WO2012128164A1 - Abrasion monitoring device for mechanical seal - Google Patents

Abrasion monitoring device for mechanical seal Download PDF

Info

Publication number
WO2012128164A1
WO2012128164A1 PCT/JP2012/056639 JP2012056639W WO2012128164A1 WO 2012128164 A1 WO2012128164 A1 WO 2012128164A1 JP 2012056639 W JP2012056639 W JP 2012056639W WO 2012128164 A1 WO2012128164 A1 WO 2012128164A1
Authority
WO
WIPO (PCT)
Prior art keywords
wear
liquid
seal
seal ring
stage
Prior art date
Application number
PCT/JP2012/056639
Other languages
French (fr)
Japanese (ja)
Inventor
杉山 憲一
紀久雄 西山
高東 智佳子
加藤 弘之
Original Assignee
株式会社 荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 荏原製作所 filed Critical 株式会社 荏原製作所
Publication of WO2012128164A1 publication Critical patent/WO2012128164A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/534Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke by measuring transmission alone, i.e. determining opacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3492Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member with monitoring or measuring means associated with the seal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/005Sealing rings

Definitions

  • the present invention relates to a mechanical seal wear monitoring device, and more particularly to a device for monitoring the wear of a multistage mechanical seal used in a pump and predicting the remaining life of the mechanical seal.
  • a pump for transferring liquid is generally provided with a shaft seal mechanism for preventing leakage of liquid pressurized by rotation of an impeller.
  • a mechanical seal which is a representative example of the shaft seal mechanism, minimizes liquid leakage by bringing a rotary seal ring arranged on the rotation side and a stationary seal ring arranged on the stationary side in close contact with each other.
  • Some types of pumps are required to strictly limit liquid leakage to the outside of the pump.
  • a circulation pump for primary cooling water for cooling a nuclear reactor is used. Since leakage of the primary cooling water has a serious impact on the reactor and the surrounding environment, leakage of the primary cooling water from the cooling water circulation system must be avoided. Therefore, extremely high reliability is required for the mechanical seal used in the circulation pump.
  • the present invention has been made in view of the above-mentioned circumstances, and provides a mechanical seal wear monitoring device capable of monitoring the wear of a seal ring used for a mechanical seal and predicting the life of the seal ring. Objective.
  • one aspect of the present invention provides a control bleed-off mechanism for adjusting a pressure difference between stages of a multistage mechanical seal, and a sliding contact between a rotary seal ring and a stationary seal ring at each stage.
  • a wear monitoring device for a multistage mechanical seal having a seal leakage passage for discharging liquid that has passed through the surface, and a concentration for continuously measuring the concentration of wear powder in the liquid discharged from the control bleed-off mechanism It is characterized by comprising a measuring device and a processing device for estimating the wear amount of the multistage mechanical seal from the concentration of the abrasion powder measured by the concentration measuring device.
  • the concentration measuring instrument comprises: a flow cell through which the liquid passes; a light source that irradiates light to the liquid flowing through the flow cell; And a concentration analyzer for determining the concentration of the wear powder in the liquid from the intensity of light detected by the light receiving element.
  • the processing apparatus determines the amount of wear of the sliding contact surface by integrating the concentration of the wear powder with respect to time.
  • the processing apparatus estimates the remaining life of the rotary seal ring and the stationary seal ring by comparing the determined wear amount with a preset allowable wear amount. It is characterized by.
  • the apparatus further comprises a particle size distribution measuring instrument connected to the control bleed-off flow path and the seal leakage path.
  • a control bleed-off mechanism for adjusting the pressure difference between the stages of the multistage mechanical seal, and for discharging the liquid that has passed through the sliding contact surfaces of the rotary seal ring and stationary seal ring of each stage.
  • a multi-stage mechanical seal wear monitoring apparatus having a plurality of seal leakage passages, comprising the control bleed-off passage and a particle size distribution measuring instrument connected to the seal leakage passage.
  • the particle size distribution measuring device detects a sample cell for storing the liquid, a light source for irradiating the liquid in the sample cell with light, and an intensity distribution of the light that has passed through the liquid. And a particle size distribution analyzer for analyzing the intensity distribution of the light and measuring the particle size distribution of the wear powder in the liquid.
  • the apparatus further comprises a processing device for determining a wear ratio between the stationary seal ring and the rotary seal ring from the particle size distribution.
  • the particle size distribution analyzer further has a function of measuring a volume of wear powder in a liquid
  • the processing device calculates a cumulative value of the volume of the wear powder, and further the wear.
  • the wear amount of the stationary seal ring and the wear amount of the rotary seal ring are determined from the ratio and the cumulative value of the volume of the wear powder.
  • the processing apparatus estimates a remaining life of the rotary seal ring by comparing a wear amount of the rotary seal ring with a preset allowable wear amount, and the stationary seal ring The remaining life of the stationary seal ring is estimated by comparing the amount of wear with a preset allowable wear amount.
  • the wear amount of the seal ring can be accurately estimated based on the concentration of the wear powder contained in the liquid that has passed through the mechanical seal or the volume of the wear powder. Furthermore, the life of the seal ring can be predicted from the estimated wear amount.
  • Wear monitoring comprising a continuous analysis system connected to the control bleed-off flow path, a first batch analysis system connected to the seal leakage passage, and a second batch analysis system connected to the continuous analysis system
  • FIG. 12A is a diagram showing a result of wear measurement of a first-stage seal assembly of a two-stage mechanical seal.
  • FIG. 12B is a diagram showing a result of wear measurement of the first-stage seal assembly of the two-stage mechanical seal.
  • FIG. 13A is a graph showing the particle size distribution of wear powder at the initial wear stage shown in FIG.
  • FIG. 13B is a graph showing the particle size distribution of wear powder at the stable wear stage shown in FIG. 8.
  • FIG. 13C is a graph showing the particle size distribution of the wear powder in the final wear stage shown in FIG.
  • FIG. 14A is a diagram illustrating an operation cycle of a nuclear power plant.
  • FIG. 14B is a graph showing the relationship between the operation time of the nuclear power plant and the estimated wear amount of the mechanical seal.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a pump having a shaft seal mechanism.
  • the pump includes a shaft 1 connected to a drive source such as a motor, an impeller 2 fixed to the shaft 1, a casing 3 that houses the impeller 2, and an opening of the casing 3.
  • a casing cover 5 for covering and a shaft sealing mechanism 8 for preventing leakage of the liquid pressurized by the impeller 2 are provided.
  • the impeller 2 rotates, the liquid is sucked from the suction port 3a of the casing 3, and the pressurized liquid is discharged from the discharge port 3b.
  • a pump used for circulation of primary cooling water of a nuclear power plant there is a pump used for circulation of primary cooling water of a nuclear power plant.
  • a pump is required to limit the amount of liquid leaking outside the pump as little as possible due to the high internal pressure and the nature of the liquid. Therefore, in the pump shown in FIG. 1, a multistage mechanical seal is used as the shaft seal mechanism 8.
  • the multistage mechanical seal includes at least two seals, and is configured such that even if one seal fails, the other seals can maintain the shaft seal function.
  • the shaft seal mechanism 8 is a two-stage tandem mechanical seal provided with a first-stage seal assembly 10 and a second-stage seal assembly 20.
  • the first stage seal assembly 10 is disposed upstream of the second stage seal assembly 20, and the first stage seal assembly 10 and the second stage seal assembly 20 are disposed in series along the shaft 1. .
  • the first stage seal assembly 10 and the second stage seal assembly 20 are accommodated in the seal cartridge 9.
  • the load pressure P U applied to the second-stage seal assembly 20 is designed to be about one-half of the load pressure P L applied to the first stage seal assembly 10 (That is, P U ⁇ 0.5P L ).
  • the first stage seal assembly 10 and the second stage seal assembly 20 are maintained so that the sealing function is maintained.
  • any of is configured to seal the full load pressure P L.
  • a two-stage mechanical seal is used, but a three-stage or more mechanical seal may be used.
  • the design is such that one third of the total load pressure is applied to each stage, but the assignment of the load pressure to each stage is not limited to this.
  • FIG. 2 is a cross-sectional view showing a two-stage tandem mechanical seal.
  • the mechanical seal 8 includes a first stage seal assembly 10, a second stage seal assembly 20 disposed downstream of the first stage seal assembly 10, the first stage seal assembly 10 and the second stage seal assembly 10. And a seal cartridge 9 for accommodating the step seal assembly 20.
  • the first-stage seal assembly 10 and the second-stage seal assembly 20 are mounted on the seal cartridge 9, and the first-stage seal assembly 10, the second-stage seal assembly 20, and the seal cartridge 9 are one unit as a whole.
  • the body cartridge structure is constituted.
  • the first stage seal assembly 10 and the second stage seal assembly 20 are respectively disposed in a first seal chamber 15 and a second seal chamber 25 formed in the seal cartridge 9.
  • the first stage seal assembly 10 is disposed adjacent to the first rotary seal ring 11 that rotates with the shaft 1, the first stationary seal ring 12 that contacts the first rotary seal ring 11, and the first stationary seal ring 12.
  • the first backup ring 13 and the first spring 14 that presses the first stationary seal ring 12 against the first rotary seal ring 11 through the first backup ring 13 are provided.
  • the second stage seal assembly 20 is adjacent to the second rotary seal ring 21 that rotates with the shaft 1, the second stationary seal ring 22 that contacts the second rotary seal ring 21, and the second stationary seal ring 22.
  • a second spring 24 that presses the second stationary seal ring 22 against the second rotary seal ring 21 via the second backup ring 23.
  • the rotary seal rings 11 and 21 are made of a hard material such as ceramic, and the stationary seal rings 12 and 22 are made of a soft material such as carbon graphite.
  • the backup rings 13 and 23 are provided to press the stationary seal rings 12 and 22 made of a soft material uniformly against the rotary seal rings 11 and 21 with the springs 14 and 24.
  • a soft material may be used for the rotary seal ring, and a hard material may be used for the stationary seal ring.
  • FIG. 3 is a diagram showing a liquid leakage path of the multistage mechanical seal shown in FIG.
  • the multistage mechanical seal has two liquid leakage paths.
  • the right side of FIG. 3 shows the first liquid leakage path.
  • the first liquid leakage path is a path through a control bleed-off mechanism that intentionally flows part of the pressurized liquid out of the pump. This control bleed-off mechanism is provided to adjust the pressure difference between the stages of the mechanical seal 8.
  • the relationship between the load pressure P L applied to the first-stage seal assembly 10 and the load pressure P U applied to the second-stage seal assembly 20 is P U ⁇ 0.5 P L. The pressure difference between the stages is adjusted.
  • control bleed-off mechanism includes a control bleed-off flow path 30 that communicates with the outside of the pump 1, a first-stage decompression cell 31 that communicates the first seal chamber 15 and the second seal chamber 25.
  • the second-stage depressurization cell 32 communicates with the second seal chamber 25 and the control bleed-off flow path 30.
  • the flow rate Qb of the liquid leaking through the control bleed-off flow path 30 is referred to as a control bleed-off flow rate.
  • the control bleed-off flow rate Qb is a flow rate necessary for maintaining the lubrication of the second stage seal assembly 20 and removing heat generated in the second stage seal assembly 20. For example, if the main circulation pump for a boiling water reactor, the full-load pressure P L is approximately 7 MPa, it controls the bleed-off flow rate Qb is about 3L / min.
  • the left side of FIG. 3 shows the second liquid leakage path.
  • the second liquid leakage path includes the sliding contact surface of the first stage seal assembly 10 (that is, the contact surface between the first rotary seal ring 11 and the first stationary seal ring 12), and the second stage seal assembly 20.
  • This is a leakage path through the sliding contact surface (that is, the contact surface between the second rotary seal ring 21 and the second stationary seal ring 22).
