) * 2011-03-23 2012-09-27 株式会社 荏原製作所 Abrasion monitoring device for mechanical seal
CN104897529A (en) * 2015-06-16 2015-09-09 神华集团有限责任公司 Method for evaluating abrasion resistance of catalyst for Fischer-Tropsch synthesis reaction

Similar Documents

Publication Publication Date Title
CN101384342B (en) Method and system for monitoring reverse osmosis membranes
JP2982720B2 (en) Particle monitor device and dust-free process device equipped with the same
CN109269949B (en) Rapid detection system and method suitable for aviation lubricating oil wear particle information
US6636812B2 (en) Particulate compositions
CN102791352A (en) Filter bypass
WO1999032725A1 (en) Road pavement deterioration inspection system
EP0496333B1 (en) Nuclear plant diagnosis apparatus and method
JP2006038860A (en) Tribological debris analysis system
Moreno-Rodenas et al. Deep-learning based monitoring of FOG layer dynamics in wastewater pumping stations
JPH05332916A (en) Cell for detector for monitoring of particle
CN110339938A (en) A kind of digitlization coal separation system
Lorberau et al. Evaluation of direct-on-filter methods for the determination of respirable α-quartz
JPH0599836A (en) Particle monitor
JP2006270111A (en) Method for inspecting semiconductor device and its equipment
JP3831133B2 (en) Grain size sensor
JPS63500402A (en) On-site particle size measuring device
JPH09213756A (en) Semiconductor manufacturing method and its manufacturing line
JP2843424B2 (en) Mass production start-up in semiconductor manufacturing process and foreign matter inspection method and apparatus for mass production line
JPH11337472A (en) Particle monitoring method
Reintjes et al. Lasernet optical oil debris monitor
Umeda et al. Experience of on-line surveillance at onagawa-1 bwr plant
CN208224028U (en) A kind of reflective online visual iron spectrometer under environment with pressure
Summan et al. A new probe concept for internal pipework inspection-241
JP2005296740A (en) Magnetic filter
JPH0358077B2 (en)