  • the liquid slightly leaks through the sliding contact surface of the first stage seal assembly 10 and the sliding contact surface of the second stage seal assembly 20, and is discharged to the outside of the pump 1 through the seal leakage passage 35.
  • the flow rate of the liquid flowing through the seal leakage passage 35 is referred to as a seal leakage flow rate Qs.
  • This seal leakage flow rate Qs varies within the range of 0 to 1.5 L / min depending on the operation state of the pump 1. During steady operation of the pump, the seal leakage flow rate Qs is as small as several cc / min.
  • the liquid leaked from the sliding contact surface of the first stage seal assembly 10 into the second seal chamber 25 flows into the second seal chamber 25 through the first stage decompression cell 31 (control bleed-off). Flow). Further, a part of the liquid in the second seal chamber 25 is discharged to the outside of the pump 1 through the sliding contact surface of the second stage seal assembly 20 and the seal leakage passage 35, and the remainder is stored in the second stage decompression cell 32 and It is discharged out of the pump 1 through the control bleed-off flow path 30.
  • the liquid discharged to the outside from the seal leakage passage 35 includes wear powder generated on both the sliding contact surface of the first stage seal assembly 10 and the sliding contact surface of the second stage seal assembly 20.
  • the liquid discharged from the control bleed-off flow path 30 mainly includes wear powder generated on the sliding contact surface of the first stage seal assembly 10. Therefore, by analyzing the properties of the liquid discharged from the seal leakage passage 35 and the liquid discharged from the control bleed-off flow path 30, the sliding contact surface of the first stage seal assembly 10 and the second stage seal assembly are analyzed. The wear state of the 20 sliding contact surfaces can be estimated.
  • FIG. 4 is a diagram showing an embodiment of a wear monitoring device for monitoring the wear of the mechanical seal shown in FIG.
  • the wear monitoring device is obtained from the continuous analysis system 40 connected to the control bleed-off flow path 30, the batch analysis system 60 connected to the seal leakage passage 35, and the continuous analysis system 40 and the batch analysis system 60.
  • the continuous analysis system 40 is a concentration measurement system that measures the concentration of wear powder mixed in the liquid continuously discharged from the control bleed-off flow path 30.
  • the batch type analysis system 60 is a particle size distribution measuring system that collects the liquid discharged intermittently from the seal leakage passage 35 and measures the particle size distribution of the wear powder mixed in the liquid.
  • the continuous analysis system 40 includes a concentration measuring device 41 connected to the control bleed-off flow path 30 via the introduction line 37.
  • This concentration measuring device 41 is detected by a flow cell 42 in which a liquid flows, a light source 43 that irradiates light to the liquid flowing in the flow cell 42, a light receiving element 44 that detects the intensity of light that has passed through the liquid, And a concentration analyzer 45 that determines the concentration of the abrasion powder in the liquid based on the intensity of light.
  • an optical concentration measuring device 41 a measuring device using ultraviolet / visible light absorption, a measuring device using infrared light absorption, a measuring device using fluorescent light emission, a measuring device using Rayleigh scattering, Raman scattering light, A measuring instrument that uses a refractive index can be used.
  • a filter 50 is disposed on the upstream side of the concentration measuring device 41, and the liquid discharged from the control bleed-off flow path 30 is introduced into the flow cell 42 through the filter 50.
  • the filter 50 is provided to remove particles originally contained in the liquid.
  • the primary cooling water of the nuclear reactor includes iron clad fine particles having a particle diameter of 2 ⁇ m to 12 ⁇ m, as shown in FIG. Therefore, in this case, the filter 50 preferably has a function of capturing particles having a particle diameter of 2 ⁇ m or more.
  • the filter 50 may incorporate a magnet filter for capturing particles containing iron.
  • the liquid discharged from the control bleed-off flow path 30 flows in the flow cell 42.
  • the flow cell 42 is provided with a transparent window 46, and the light beam from the light source 43 is applied to the liquid through the transparent window 46.
  • the intensity of light that has passed through the liquid is detected by the light receiving element 44.
  • the intensity of light varies depending on the concentration of wear powder mixed in the liquid. That is, when light is applied to the wear powder in the liquid, part of the light is absorbed, light is emitted from the wear powder, or the light is scattered or refracted. As a result, the light intensity varies depending on the concentration of the wear powder. Therefore, the concentration of the wear powder in the liquid can be estimated from the intensity of light that has passed through the liquid.
  • the concentration analyzer 45 is connected to the light receiving element 44, and a light intensity detection signal is sent from the light receiving element 44 to the concentration analyzer 45.
  • the concentration analyzer 45 stores in advance a table or a relational expression indicating the relationship between the content of wear powder in the liquid and the intensity of light that has passed through the liquid. Therefore, the concentration analyzer 45 can continuously determine the content of wear powder contained in the liquid from the detected value of the intensity of the light transmitted from the light receiving element 44. More specifically, the concentration analyzer 45 calculates the concentration of wear powder per unit time (for example, per hour) based on the intensity of light.
  • the concentration of the wear powder is defined as the mass [g / h] of the wear powder contained in the liquid discharged every hour.
  • a bypass line 51 that bypasses the concentration measuring device 41 is provided in order to adjust the flow rate of the liquid flowing through the flow cell 42.
  • the bypass line 51 branches off from the introduction line 37 so that a part of the liquid bypasses the concentration measuring device 41 through the bypass line 51.
  • a bypass valve 52 is provided in the bypass line 51, and the flow rate of the liquid that bypasses the concentration measuring device 41 is adjusted by the bypass valve 52. Therefore, the flow rate of the liquid flowing through the flow cell 42 can be adjusted by the opening degree of the bypass valve 52.
  • the batch analysis system 60 includes a particle size distribution measuring device 61 that measures the volume and particle size distribution of wear powder mixed in the liquid discharged intermittently from the seal leakage passage 35.
  • the particle size distribution measuring device 61 includes a sample cell 62 for storing a liquid, a light source 63 for irradiating the liquid in the sample cell 62 with light, a light receiving element 64 for detecting an intensity distribution of the light that has passed through the liquid, A particle size distribution analyzer 65 that analyzes the intensity distribution of light detected by the light receiving element 64 to determine the volume and particle size distribution of the wear powder in the liquid is provided.
  • the liquid discharged from the seal leakage passage 35 is guided to the sample cell 62 through the switching valve 68.
  • the sample cell 62 is movable, and the sample cell 62 in which the liquid is stored is carried to a measurement position between the light source 63 and the light receiving element 64.
  • the liquid discharged from the seal leakage passage 35 is transferred to the storage portion 72 through the switching valve 68.
  • the particle size distribution measuring device 61 measures the particle size distribution of the wear powder in the liquid by irradiating the liquid with light and analyzing the light passing through the liquid. Since the particle size distribution measuring device 61 performs batch analysis by liquid sampling, it is possible to measure the volume of wear powder contained in the liquid and the particle size distribution thereof. As such an optical particle size distribution measuring device 61, a measuring device using a laser light scattering diffraction method or a measuring device using dynamic light scattering can be used.
  • the liquid discharged from the seal leakage passage 35 contains wear powder generated in both the first stage seal assembly 10 and the second stage seal assembly 20. For this reason, from the measurement result obtained by the batch analysis system 60, it cannot be specified which of the first stage seal assembly 10 or the second stage seal assembly 20 is more worn. Therefore, not only the liquid discharged from the seal leakage passage 35 but also the liquid discharged from the control bleed-off flow path 30 is analyzed by the batch type analysis system 60.
  • the particle size distribution measuring device 61 of the batch analysis system 60 is also connected to the control bleed-off channel 30 via the continuous analysis system 40. Specifically, as shown in FIG. 4, the liquid from the control bleed-off flow path 30 is introduced into the batch analysis system 60 by operating the switching valve 55 after passing through the concentration measuring device 41. ing.
  • the switching valve 55 is a valve for selectively guiding the liquid to either the storage unit 57 or the batch analysis system 60.
  • the batch type analysis system 60 is provided with a sample cell 67, and the liquid from the continuous analysis system 40 (that is, the liquid discharged from the control bleed-off flow path 30) is stored in the sample cell 67.
  • the sample cell 67 is conveyed to the particle size distribution measuring device 61, where the particle size distribution of the wear powder in the liquid is measured. While the sample cell 67 is at the measurement position of the particle size distribution measuring device 61, the liquid is guided to the storage portion 57 through the switching valve 55.
  • FIG. 6 is a diagram showing an example in which the particle size distribution measuring device 61 and the automatic sampler 75 are combined.
  • the automatic sampler 75 includes a container 76 that stores liquid, a circulation pump 77 that stirs the liquid in the container 76 and circulates the liquid between the container 76 and the sample cell 62 of the particle size distribution measuring device 61, and the container
  • the liquid level sensor 78 which detects the liquid level position of the liquid in 76 is provided. Since the flow rate of the liquid discharged from the seal leakage passage 35 is small, the liquid level sensor 78 detects that the liquid has accumulated in the container 76.
  • the liquid discharged from the seal leakage passage 35 is guided to the container 76 through the switching valve 68.
  • the liquid discharged from the control bleed-off flow path 30 passes through the concentration measuring device 41 and is further guided to the container 76 through the switching valve 55.
  • the sample cell 62 and the container 76 of the particle size distribution measuring device 61 are connected by a transfer line 81 and a return line 82.
  • the liquid in the container 76 is transferred to the sample cell 62 through the transfer line 81, and the liquid in the sample cell 62 is returned to the container 76 through the return line 82.
  • the container 76 is provided with a drain 79 for discharging the liquid in the container 76.
  • both the liquid from the control bleed-off flow path 30 and the liquid from the seal leakage passage 35 can be alternately analyzed by the particle size distribution measuring device 61.
  • FIG. 7 shows a continuous analysis system 40 connected to the control bleed-off flow path 30, a first batch analysis system 60 A connected to the seal leakage passage 35, and a second batch connected to the continuous analysis system 40. It is a figure which shows the example of the wear monitoring apparatus provided with the type
  • the configuration and arrangement of the continuous analysis system 40 are the same as in the above example.
  • the basic configuration of the first batch analysis system 60A and the second batch analysis system 60B is the same as that of the batch analysis system 60 shown in FIG.
  • the volume and particle size distribution of the wear powder in the liquid discharged from the seal leakage passage 35 are measured by the first batch analysis system 60A, and the volume of the wear powder in the liquid discharged from the control bleed-off flow path 30 and The particle size distribution is measured by the second batch analysis system 60B.
  • FIG. 8 is a graph showing the transition of wear on the sliding contact surface of the first stage seal assembly 10.
  • the vertical axis of the graph shown in FIG. 8 represents the wear powder concentration C [g / h] in the liquid, and the horizontal axis represents the operation time [hour] of the mechanical seal (or pump).
  • mechanical seal wear is divided into an initial wear stage in which wear is relatively large, a stable wear stage in which wear is low, and an end wear stage in which wear gradually increases.
  • FIG. 9 is a diagram for explaining how the rotary seal ring 11 and the stationary seal ring 12 are worn.
  • the wear amount W of the sliding contact surface is defined as the thickness [mm] of the stationary seal ring 12 and the rotary seal ring 11 that has been worn away.
  • the wear amount W of the first-stage seal assembly 10 is obtained by integrating the wear powder concentration C [g / h] with respect to time to obtain a cumulative value Ct [g] of the concentration C, and a cumulative value Ct [g prepared in advance. ] And the amount of wear [mm].
  • FIG. 10 is a graph showing the relationship between the cumulative value of wear powder concentration and the amount of wear.
  • the vertical axis represents the wear amount [mm] of the sliding surface of the seal ring
  • the horizontal axis represents the cumulative value [g] of the concentration of wear powder.
  • the amount of wear on the sliding surface of the seal ring is proportional to the cumulative value of the concentration of wear powder.
  • the correspondence between the wear amount and the accumulated value of the wear powder concentration can be obtained in advance by actual measurement.
  • a table or a relational expression indicating the relationship between the wear amount of the sliding contact surface of the seal ring and the accumulated value of the concentration of wear powder is stored in the processing device 70 in advance.
  • the processing device 70 integrates the wear powder concentration [g / h] per unit time measured by the continuous analysis system 40 with respect to time to obtain a cumulative value Ct of the wear powder concentration, and the obtained cumulative value Ct. From this, the amount of wear on the sliding contact surface of the first stage seal assembly 10 can be estimated.
  • FIG. 11 is a graph showing the relationship between the wear amount [mm], the cumulative value Ct [g] of the wear powder concentration, and the operation time t [hour].
  • the left vertical axis represents the amount of wear on the sliding surface of the seal ring
  • the right vertical axis represents the cumulative value of wear powder concentration
  • the horizontal axis represents the operating time of the mechanical seal (or pump).
  • the cumulative value of the wear powder concentration and the wear amount increase with the operation time. Therefore, it is possible to determine the life of the rotary seal ring and / or the stationary seal ring from the obtained amount of wear.
  • the processing device 70 can determine that the rotating seal ring and / or the stationary seal ring has reached the end of its life when the wear amount reaches a predetermined threshold (allowable wear amount). Furthermore, it is possible to estimate the remaining life of the rotary seal ring and / or the stationary seal ring from a comparison between the current wear amount and a threshold value (allowable wear amount).
  • FIGS. 12A and 12B are diagrams showing the results of wear measurement of the first-stage seal assembly 10 of the two-stage mechanical seal 8.
  • This two-stage mechanical seal was installed in a pump used for circulation of the primary cooling water of the nuclear reactor, and the operation time of the pump was about 9000 hours.
  • the stationary seal ring was made of carbon and the rotary seal ring was made of ceramic.
  • the arithmetic average roughness Ra of the stationary seal ring was about 2 ⁇ m, and the maximum height Ry was about 12 ⁇ m.
  • the arithmetic average roughness Ra of the rotary seal ring was about 0.03 ⁇ m, and the maximum height Ry was about 0.4 ⁇ m. From this measurement result, it can be seen that the wear amount of the rotary seal ring is considerably smaller than the wear amount of the stationary seal ring.
  • the particle size of the wear powder is assumed to be an arithmetic average roughness Ra or less
  • the particle size of the wear powder generated from the stationary seal ring is 2 ⁇ m or less from the measurement result
  • the wear powder particles generated from the rotating seal ring It can be seen that the diameter is 0.03 ⁇ m or less.
  • the filter 50 is installed on the upstream side of the concentration measuring device 41, particles having a particle size of 2 ⁇ m or more are removed from the liquid by the filter 50. Therefore, the particles measured by the concentration measuring device 41 are not originally contained in the reactor water, but are abrasion powder generated in the first stage seal assembly 10.
  • the concentration of all components of the wear powder is measured, but the concentration of a specific component of the wear powder may be measured. In that case, the concentration of the wear powder of the rotary seal ring 11 and the concentration of the wear powder of the stationary seal ring 12 can be measured separately.
  • FIG. 13A is a graph showing the particle size distribution of the wear powder in the initial wear stage shown in FIG. 8, and FIG. 13B is a graph showing the particle size distribution of the wear powder in the stable wear stage shown in FIG. These are the graphs which show the particle size distribution of the abrasion powder in the last stage abrasion stage shown in FIG.
  • the graphs shown in FIGS. 13A to 13C are graphs showing the results of measuring the particle size distribution of the wear powder in the liquid discharged from the control bleed-off flow path 30, and the vertical axis represents the relative amount (volume) of the particles in the liquid. %), And the horizontal axis represents the particle size.
  • the particle size of the wear powder generated from the stationary seal ring is assumed to be 2 ⁇ m or less, and the particle size of the wear powder generated from the rotating seal ring is assumed to be 0.03 ⁇ m or less. That is, the particle size of the wear powder generated from the stationary seal ring is about 70 times the particle size of the wear powder generated from the rotating seal ring, and there is a large difference between the particle sizes of the two. Therefore, each peak particle size clearly appears on the particle size distribution as shown in FIGS. 13A to 13C.
  • the sign v1 in FIG. 13B indicates the volume% at the peak particle diameter d1 of the wear powder generated from the stationary seal ring
  • the sign v2 indicates the volume% at the peak particle diameter d2 of the wear powder generated from the rotating seal ring.
  • the volume% v1 and v2 are measured by the particle size distribution measuring device 61.
  • the processing device 70 can obtain the wear ratio v1: v2 between the stationary seal ring and the rotating seal ring at the time of sampling the sample liquid from the measured volume% v1, v2.
  • the batch analysis system 60 measures not only the particle size distribution but also the volume of the wear powder contained in the liquid.
  • the volume of the wear powder in the liquid is approximately proportional to the amount of wear on the sliding contact surfaces of the rotary seal ring and the stationary seal ring. Therefore, it is also possible to estimate the amount of wear on the sliding contact surface of the seal ring from the volume of wear powder measured by the batch analysis system 60.
  • the particle size distribution measuring device 61 measures the volume of wear powder in the liquid in units of sample cells. Therefore, the amount of wear on the sliding contact surfaces of the stationary seal ring and the rotary seal ring can be determined from the cumulative value of the volume of wear powder.
  • the processing device 70 stores in advance a table or a relational expression indicating the relationship between the volume of wear powder and the amount of wear on the sliding surface.
  • the processing device 70 integrates the volume of the wear powder measured by the particle size distribution measuring device 61 to obtain a cumulative value of the volume of the wear powder, and further, from the obtained cumulative value, the static seal ring and the rotary seal ring.
  • the wear amount “mm” of the sliding contact surface is determined.
  • the liquid collected from the seal leakage passage 35 contains wear powder generated on the sliding contact surfaces of both the first stage seal assembly 10 and the second stage seal assembly 20.
  • the liquid collected from the control bleed-off flow path 30 contains only wear powder generated on the sliding contact surface of the first stage seal assembly 10. Therefore, the amount of wear of the first stage seal assembly 10 can be estimated from the cumulative value of the volume of wear powder contained in the liquid discharged from the control bleed-off flow path 30.
  • the wear amount of each seal ring can be calculated from the wear amount of the first stage seal assembly 10 and the wear ratio v1: v2 between the stationary seal ring 12 and the rotary seal ring 11.
  • the processing device 70 determines the wear amount of the stationary seal ring 12 and the wear amount of the rotary seal ring 11 of the first stage seal assembly 10 as follows.
  • Abrasion amount of stationary seal ring Abrasion amount of first stage seal assembly ⁇ v1 / (v1 + v2)
  • Abrasion amount of rotating seal ring Abrasion amount of first stage seal assembly ⁇ v2 / (v1 + v2)
  • the processing device 70 further estimates the remaining life of the rotary seal ring 11 by comparing the obtained wear amount of the rotary seal ring 11 with a predetermined threshold (that is, the allowable wear amount). ing. Similarly, the processing device 70 estimates the remaining life of the stationary seal ring 12 by comparing the obtained wear amount of the static seal ring 12 with a predetermined threshold (that is, the allowable wear amount). It has become.
  • the amount of wear of the second stage seal assembly 20 is obtained by subtracting the amount of wear of the first stage seal assembly 10 from the total amount of wear of the first stage seal assembly 10 and the second stage seal assembly 20. That is, the batch analysis system 60 measures the volume of wear powder contained in the liquid discharged from the seal leakage passage 35, and the processing device 70 calculates the cumulative value of the volume of wear powder and calculates the total wear amount. Then, the wear amount of the second stage seal assembly 20 is obtained by subtracting the wear amount of the first stage seal assembly 10 from the total wear amount.
  • the processing device 70 calculates the rotational seal of the second stage seal assembly 20 from the calculated wear amount of the second stage seal assembly 20 and the wear ratio v1: v2 between the stationary seal ring 22 and the rotary seal ring 21.
  • the wear amount of the ring 21 and the wear amount of the stationary seal ring 22 can be calculated.
  • the processing device 70 obtains the wear amount of the first stage seal assembly 10 in real time from the measurement data from the continuous analysis system 40 and uses the measurement data from the batch analysis system 60 to obtain the first stage seal assembly.
  • the wear amount of the stationary seal ring and the wear amount of the rotary seal ring of the 10 and second stage seal assemblies 20 can be determined in batches. Since the wear powder contained in the liquid is submicron-sized particles, in the measurement of the particle size distribution by the batch analysis system 60, an additive that prevents aggregation of nanoparticles such as polyethylene glycol is added to the liquid. Also good.
  • FIG. 14A is a diagram illustrating an operation cycle of a nuclear power plant. From the viewpoint of fuel life, one operation cycle is set to about one year. Therefore, the mechanical seal used for the circulation pump is designed so that it can be continuously operated for at least one year.
  • the pressure P L in the first seal chamber 15 and the pressure P U (see FIG. 2) in the second seal chamber 25 and the flow rate Qs of the liquid discharged from the seal leakage passage 35 are mainly monitored.
  • the operation of the pump is stopped, and the mechanical seal is disassembled, inspected, and replaced with a new seal ring.
  • the wear amount and sliding contact surface of the seal ring cannot be evaluated until the mechanical seal is disassembled. For this reason, even if the state of the seal ring is good, the seal ring is replaced every cycle.
  • the wear monitoring apparatus can reasonably estimate the wear amount of the seal ring, as shown in FIG. 14B, if the estimated wear amount is sufficiently small relative to the allowable wear amount, the seal ring is removed.
  • Multi-cycle operation is possible without replacement. That is, the seal ring may be replaced only when the remaining life Tr of the seal ring at the end of a certain operation cycle is equal to or shorter than the operation time Tc of the next operation cycle.
  • By such operation management it is possible to obtain various advantageous effects such as reduction of seal ring replacement cost, reduction of waste during replacement of the seal ring, and reduction of exposure dose during replacement of the seal ring.
  • the present invention can be applied to a mechanical seal wear monitoring device, and in particular to a device that monitors the wear of a multistage mechanical seal used in a pump and predicts the remaining life of the mechanical seal.

Abstract

Provided is an abrasion monitoring device for a mechanical seal, capable of monitoring abrasion of a seal ring used in a mechanical seal and forecasting the service life of the seal ring. A multi-stage mechanical seal (8) has a control bleed-off mechanism (30) for adjusting a pressure difference between stages, and a seal leak passage (35) for discharging fluid that passes between surfaces where sliding occurs between rotating seal rings and stationary seal rings of the stages. The abrasion monitoring device for the multi-stage mechanical seal (8) comprises a concentration measuring instrument (41) for continuously measuring the concentration of abrasive particles in the liquid that is discharged from the control bleed-off mechanism (30), and a processing device (70) for estimating the amount of abrasion of the multi-stage mechanical seal (8) from the concentration of abrasive particles measured by the concentration measuring instrument (41).

Description

メカニカルシールの摩耗監視装置Mechanical seal wear monitoring device
 本発明は、メカニカルシールの摩耗監視装置に関し、特にポンプに使用される多段メカニカルシールの摩耗を監視し、さらにメカニカルシールの残存寿命を予測する装置に関するものである。 The present invention relates to a mechanical seal wear monitoring device, and more particularly to a device for monitoring the wear of a multistage mechanical seal used in a pump and predicting the remaining life of the mechanical seal.
 液体を移送するポンプには、一般に、羽根車の回転によって昇圧された液体の漏洩を防止する軸封機構が備えられている。軸封機構の代表例であるメカニカルシールは、回転側に配置された回転シールリングと静止側に配置された静止シールリングとを互いに密接させることで、液体の漏洩を最小限にする。 A pump for transferring liquid is generally provided with a shaft seal mechanism for preventing leakage of liquid pressurized by rotation of an impeller. A mechanical seal, which is a representative example of the shaft seal mechanism, minimizes liquid leakage by bringing a rotary seal ring arranged on the rotation side and a stationary seal ring arranged on the stationary side in close contact with each other.
 羽根車の回転に伴って、回転シールリングと静止シールリングとは互いに摺接されるため、これらシールリングは徐々に摩耗してゆく。シールリングが大きく摩耗すると、メカニカルシールのシール機能が低下して、許容量を超えた液体が漏洩してしまう。したがって、シールリングの摩耗を監視して、その寿命を予測し、シール機能が低下する前にシールリングを交換することが必要とされる。 As the impeller rotates, the rotary seal ring and the stationary seal ring are brought into sliding contact with each other, so that these seal rings gradually wear. When the seal ring is greatly worn, the sealing function of the mechanical seal is lowered, and the liquid exceeding the allowable amount leaks. Therefore, it is necessary to monitor the wear of the seal ring to predict its life and replace the seal ring before the seal function is degraded.
 ポンプの種類によっては、ポンプ外部への液体の漏洩を厳しく制限することが要求されるものがある。例えば、原子力発電所の冷却水循環システムでは、原子炉を冷却するための一次冷却水用の循環ポンプが使用される。一次冷却水の漏洩は、原子炉や周囲環境に重大な影響を与えてしまうため、冷却水循環システムからの一次冷却水の漏洩は避けなければならない。したがって、この循環ポンプに使用されるメカニカルシールには、極めて高い信頼性が要求される。 に よ っ て Some types of pumps are required to strictly limit liquid leakage to the outside of the pump. For example, in a cooling water circulation system of a nuclear power plant, a circulation pump for primary cooling water for cooling a nuclear reactor is used. Since leakage of the primary cooling water has a serious impact on the reactor and the surrounding environment, leakage of the primary cooling water from the cooling water circulation system must be avoided. Therefore, extremely high reliability is required for the mechanical seal used in the circulation pump.
特開平4-128648号公報JP-A-4-128648
 本発明は、上述した事情に鑑みてなされたもので、メカニカルシールに使用されるシールリングの摩耗を監視し、シールリングの寿命を予測することができるメカニカルシールの摩耗監視装置を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and provides a mechanical seal wear monitoring device capable of monitoring the wear of a seal ring used for a mechanical seal and predicting the life of the seal ring. Objective.
 上述した目的を達成するために、本発明の一態様は、多段メカニカルシールの段間の圧力差を調整するためのコントロールブリードオフ機構と、各段の回転シールリングと静止シールリングとの摺接面を通過した液体を排出するためのシール漏洩通路とを有する多段メカニカルシールの摩耗監視装置であって、前記コントロールブリードオフ機構から排出される液体中の摩耗粉の濃度を連続的に測定する濃度測定器と、前記濃度測定器によって測定された摩耗粉の濃度から、前記多段メカニカルシールの摩耗量を推定する処理装置とを備えたことを特徴とする。 In order to achieve the above-described object, one aspect of the present invention provides a control bleed-off mechanism for adjusting a pressure difference between stages of a multistage mechanical seal, and a sliding contact between a rotary seal ring and a stationary seal ring at each stage. A wear monitoring device for a multistage mechanical seal having a seal leakage passage for discharging liquid that has passed through the surface, and a concentration for continuously measuring the concentration of wear powder in the liquid discharged from the control bleed-off mechanism It is characterized by comprising a measuring device and a processing device for estimating the wear amount of the multistage mechanical seal from the concentration of the abrasion powder measured by the concentration measuring device.
 本発明の好ましい態様は、前記濃度測定器は、前記液体が通過するフローセルと、前記フローセルを流れる前記液体に光を照射する光源と、前記液体を通過した光の強度を検出する受光素子と、前記受光素子によって検出された光の強度から前記液体中の前記摩耗粉の濃度を決定する濃度分析器とを備えたことを特徴とする。
 本発明の好ましい態様は、前記処理装置は、前記摩耗粉の濃度を時間に関して積分することにより、前記摺接面の摩耗量を決定することを特徴とする。
 本発明の好ましい態様は、前記処理装置は、決定された前記摩耗量と、予め設定された許容摩耗量とを比較することにより、前記回転シールリングおよび前記静止シールリングの残存寿命を推定することを特徴とする。
 本発明の好ましい態様は、前記コントロールブリードオフ流路および前記シール漏洩通路に接続された粒度分布測定器をさらに備えたことを特徴とする。
In a preferred aspect of the present invention, the concentration measuring instrument comprises: a flow cell through which the liquid passes; a light source that irradiates light to the liquid flowing through the flow cell; And a concentration analyzer for determining the concentration of the wear powder in the liquid from the intensity of light detected by the light receiving element.
In a preferred aspect of the present invention, the processing apparatus determines the amount of wear of the sliding contact surface by integrating the concentration of the wear powder with respect to time.
In a preferred aspect of the present invention, the processing apparatus estimates the remaining life of the rotary seal ring and the stationary seal ring by comparing the determined wear amount with a preset allowable wear amount. It is characterized by.
In a preferred aspect of the present invention, the apparatus further comprises a particle size distribution measuring instrument connected to the control bleed-off flow path and the seal leakage path.
 本発明の他の態様は、多段メカニカルシールの段間の圧力差を調整するためのコントロールブリードオフ機構と、各段の回転シールリングと静止シールリングの摺接面を通過した液体を排出するためのシール漏洩通路とを有する多段メカニカルシールの摩耗監視装置であって、前記コントロールブリードオフ流路および前記シール漏洩通路に接続された粒度分布測定器を備えたことを特徴とする。 Another aspect of the present invention is a control bleed-off mechanism for adjusting the pressure difference between the stages of the multistage mechanical seal, and for discharging the liquid that has passed through the sliding contact surfaces of the rotary seal ring and stationary seal ring of each stage. A multi-stage mechanical seal wear monitoring apparatus having a plurality of seal leakage passages, comprising the control bleed-off passage and a particle size distribution measuring instrument connected to the seal leakage passage.
 本発明の好ましい態様は、前記粒度分布測定器は、液体を貯留するためのサンプルセルと、前記サンプルセル内の前記液体に光を照射する光源と、前記液体を通過した光の強度分布を検出する受光素子と、前記光の強度分布を分析して前記液体中の摩耗粉の粒度分布を測定する粒度分布分析器とを備えたことを特徴とする。
 本発明の好ましい態様は、前記粒度分布から、前記静止シールリングと前記回転シールリングとの摩耗割合を決定する処理装置をさらに備えたことを特徴とする。
In a preferred aspect of the present invention, the particle size distribution measuring device detects a sample cell for storing the liquid, a light source for irradiating the liquid in the sample cell with light, and an intensity distribution of the light that has passed through the liquid. And a particle size distribution analyzer for analyzing the intensity distribution of the light and measuring the particle size distribution of the wear powder in the liquid.
In a preferred aspect of the present invention, the apparatus further comprises a processing device for determining a wear ratio between the stationary seal ring and the rotary seal ring from the particle size distribution.
 本発明の好ましい態様は、前記粒度分布分析器は、液体中の摩耗粉の体積を測定する機能をさらに有し、前記処理装置は、前記摩耗粉の体積の累積値を算出し、さらに前記摩耗割合と前記摩耗粉の体積の累積値とから、前記静止シールリングの摩耗量と前記回転シールリングの摩耗量を決定することを特徴とする。
 本発明の好ましい態様は、前記処理装置は、前記回転シールリングの摩耗量と、予め設定された許容摩耗量とを比較することにより、前記回転シールリングの残存寿命を推定し、前記静止シールリングの摩耗量と、予め設定された許容摩耗量とを比較することにより、前記静止シールリングの残存寿命を推定することを特徴とする。
In a preferred aspect of the present invention, the particle size distribution analyzer further has a function of measuring a volume of wear powder in a liquid, the processing device calculates a cumulative value of the volume of the wear powder, and further the wear. The wear amount of the stationary seal ring and the wear amount of the rotary seal ring are determined from the ratio and the cumulative value of the volume of the wear powder.
In a preferred aspect of the present invention, the processing apparatus estimates a remaining life of the rotary seal ring by comparing a wear amount of the rotary seal ring with a preset allowable wear amount, and the stationary seal ring The remaining life of the stationary seal ring is estimated by comparing the amount of wear with a preset allowable wear amount.
 本発明によれば、メカニカルシールを通過した液体に含まれる摩耗粉の濃度または摩耗粉の体積に基づいて、シールリングの摩耗量を正確に推定することができる。さらに、推定摩耗量からシールリングの寿命を予測することができる。 According to the present invention, the wear amount of the seal ring can be accurately estimated based on the concentration of the wear powder contained in the liquid that has passed through the mechanical seal or the volume of the wear powder. Furthermore, the life of the seal ring can be predicted from the estimated wear amount.
軸封機構を有するポンプの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the pump which has a shaft seal mechanism. 2段タンデムメカニカルシールを示す断面図である。It is sectional drawing which shows a two-stage tandem mechanical seal. 図2に示す多段メカニカルシールの液体漏洩経路を示す図である。It is a figure which shows the liquid leak path | route of the multistage mechanical seal shown in FIG. 図2に示すメカニカルシールの摩耗を監視する摩耗監視装置の一実施形態を示す図である。It is a figure which shows one Embodiment of the wear monitoring apparatus which monitors wear of the mechanical seal shown in FIG. 原子炉の一次冷却水に含まれる鉄クラッド微粒子の粒度分布を示すグラフである。It is a graph which shows the particle size distribution of the iron clad fine particle contained in the primary cooling water of a nuclear reactor. 粒度分布測定器と自動サンプラーとを組み合わせた例を示す図である。It is a figure which shows the example which combined the particle size distribution measuring device and the automatic sampler. コントロールブリードオフ流路に接続された連続分析システムと、シール漏洩通路に接続された第1のバッチ式分析システムと、連続分析システムに接続された第2のバッチ式分析システムとを備えた摩耗監視装置の例を示す図である。Wear monitoring comprising a continuous analysis system connected to the control bleed-off flow path, a first batch analysis system connected to the seal leakage passage, and a second batch analysis system connected to the continuous analysis system It is a figure which shows the example of an apparatus. 第1段シール組立体の摺接面の摩耗の推移を示すグラフである。It is a graph which shows transition of the abrasion of the sliding contact surface of a 1st step seal assembly. 回転シールリングと静止シールリングが摩耗する様子を説明する図である。It is a figure explaining a mode that a rotation seal ring and a stationary seal ring wear. 摩耗粉の濃度の累積値と摩耗量との関係を示すグラフである。It is a graph which shows the relationship between the cumulative value of the density | concentration of a wear powder, and the amount of wear. 摩耗量[mm]と、摩耗粉濃度の累積値[g]と、運転時間[hour]との関係を示すグラフである。It is a graph which shows the relationship between wear amount [mm], the cumulative value [g] of wear powder concentration, and operation time [hour]. 図12Aは、2段メカニカルシールの第1段シール組立体の摩耗測定結果を示す図である。FIG. 12A is a diagram showing a result of wear measurement of a first-stage seal assembly of a two-stage mechanical seal. 図12Bは、2段メカニカルシールの第1段シール組立体の摩耗測定結果を示す図である。FIG. 12B is a diagram showing a result of wear measurement of the first-stage seal assembly of the two-stage mechanical seal. 図13Aは、図8に示す初期摩耗段階での摩耗粉の粒度分布を示すグラフである。FIG. 13A is a graph showing the particle size distribution of wear powder at the initial wear stage shown in FIG. 図13Bは、図8に示す安定摩耗段階での摩耗粉の粒度分布を示すグラフである。FIG. 13B is a graph showing the particle size distribution of wear powder at the stable wear stage shown in FIG. 8. 図13Cは、図8に示す末期摩耗段階での摩耗粉の粒度分布を示すグラフである。FIG. 13C is a graph showing the particle size distribution of the wear powder in the final wear stage shown in FIG. 図14Aは、原子力発電所の運転サイクルを示す図である。FIG. 14A is a diagram illustrating an operation cycle of a nuclear power plant. 図14Bは、原子力発電所の運転時間と、メカニカルシールの推定摩耗量との関係を示すグラフである。FIG. 14B is a graph showing the relationship between the operation time of the nuclear power plant and the estimated wear amount of the mechanical seal.
 以下、本発明の実施形態について図面を参照して説明する。
 図1は、軸封機構を有するポンプの概略構成を示す断面図である。図1に示すように、ポンプは、モータなどの駆動源に連結される軸1と、軸1に固定された羽根車2と、羽根車2を収容するケーシング3と、ケーシング3の開口部を覆うケーシングカバー5と、羽根車2によって昇圧された液体の漏洩を防止する軸封機構8とを備えている。羽根車2が回転することにより、液体はケーシング3の吸込口3aから吸い込まれ、昇圧された液体は吐出口3bから吐き出される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view showing a schematic configuration of a pump having a shaft seal mechanism. As shown in FIG. 1, the pump includes a shaft 1 connected to a drive source such as a motor, an impeller 2 fixed to the shaft 1, a casing 3 that houses the impeller 2, and an opening of the casing 3. A casing cover 5 for covering and a shaft sealing mechanism 8 for preventing leakage of the liquid pressurized by the impeller 2 are provided. As the impeller 2 rotates, the liquid is sucked from the suction port 3a of the casing 3, and the pressurized liquid is discharged from the discharge port 3b.
 図1に示すポンプの例としては、原子力発電所の一次冷却水の循環に使用されるポンプが挙げられる。このようなポンプは、内部圧力が高く、かつ液体の性質上、ポンプの外部に漏洩する液体をできるだけ少なく制限することが求められる。したがって、図1に示すポンプでは、軸封機構8として多段メカニカルシールが使用されている。多段メカニカルシールは、少なくとも2つのシールを備えており、万が一、1つのシールが故障しても、他のシールが軸封機能を維持できるように構成されている。 As an example of the pump shown in FIG. 1, there is a pump used for circulation of primary cooling water of a nuclear power plant. Such a pump is required to limit the amount of liquid leaking outside the pump as little as possible due to the high internal pressure and the nature of the liquid. Therefore, in the pump shown in FIG. 1, a multistage mechanical seal is used as the shaft seal mechanism 8. The multistage mechanical seal includes at least two seals, and is configured such that even if one seal fails, the other seals can maintain the shaft seal function.
 軸封機構8は、第1段シール組立体10と第2段シール組立体20とを備えた2段タンデム型メカニカルシールである。第1段シール組立体10は第2段シール組立体20の上流側に配置され、第1段シール組立体10と第2段シール組立体20は、軸1に沿って直列に配置されている。第1段シール組立体10および第2段シール組立体20は、シールカートリッジ9内に収容されている。 The shaft seal mechanism 8 is a two-stage tandem mechanical seal provided with a first-stage seal assembly 10 and a second-stage seal assembly 20. The first stage seal assembly 10 is disposed upstream of the second stage seal assembly 20, and the first stage seal assembly 10 and the second stage seal assembly 20 are disposed in series along the shaft 1. . The first stage seal assembly 10 and the second stage seal assembly 20 are accommodated in the seal cartridge 9.
 図1に示すメカニカルシール8は、第2段シール組立体20に加わる負荷圧力Pが、第1段シール組立体10に加わる負荷圧力Pの約2分の1となるように設計されている(すなわち、P≒0.5P)。万が一、第1段シール組立体10または第2段シール組立体20のいずれかが故障した場合にもシール機能が維持されるように、第1段シール組立体10および第2段シール組立体20のいずれもが全負荷圧力Pを封止できるように構成されている。図1に示すポンプでは、2段メカニカルシールが使用されているが、3段以上のメカニカルシールが使用されていてもよい。3段メカニカルシールの場合では、全負荷圧力の3分の1が各段に加わるように設計されるのが通常であるが、各段への負荷圧力の割り当てはこれに限られない。 Mechanical seal 8 shown in FIG. 1, the load pressure P U applied to the second-stage seal assembly 20, is designed to be about one-half of the load pressure P L applied to the first stage seal assembly 10 (That is, P U ≈0.5P L ). In the event that either the first stage seal assembly 10 or the second stage seal assembly 20 fails, the first stage seal assembly 10 and the second stage seal assembly 20 are maintained so that the sealing function is maintained. any of is configured to seal the full load pressure P L. In the pump shown in FIG. 1, a two-stage mechanical seal is used, but a three-stage or more mechanical seal may be used. In the case of a three-stage mechanical seal, the design is such that one third of the total load pressure is applied to each stage, but the assignment of the load pressure to each stage is not limited to this.
 図2は、2段タンデムメカニカルシールを示す断面図である。このメカニカルシール8は、第1段シール組立体10と、該第1段シール組立体10の下流側に配置される第2段シール組立体20と、これら第1段シール組立体10および第2段シール組立体20を収容するシールカートリッジ9とを備えている。第1段シール組立体10および第2段シール組立体20は、シールカートリッジ9に装着されており、第1段シール組立体10、第2段シール組立体20、およびシールカートリッジ9は全体として一体型カートリッジ構造を構成している。第1段シール組立体10および第2段シール組立体20は、シールカートリッジ9に形成されている第1シール室15および第2シール室25内にそれぞれ配置されている。 FIG. 2 is a cross-sectional view showing a two-stage tandem mechanical seal. The mechanical seal 8 includes a first stage seal assembly 10, a second stage seal assembly 20 disposed downstream of the first stage seal assembly 10, the first stage seal assembly 10 and the second stage seal assembly 10. And a seal cartridge 9 for accommodating the step seal assembly 20. The first-stage seal assembly 10 and the second-stage seal assembly 20 are mounted on the seal cartridge 9, and the first-stage seal assembly 10, the second-stage seal assembly 20, and the seal cartridge 9 are one unit as a whole. The body cartridge structure is constituted. The first stage seal assembly 10 and the second stage seal assembly 20 are respectively disposed in a first seal chamber 15 and a second seal chamber 25 formed in the seal cartridge 9.
 第1段シール組立体10は、軸1とともに回転する第1回転シールリング11と、第1回転シールリング11に接する第1静止シールリング12と、第1静止シールリング12に隣接して配置された第1バックアップリング13と、第1バックアップリング13を介して第1静止シールリング12を第1回転シールリング11に対して押し付ける第1ばね14とを有している。同様に、第2段シール組立体20は、軸1とともに回転する第2回転シールリング21と、第2回転シールリング21に接する第2静止シールリング22と、第2静止シールリング22に隣接して配置された第2バックアップリング23と、第2バックアップリング23を介して第2静止シールリング22を第2回転シールリング21に対して押し付ける第2ばね24とを有している。 The first stage seal assembly 10 is disposed adjacent to the first rotary seal ring 11 that rotates with the shaft 1, the first stationary seal ring 12 that contacts the first rotary seal ring 11, and the first stationary seal ring 12. The first backup ring 13 and the first spring 14 that presses the first stationary seal ring 12 against the first rotary seal ring 11 through the first backup ring 13 are provided. Similarly, the second stage seal assembly 20 is adjacent to the second rotary seal ring 21 that rotates with the shaft 1, the second stationary seal ring 22 that contacts the second rotary seal ring 21, and the second stationary seal ring 22. And a second spring 24 that presses the second stationary seal ring 22 against the second rotary seal ring 21 via the second backup ring 23.
 回転シールリング11,21には、硬質材、例えば、セラミックなどが使用され、静止シールリング12,22には、軟質材、例えば、カーボングラファイトなどが使用される。バックアップリング13,23は、軟質材からなる静止シールリング12,22をばね14,24で均一に回転シールリング11,21に押し付けるために設けられている。なお、シールの種類によっては、回転シールリングに軟質材が使用され、静止シールリングに硬質材が使用されることもある。 The rotary seal rings 11 and 21 are made of a hard material such as ceramic, and the stationary seal rings 12 and 22 are made of a soft material such as carbon graphite. The backup rings 13 and 23 are provided to press the stationary seal rings 12 and 22 made of a soft material uniformly against the rotary seal rings 11 and 21 with the springs 14 and 24. Depending on the type of seal, a soft material may be used for the rotary seal ring, and a hard material may be used for the stationary seal ring.
 図3は、図2に示す多段メカニカルシールの液体漏洩経路を示す図である。図3に示すように、多段メカニカルシールには、2つの液体漏洩経路が存在する。図3の右側は、第1の液体漏洩経路を示している。第1の液体漏洩経路は、加圧液体の一部を意図的にポンプ外部に流出させるコントロールブリードオフ機構を通じた経路である。このコントロールブリードオフ機構は、メカニカルシール8の段間の圧力差を調整するために設けられている。2段メカニカルシール8においては、第1段シール組立体10に加わる負荷圧力Pと第2段シール組立体20に加わる負荷圧力Pとの関係がP≒0.5Pとなるように、段間の圧力差が調整される。 FIG. 3 is a diagram showing a liquid leakage path of the multistage mechanical seal shown in FIG. As shown in FIG. 3, the multistage mechanical seal has two liquid leakage paths. The right side of FIG. 3 shows the first liquid leakage path. The first liquid leakage path is a path through a control bleed-off mechanism that intentionally flows part of the pressurized liquid out of the pump. This control bleed-off mechanism is provided to adjust the pressure difference between the stages of the mechanical seal 8. In the two-stage mechanical seal 8, the relationship between the load pressure P L applied to the first-stage seal assembly 10 and the load pressure P U applied to the second-stage seal assembly 20 is P U ≈0.5 P L. The pressure difference between the stages is adjusted.
 図2に示すように、コントロールブリードオフ機構は、ポンプ1の外部に連通するコントロールブリードオフ流路30と、第1シール室15と第2シール室25とを連通する第1段減圧セル31と、第2シール室25とコントロールブリードオフ流路30とを連通する第2段減圧セル32とを有している。 As shown in FIG. 2, the control bleed-off mechanism includes a control bleed-off flow path 30 that communicates with the outside of the pump 1, a first-stage decompression cell 31 that communicates the first seal chamber 15 and the second seal chamber 25. The second-stage depressurization cell 32 communicates with the second seal chamber 25 and the control bleed-off flow path 30.
 第1シール室15内の液体(全圧P)の一部は、第1段減圧セル31を通じて第2シール室25に流入し、さらに第2シール室25内の液体(圧力P)のほぼ全量は第2段減圧セル32を流れ、コントロールブリードオフ流路30を通じてポンプ1の外部に流出する。コントロールブリードオフ流路30を通じて漏洩する液体の流量Qbを、以下、コントロールブリードオフ流量と呼ぶ。このコントロールブリードオフ流量Qbは、第2段シール組立体20の潤滑を維持し、かつ第2段シール組立体20での発熱を除去するのに必要な流量とされる。例えば、沸騰水型原子炉用の主循環ポンプの場合、全負荷圧力Pは約7MPaであり、コントロールブリードオフ流量Qbは約3L/minである。 A part of the liquid (total pressure P L ) in the first seal chamber 15 flows into the second seal chamber 25 through the first-stage decompression cell 31, and further the liquid (pressure P U ) in the second seal chamber 25. Almost the entire amount flows through the second-stage decompression cell 32 and flows out of the pump 1 through the control bleed-off flow path 30. Hereinafter, the flow rate Qb of the liquid leaking through the control bleed-off flow path 30 is referred to as a control bleed-off flow rate. The control bleed-off flow rate Qb is a flow rate necessary for maintaining the lubrication of the second stage seal assembly 20 and removing heat generated in the second stage seal assembly 20. For example, if the main circulation pump for a boiling water reactor, the full-load pressure P L is approximately 7 MPa, it controls the bleed-off flow rate Qb is about 3L / min.
 図3の左側は、第2の液体漏洩経路を示している。この第2の液体漏洩経路は、第1段シール組立体10の摺接面(すなわち、第1回転シールリング11と第1静止シールリング12との接触面)、および第2段シール組立体20の摺接面(すなわち、第2回転シールリング21と第2静止シールリング22との接触面)を通じた漏洩経路である。液体は、第1段シール組立体10の摺接面および第2段シール組立体20の摺接面を通じてわずかに漏洩し、シール漏洩通路35を通じてポンプ1の外部に排出される。このシール漏洩通路35を流れる液体の流量を、以下、シール漏洩流量Qsと呼ぶ。このシール漏洩流量Qsは、ポンプ1の運転状態により0~1.5L/minの範囲内で変化する。ポンプの定常運転時では、シール漏洩流量Qsは数cc/minと少量である。 The left side of FIG. 3 shows the second liquid leakage path. The second liquid leakage path includes the sliding contact surface of the first stage seal assembly 10 (that is, the contact surface between the first rotary seal ring 11 and the first stationary seal ring 12), and the second stage seal assembly 20. This is a leakage path through the sliding contact surface (that is, the contact surface between the second rotary seal ring 21 and the second stationary seal ring 22). The liquid slightly leaks through the sliding contact surface of the first stage seal assembly 10 and the sliding contact surface of the second stage seal assembly 20, and is discharged to the outside of the pump 1 through the seal leakage passage 35. Hereinafter, the flow rate of the liquid flowing through the seal leakage passage 35 is referred to as a seal leakage flow rate Qs. This seal leakage flow rate Qs varies within the range of 0 to 1.5 L / min depending on the operation state of the pump 1. During steady operation of the pump, the seal leakage flow rate Qs is as small as several cc / min.
 図3から分かるように、第1段シール組立体10の摺接面から第2シール室25に漏洩した液体は、第1段減圧セル31を通じて第2シール室25に流入する液体(コントロールブリードオフ流)と合流する。さらに、第2シール室25内の液体の一部は、第2段シール組立体20の摺接面およびシール漏洩通路35を通じてポンプ1の外部に排出され、残余は、第2段減圧セル32およびコントロールブリードオフ流路30を通じてポンプ1の外部に排出される。 As can be seen from FIG. 3, the liquid leaked from the sliding contact surface of the first stage seal assembly 10 into the second seal chamber 25 flows into the second seal chamber 25 through the first stage decompression cell 31 (control bleed-off). Flow). Further, a part of the liquid in the second seal chamber 25 is discharged to the outside of the pump 1 through the sliding contact surface of the second stage seal assembly 20 and the seal leakage passage 35, and the remainder is stored in the second stage decompression cell 32 and It is discharged out of the pump 1 through the control bleed-off flow path 30.
 したがって、シール漏洩通路35から外部に排出された液体には、第1段シール組立体10の摺接面および第2段シール組立体20の摺接面の両方で生じた摩耗粉が含まれる。一方、コントロールブリードオフ流路30から排出された液体には、主として第1段シール組立体10の摺接面で生じた摩耗粉が含まれる。したがって、シール漏洩通路35から排出された液体と、コントロールブリードオフ流路30から排出された液体の性状を分析することにより、第1段シール組立体10の摺接面および第2段シール組立体20の摺接面の摩耗状態を推定することができる。 Therefore, the liquid discharged to the outside from the seal leakage passage 35 includes wear powder generated on both the sliding contact surface of the first stage seal assembly 10 and the sliding contact surface of the second stage seal assembly 20. On the other hand, the liquid discharged from the control bleed-off flow path 30 mainly includes wear powder generated on the sliding contact surface of the first stage seal assembly 10. Therefore, by analyzing the properties of the liquid discharged from the seal leakage passage 35 and the liquid discharged from the control bleed-off flow path 30, the sliding contact surface of the first stage seal assembly 10 and the second stage seal assembly are analyzed. The wear state of the 20 sliding contact surfaces can be estimated.
 次に、メカニカルシールから排出される液体の性状に基づいてメカニカルシールの摺接面の摩耗を監視する摩耗監視装置について説明する。図4は、図2に示すメカニカルシールの摩耗を監視する摩耗監視装置の一実施形態を示す図である。摩耗監視装置は、コントロールブリードオフ流路30に接続された連続分析システム40と、シール漏洩通路35に接続されたバッチ式分析システム60と、連続分析システム40とバッチ式分析システム60とから得られる測定結果から、メカニカルシールの摩耗量を決定する処理装置70とを備えている。 Next, a wear monitoring device that monitors the wear of the sliding surface of the mechanical seal based on the properties of the liquid discharged from the mechanical seal will be described. FIG. 4 is a diagram showing an embodiment of a wear monitoring device for monitoring the wear of the mechanical seal shown in FIG. The wear monitoring device is obtained from the continuous analysis system 40 connected to the control bleed-off flow path 30, the batch analysis system 60 connected to the seal leakage passage 35, and the continuous analysis system 40 and the batch analysis system 60. And a processing device 70 for determining the wear amount of the mechanical seal from the measurement result.
 連続分析システム40は、コントロールブリードオフ流路30から連続的に排出される液体中に混入する摩耗粉の濃度を測定する濃度測定システムである。一方、バッチ式分析システム60は、シール漏洩通路35から間欠的に排出される液体を回収して、その液体中に混入する摩耗粉の粒度分布を測定する粒度分布測定システムである。 The continuous analysis system 40 is a concentration measurement system that measures the concentration of wear powder mixed in the liquid continuously discharged from the control bleed-off flow path 30. On the other hand, the batch type analysis system 60 is a particle size distribution measuring system that collects the liquid discharged intermittently from the seal leakage passage 35 and measures the particle size distribution of the wear powder mixed in the liquid.
 図4に示すように、連続分析システム40は、導入ライン37を介してコントロールブリードオフ流路30に接続される濃度測定器41を備えている。この濃度測定器41は、液体が流れるフローセル42と、フローセル42を流れる液体に光を照射する光源43と、液体を通過した光の強度を検出する受光素子44と、受光素子44によって検出された光の強度に基づいて液体中の摩耗粉の濃度を決定する濃度分析器45とを備えている。このような光学式濃度測定器41としては、紫外・可視吸光を利用する測定器、赤外吸光を利用する測定器、蛍光発光を利用する測定器、レーリー散乱を利用する測定器、ラマン散光を利用する測定器、屈折率を利用する測定器を使用することができる。 As shown in FIG. 4, the continuous analysis system 40 includes a concentration measuring device 41 connected to the control bleed-off flow path 30 via the introduction line 37. This concentration measuring device 41 is detected by a flow cell 42 in which a liquid flows, a light source 43 that irradiates light to the liquid flowing in the flow cell 42, a light receiving element 44 that detects the intensity of light that has passed through the liquid, And a concentration analyzer 45 that determines the concentration of the abrasion powder in the liquid based on the intensity of light. As such an optical concentration measuring device 41, a measuring device using ultraviolet / visible light absorption, a measuring device using infrared light absorption, a measuring device using fluorescent light emission, a measuring device using Rayleigh scattering, Raman scattering light, A measuring instrument that uses a refractive index can be used.
 濃度測定器41の上流側にはフィルター50が配置されており、コントロールブリードオフ流路30から排出された液体は、フィルター50を通じてフローセル42に導入される。このフィルター50は、液体に本来含まれる粒子を除去するために設けられている。例えば、原子炉の一次冷却水には、図5に示すように、粒径2μm~12μmの鉄クラッド微粒子が含まれる。したがって、この場合は、フィルター50は、粒径2μm以上の粒子を捕捉する機能を有することが好ましい。また、フィルター50には、鉄を含有する粒子を捕捉するためのマグネットフィルターを組み込んでもよい。 A filter 50 is disposed on the upstream side of the concentration measuring device 41, and the liquid discharged from the control bleed-off flow path 30 is introduced into the flow cell 42 through the filter 50. The filter 50 is provided to remove particles originally contained in the liquid. For example, the primary cooling water of the nuclear reactor includes iron clad fine particles having a particle diameter of 2 μm to 12 μm, as shown in FIG. Therefore, in this case, the filter 50 preferably has a function of capturing particles having a particle diameter of 2 μm or more. The filter 50 may incorporate a magnet filter for capturing particles containing iron.
 コントロールブリードオフ流路30から排出された液体は、フローセル42内を流れる。フローセル42には透明窓46が設けられており、光源43からの光ビームは、この透明窓46を通じて液体に照射される。液体を通過した光の強度は、受光素子44によって検出される。光の強度は、液体中に混入する摩耗粉の濃度に依存して変化する。すなわち、液体中の摩耗紛に光を当てると、光の一部は吸収され、または摩耗紛から光が発せられ、または光が散乱あるいは屈折する。結果として、摩耗粉の濃度によって光の強度が変化する。したがって、液体中の摩耗粉の濃度は、液体を通過した光の強度から推定することができる。 The liquid discharged from the control bleed-off flow path 30 flows in the flow cell 42. The flow cell 42 is provided with a transparent window 46, and the light beam from the light source 43 is applied to the liquid through the transparent window 46. The intensity of light that has passed through the liquid is detected by the light receiving element 44. The intensity of light varies depending on the concentration of wear powder mixed in the liquid. That is, when light is applied to the wear powder in the liquid, part of the light is absorbed, light is emitted from the wear powder, or the light is scattered or refracted. As a result, the light intensity varies depending on the concentration of the wear powder. Therefore, the concentration of the wear powder in the liquid can be estimated from the intensity of light that has passed through the liquid.
 濃度分析器45は受光素子44に接続されており、光の強度の検出信号は受光素子44から濃度分析器45に送られるようになっている。この濃度分析器45には、液体中の摩耗粉の含有量と、液体を通過した光の強度との関係を示すテーブルまたは関係式が予め記憶されている。したがって、濃度分析器45は、受光素子44から送られてくる光の強度の検出値から、液体に含まれる摩耗粉の含有量を連続的に決定することができる。より具体的には、濃度分析器45は、光の強度に基づいて、単位時間当たり(例えば、1時間当たり)の摩耗粉の濃度を算出する。例えば、摩耗粉の濃度は、1時間毎に排出される液体中に含まれる摩耗粉の質量[g/h]として定義される。 The concentration analyzer 45 is connected to the light receiving element 44, and a light intensity detection signal is sent from the light receiving element 44 to the concentration analyzer 45. The concentration analyzer 45 stores in advance a table or a relational expression indicating the relationship between the content of wear powder in the liquid and the intensity of light that has passed through the liquid. Therefore, the concentration analyzer 45 can continuously determine the content of wear powder contained in the liquid from the detected value of the intensity of the light transmitted from the light receiving element 44. More specifically, the concentration analyzer 45 calculates the concentration of wear powder per unit time (for example, per hour) based on the intensity of light. For example, the concentration of the wear powder is defined as the mass [g / h] of the wear powder contained in the liquid discharged every hour.
 摩耗粉濃度の測定に必要な液体の流量は、濃度測定器のタイプによって異なる。このため、フローセル42を流れる液体の流量を調整するために、濃度測定器41をバイパスするバイパスライン51が設けられている。このバイパスライン51は導入ライン37から分岐しており、液体の一部がバイパスライン51を通って濃度測定器41をバイパスするようになっている。バイパスライン51にはバイパス弁52が設けられており、濃度測定器41をバイパスする液体の流量は、バイパス弁52によって調整される。したがって、フローセル42を流れる液体の流量は、バイパス弁52の開度によって調整することができる。 The flow rate of liquid required for measuring the wear powder concentration varies depending on the type of concentration measuring instrument. Therefore, in order to adjust the flow rate of the liquid flowing through the flow cell 42, a bypass line 51 that bypasses the concentration measuring device 41 is provided. The bypass line 51 branches off from the introduction line 37 so that a part of the liquid bypasses the concentration measuring device 41 through the bypass line 51. A bypass valve 52 is provided in the bypass line 51, and the flow rate of the liquid that bypasses the concentration measuring device 41 is adjusted by the bypass valve 52. Therefore, the flow rate of the liquid flowing through the flow cell 42 can be adjusted by the opening degree of the bypass valve 52.
 バッチ式分析システム60は、シール漏洩通路35から間欠的に排出される液体中に混入する摩耗粉の体積と粒度分布とを測定する粒度分布測定器61を備えている。この粒度分布測定器61は、液体を貯留するためのサンプルセル62と、サンプルセル62内の液体に光を照射する光源63と、液体を通過した光の強度分布を検出する受光素子64と、受光素子64によって検出された光の強度分布を分析して液体中の摩耗粉の体積および粒度分布を決定する粒度分布分析器65と備えている。 The batch analysis system 60 includes a particle size distribution measuring device 61 that measures the volume and particle size distribution of wear powder mixed in the liquid discharged intermittently from the seal leakage passage 35. The particle size distribution measuring device 61 includes a sample cell 62 for storing a liquid, a light source 63 for irradiating the liquid in the sample cell 62 with light, a light receiving element 64 for detecting an intensity distribution of the light that has passed through the liquid, A particle size distribution analyzer 65 that analyzes the intensity distribution of light detected by the light receiving element 64 to determine the volume and particle size distribution of the wear powder in the liquid is provided.
 シール漏洩通路35から排出された液体は、切換弁68を通じてサンプルセル62に導かれるようになっている。サンプルセル62は移動可能となっており、液体が貯留されたサンプルセル62は、光源63と受光素子64との間の測定位置に運ばれる。サンプルセル62が上記測定位置にあるときは、シール漏洩通路35から排出された液体は、切換弁68を通じて貯留部72に移送されるようになっている。 The liquid discharged from the seal leakage passage 35 is guided to the sample cell 62 through the switching valve 68. The sample cell 62 is movable, and the sample cell 62 in which the liquid is stored is carried to a measurement position between the light source 63 and the light receiving element 64. When the sample cell 62 is in the measurement position, the liquid discharged from the seal leakage passage 35 is transferred to the storage portion 72 through the switching valve 68.
 粒度分布測定器61は、液体に光を照射し、液体を通過した光を分析することにより、液体中の摩耗粉の粒度分布を測定する。粒度分布測定器61は、液体サンプリングによるバッチ分析を行うので、液体に含まれる摩耗粉の体積と、その粒度分布とを測定することができる。このような光学式粒度分布測定器61としては、レーザー光散乱回折法を利用する測定器や、動的光散乱を利用する測定器を使用することができる。 The particle size distribution measuring device 61 measures the particle size distribution of the wear powder in the liquid by irradiating the liquid with light and analyzing the light passing through the liquid. Since the particle size distribution measuring device 61 performs batch analysis by liquid sampling, it is possible to measure the volume of wear powder contained in the liquid and the particle size distribution thereof. As such an optical particle size distribution measuring device 61, a measuring device using a laser light scattering diffraction method or a measuring device using dynamic light scattering can be used.
 シール漏洩通路35から排出された液体は、第1段シール組立体10および第2段シール組立体20の両方で発生した摩耗粉を含んでいる。このため、バッチ式分析システム60で得られた測定結果からは、第1段シール組立体10または第2段シール組立体20のどちらがより摩耗しているかを特定することができない。そこで、シール漏洩通路35から排出された液体のみならず、コントロールブリードオフ流路30から排出された液体もバッチ式分析システム60によって分析される。 The liquid discharged from the seal leakage passage 35 contains wear powder generated in both the first stage seal assembly 10 and the second stage seal assembly 20. For this reason, from the measurement result obtained by the batch analysis system 60, it cannot be specified which of the first stage seal assembly 10 or the second stage seal assembly 20 is more worn. Therefore, not only the liquid discharged from the seal leakage passage 35 but also the liquid discharged from the control bleed-off flow path 30 is analyzed by the batch type analysis system 60.
 バッチ式分析システム60の粒度分布測定器61は、連続分析システム40を介してコントロールブリードオフ流路30にも接続されている。具体的には、図4に示すように、コントロールブリードオフ流路30からの液体は、濃度測定器41を通過した後、切換弁55の操作によってバッチ式分析システム60に導入されるようになっている。この切換弁55は、液体を貯留部57またはバッチ式分析システム60のいずれかに選択的に導くための弁である。 The particle size distribution measuring device 61 of the batch analysis system 60 is also connected to the control bleed-off channel 30 via the continuous analysis system 40. Specifically, as shown in FIG. 4, the liquid from the control bleed-off flow path 30 is introduced into the batch analysis system 60 by operating the switching valve 55 after passing through the concentration measuring device 41. ing. The switching valve 55 is a valve for selectively guiding the liquid to either the storage unit 57 or the batch analysis system 60.
 バッチ式分析システム60にはサンプルセル67が設けられており、連続分析システム40からの液体(すなわち、コントロールブリードオフ流路30から排出された液体)は、このサンプルセル67内に貯留される。サンプルセル67は粒度分布測定器61に運ばれ、ここで液体中の摩耗粉の粒度分布が測定される。サンプルセル67が粒度分布測定器61の測定位置にある間は、液体は切換弁55を通じて貯留部57に導かれるようになっている。 The batch type analysis system 60 is provided with a sample cell 67, and the liquid from the continuous analysis system 40 (that is, the liquid discharged from the control bleed-off flow path 30) is stored in the sample cell 67. The sample cell 67 is conveyed to the particle size distribution measuring device 61, where the particle size distribution of the wear powder in the liquid is measured. While the sample cell 67 is at the measurement position of the particle size distribution measuring device 61, the liquid is guided to the storage portion 57 through the switching valve 55.
 図6は、粒度分布測定器61と自動サンプラー75とを組み合わせた例を示す図である。この例では、コントロールブリードオフ流路30から排出された液体と、シール漏洩通路35から排出された液体は、いずれも自動サンプラー75に導入されるようになっている。この自動サンプラー75は、液体を貯留する容器76と、容器76内の液体を攪拌し、さらに容器76と粒度分布測定器61のサンプルセル62との間で液体を循環させる循環ポンプ77と、容器76内の液体の液面位置を検出する液面センサー78を備えている。シール漏洩通路35から排出される液体の流量は少ないので、液体が容器76内に蓄積されたことが液面センサー78により検知されるようになっている。 FIG. 6 is a diagram showing an example in which the particle size distribution measuring device 61 and the automatic sampler 75 are combined. In this example, both the liquid discharged from the control bleed-off flow path 30 and the liquid discharged from the seal leakage passage 35 are introduced into the automatic sampler 75. The automatic sampler 75 includes a container 76 that stores liquid, a circulation pump 77 that stirs the liquid in the container 76 and circulates the liquid between the container 76 and the sample cell 62 of the particle size distribution measuring device 61, and the container The liquid level sensor 78 which detects the liquid level position of the liquid in 76 is provided. Since the flow rate of the liquid discharged from the seal leakage passage 35 is small, the liquid level sensor 78 detects that the liquid has accumulated in the container 76.
 シール漏洩通路35から排出された液体は、切換弁68を通じて容器76に導かれる。一方、コントロールブリードオフ流路30から排出された液体は、濃度測定器41を通過し、さらに切換弁55を通じて容器76に導かれるようになっている。粒度分布測定器61のサンプルセル62と容器76とは移送ライン81および戻りライン82で接続されている。容器76内の液体は、移送ライン81を通じてサンプルセル62に移送され、サンプルセル62内の液体は、戻りライン82を通じて容器76に戻される。容器76には、容器76内の液体を排出するためのドレイン79が設けられている。 The liquid discharged from the seal leakage passage 35 is guided to the container 76 through the switching valve 68. On the other hand, the liquid discharged from the control bleed-off flow path 30 passes through the concentration measuring device 41 and is further guided to the container 76 through the switching valve 55. The sample cell 62 and the container 76 of the particle size distribution measuring device 61 are connected by a transfer line 81 and a return line 82. The liquid in the container 76 is transferred to the sample cell 62 through the transfer line 81, and the liquid in the sample cell 62 is returned to the container 76 through the return line 82. The container 76 is provided with a drain 79 for discharging the liquid in the container 76.
 2つの切換弁55,68を交互に操作することにより、コントロールブリードオフ流路30から排出された液体、またはシール漏洩通路35から排出された液体のいずれかが自動サンプラー75の容器76に導かれる。したがって、コントロールブリードオフ流路30からの液体、およびシール漏洩通路35からの液体の両方を粒度分布測定器61で交互に分析することができる。 By alternately operating the two switching valves 55 and 68, either the liquid discharged from the control bleed-off flow path 30 or the liquid discharged from the seal leakage passage 35 is guided to the container 76 of the automatic sampler 75. . Therefore, both the liquid from the control bleed-off flow path 30 and the liquid from the seal leakage passage 35 can be alternately analyzed by the particle size distribution measuring device 61.
 図7は、コントロールブリードオフ流路30に接続された連続分析システム40と、シール漏洩通路35に接続された第1のバッチ式分析システム60Aと、連続分析システム40に接続された第2のバッチ式分析システム60Bとを備えた摩耗監視装置の例を示す図である。連続分析システム40の構成および配置は、上述の例と同じである。第1のバッチ式分析システム60Aおよび第2のバッチ式分析システム60Bの基本的構成は、図6に示すバッチ式分析システム60と同じである。 FIG. 7 shows a continuous analysis system 40 connected to the control bleed-off flow path 30, a first batch analysis system 60 A connected to the seal leakage passage 35, and a second batch connected to the continuous analysis system 40. It is a figure which shows the example of the wear monitoring apparatus provided with the type | formula analysis system 60B. The configuration and arrangement of the continuous analysis system 40 are the same as in the above example. The basic configuration of the first batch analysis system 60A and the second batch analysis system 60B is the same as that of the batch analysis system 60 shown in FIG.
 この例では、図6に示す切換弁55,68および貯留部57,72に相当する要素は設けられていない。シール漏洩通路35から排出された液体中の摩耗粉の体積および粒度分布は、第1のバッチ式分析システム60Aによって測定され、コントロールブリードオフ流路30から排出された液体中の摩耗粉の体積および粒度分布は、第2のバッチ式分析システム60Bによって測定される。 In this example, elements corresponding to the switching valves 55 and 68 and the reservoirs 57 and 72 shown in FIG. 6 are not provided. The volume and particle size distribution of the wear powder in the liquid discharged from the seal leakage passage 35 are measured by the first batch analysis system 60A, and the volume of the wear powder in the liquid discharged from the control bleed-off flow path 30 and The particle size distribution is measured by the second batch analysis system 60B.
 次に、上述したメカニカルシール8の摩耗監視装置によるシール寿命の決定方法について説明する。図8は、第1段シール組立体10の摺接面の摩耗の推移を示すグラフである。図8に示すグラフの縦軸は、液体中の摩耗粉濃度C[g/h]を表し、横軸はメカニカルシール(またはポンプ)の運転時間[hour]を表している。図8から分かるように、メカニカルシールの摩耗は、摩耗が比較的大きい初期摩耗段階と、摩耗が少ない安定摩耗段階と、摩耗が徐々に増加する末期摩耗段階とに分けられる。 Next, a method for determining the seal life using the wear monitoring device for the mechanical seal 8 described above will be described. FIG. 8 is a graph showing the transition of wear on the sliding contact surface of the first stage seal assembly 10. The vertical axis of the graph shown in FIG. 8 represents the wear powder concentration C [g / h] in the liquid, and the horizontal axis represents the operation time [hour] of the mechanical seal (or pump). As can be seen from FIG. 8, mechanical seal wear is divided into an initial wear stage in which wear is relatively large, a stable wear stage in which wear is low, and an end wear stage in which wear gradually increases.
 第1段シール組立体10の摺接面で生じた摩耗粉のほとんどは、コントロールブリードオフ流路30から液体とともに排出され、一方、第2段シール組立体20の摺接面で生じた摩耗粉は、コントロールブリードオフ流路30からは排出されない。したがって、連続分析システム40によりコントロールブリードオフ流路30からの液体を分析することにより、第1段シール組立体10の摩耗量を推定することができる。 Most of the abrasion powder generated on the sliding contact surface of the first stage seal assembly 10 is discharged together with the liquid from the control bleed-off flow path 30, while the abrasion powder generated on the sliding contact surface of the second stage seal assembly 20. Is not discharged from the control bleed-off flow path 30. Therefore, by analyzing the liquid from the control bleed-off flow path 30 by the continuous analysis system 40, the wear amount of the first stage seal assembly 10 can be estimated.
 図9は、回転シールリング11と静止シールリング12が摩耗する様子を説明する図である。図9に示すように、摺接面の摩耗量Wは、静止シールリング12および回転シールリング11のすり減った厚さ[mm]として定義される。第1段シール組立体10の摩耗量Wは、摩耗粉の濃度C[g/h]を時間に関して積分して濃度Cの累積値Ct[g]を求め、予め用意された累積値Ct[g]と摩耗量[mm]との関係から決定することができる。 FIG. 9 is a diagram for explaining how the rotary seal ring 11 and the stationary seal ring 12 are worn. As shown in FIG. 9, the wear amount W of the sliding contact surface is defined as the thickness [mm] of the stationary seal ring 12 and the rotary seal ring 11 that has been worn away. The wear amount W of the first-stage seal assembly 10 is obtained by integrating the wear powder concentration C [g / h] with respect to time to obtain a cumulative value Ct [g] of the concentration C, and a cumulative value Ct [g prepared in advance. ] And the amount of wear [mm].
 図10は、摩耗粉の濃度の累積値と摩耗量との関係を示すグラフである。図10において、縦軸は、シールリングの摺接面の摩耗量[mm]を表し、横軸は、摩耗粉の濃度の累積値[g]を表している。図10に示すように、シールリングの摺接面の摩耗量は、摩耗粉の濃度の累積値に比例する。この摩耗量と摩耗粉の濃度の累積値との対応関係は、実測により予め取得することができる。シールリングの摺接面の摩耗量と摩耗粉の濃度の累積値との関係を示すテーブルまたは関係式は、処理装置70に予め記憶されている。したがって、処理装置70は、連続分析システム40によって測定された単位時間当たりの摩耗粉濃度[g/h]を時間に関して積分して摩耗粉の濃度の累積値Ctを求め、得られた累積値Ctから第1段シール組立体10の摺接面の摩耗量を推定することができる。 FIG. 10 is a graph showing the relationship between the cumulative value of wear powder concentration and the amount of wear. In FIG. 10, the vertical axis represents the wear amount [mm] of the sliding surface of the seal ring, and the horizontal axis represents the cumulative value [g] of the concentration of wear powder. As shown in FIG. 10, the amount of wear on the sliding surface of the seal ring is proportional to the cumulative value of the concentration of wear powder. The correspondence between the wear amount and the accumulated value of the wear powder concentration can be obtained in advance by actual measurement. A table or a relational expression indicating the relationship between the wear amount of the sliding contact surface of the seal ring and the accumulated value of the concentration of wear powder is stored in the processing device 70 in advance. Therefore, the processing device 70 integrates the wear powder concentration [g / h] per unit time measured by the continuous analysis system 40 with respect to time to obtain a cumulative value Ct of the wear powder concentration, and the obtained cumulative value Ct. From this, the amount of wear on the sliding contact surface of the first stage seal assembly 10 can be estimated.
 図11は、摩耗量[mm]と、摩耗粉濃度の累積値Ct[g]と、運転時間t[hour]との関係を示すグラフである。図11のグラフにおいて、左側の縦軸はシールリングの摺接面の摩耗量を表し、右側の縦軸は摩耗粉濃度の累積値を表し、横軸はメカニカルシール(またはポンプ)の運転時間を表す。図11から分かるように、運転時間ともに、摩耗粉濃度の累積値および摩耗量は増加する。したがって、得られた摩耗量から、回転シールリングおよび/または静止シールリングの寿命を決定することが可能である。すなわち、処理装置70は、摩耗量が所定のしきい値(許容摩耗量)に達したときに、回転シールリングおよび/または静止シールリングがその寿命に達したと判断することができる。さらに、現在の摩耗量と、しきい値(許容摩耗量)との比較から、回転シールリングおよび/または静止シールリングの残存寿命を推定することも可能である。 FIG. 11 is a graph showing the relationship between the wear amount [mm], the cumulative value Ct [g] of the wear powder concentration, and the operation time t [hour]. In the graph of FIG. 11, the left vertical axis represents the amount of wear on the sliding surface of the seal ring, the right vertical axis represents the cumulative value of wear powder concentration, and the horizontal axis represents the operating time of the mechanical seal (or pump). To express. As can be seen from FIG. 11, the cumulative value of the wear powder concentration and the wear amount increase with the operation time. Therefore, it is possible to determine the life of the rotary seal ring and / or the stationary seal ring from the obtained amount of wear. That is, the processing device 70 can determine that the rotating seal ring and / or the stationary seal ring has reached the end of its life when the wear amount reaches a predetermined threshold (allowable wear amount). Furthermore, it is possible to estimate the remaining life of the rotary seal ring and / or the stationary seal ring from a comparison between the current wear amount and a threshold value (allowable wear amount).
 図12Aおよび図12Bは、2段メカニカルシール8の第1段シール組立体10の摩耗測定結果を示す図である。この2段メカニカルシールは、原子炉の一次冷却水の循環に使用されるポンプ内に設置されたものであり、ポンプの運転時間は約9000時間であった。静止シールリングはカーボン製であり、回転シールリングはセラミック製であった。 12A and 12B are diagrams showing the results of wear measurement of the first-stage seal assembly 10 of the two-stage mechanical seal 8. This two-stage mechanical seal was installed in a pump used for circulation of the primary cooling water of the nuclear reactor, and the operation time of the pump was about 9000 hours. The stationary seal ring was made of carbon and the rotary seal ring was made of ceramic.
 図12Bに示すように、静止シールリングの算術平均粗さRaは約2μmであり、最大高さRyは約12μmであった。一方、回転シールリングの算術平均粗さRaは約0.03μmであり、最大高さRyは約0.4μmであった。この測定結果から、回転シールリングの摩耗量は、静止シールリングの摩耗量に比べてかなり少ないことが分かる。また、摩耗粉の粒径は、算術平均粗さRa以下と想定されるため、測定結果から、静止シールリングから発生する摩耗粉の粒径は2μm以下、回転シールリングから発生する摩耗粉の粒径は0.03μm以下であることが分かる。 As shown in FIG. 12B, the arithmetic average roughness Ra of the stationary seal ring was about 2 μm, and the maximum height Ry was about 12 μm. On the other hand, the arithmetic average roughness Ra of the rotary seal ring was about 0.03 μm, and the maximum height Ry was about 0.4 μm. From this measurement result, it can be seen that the wear amount of the rotary seal ring is considerably smaller than the wear amount of the stationary seal ring. Further, since the particle size of the wear powder is assumed to be an arithmetic average roughness Ra or less, the particle size of the wear powder generated from the stationary seal ring is 2 μm or less from the measurement result, and the wear powder particles generated from the rotating seal ring It can be seen that the diameter is 0.03 μm or less.
 図4に示すように、濃度測定器41の上流側にはフィルター50が設置されているので、粒径2μm以上の粒子はフィルター50によって液体から除去される。したがって、濃度測定器41で測定される粒子は、炉水に本来含まれていたものではなく、第1段シール組立体10で発生した摩耗粉である。上述した実施形態では、摩耗粉の全成分の濃度を測定しているが、摩耗粉の特定の成分の濃度を測定するようにしてもよい。その場合は、回転シールリング11の摩耗粉の濃度と、静止シールリング12の摩耗粉の濃度を別々に測定することができる。 As shown in FIG. 4, since the filter 50 is installed on the upstream side of the concentration measuring device 41, particles having a particle size of 2 μm or more are removed from the liquid by the filter 50. Therefore, the particles measured by the concentration measuring device 41 are not originally contained in the reactor water, but are abrasion powder generated in the first stage seal assembly 10. In the embodiment described above, the concentration of all components of the wear powder is measured, but the concentration of a specific component of the wear powder may be measured. In that case, the concentration of the wear powder of the rotary seal ring 11 and the concentration of the wear powder of the stationary seal ring 12 can be measured separately.
 図13Aは、図8に示す初期摩耗段階での摩耗粉の粒度分布を示すグラフであり、図13Bは、図8に示す安定摩耗段階での摩耗粉の粒度分布を示すグラフであり、図13Cは、図8に示す末期摩耗段階での摩耗粉の粒度分布を示すグラフである。図13A乃至図13Cに示すグラフは、コントロールブリードオフ流路30から排出される液体中の摩耗粉の粒度分布を測定した結果を示すグラフであり、縦軸は液体中の粒子の相対量(体積%)を表し、横軸は粒径を表している。 13A is a graph showing the particle size distribution of the wear powder in the initial wear stage shown in FIG. 8, and FIG. 13B is a graph showing the particle size distribution of the wear powder in the stable wear stage shown in FIG. These are the graphs which show the particle size distribution of the abrasion powder in the last stage abrasion stage shown in FIG. The graphs shown in FIGS. 13A to 13C are graphs showing the results of measuring the particle size distribution of the wear powder in the liquid discharged from the control bleed-off flow path 30, and the vertical axis represents the relative amount (volume) of the particles in the liquid. %), And the horizontal axis represents the particle size.
 上述したように、静止シールリングから発生する摩耗粉の粒径は2μm以下、回転シールリングから発生する摩耗粉の粒径は0.03μm以下と想定される。すなわち、静止シールリングから発生する摩耗粉の粒径は、回転シールリングから発生する摩耗粉の粒径の約70倍であり、両者の粒径には大きな差異がある。したがって、それぞれのピーク粒径は、図13A乃至図13Cに示すように、粒度分布上に明確に現れる。 As described above, the particle size of the wear powder generated from the stationary seal ring is assumed to be 2 μm or less, and the particle size of the wear powder generated from the rotating seal ring is assumed to be 0.03 μm or less. That is, the particle size of the wear powder generated from the stationary seal ring is about 70 times the particle size of the wear powder generated from the rotating seal ring, and there is a large difference between the particle sizes of the two. Therefore, each peak particle size clearly appears on the particle size distribution as shown in FIGS. 13A to 13C.
 図13B内の符号v1は、静止シールリングから発生する摩耗粉のピーク粒径d1での体積%を示し、符号v2は、回転シールリングから発生する摩耗粉のピーク粒径d2での体積%を示している。体積%v1,v2は、粒度分布測定器61によって測定される。図13A乃至図13Cから分かるように、初期摩耗段階、安定摩耗段階、および末期摩耗段階の各段階において、ピーク粒径d1での体積%と、ピーク粒径d2での体積%との比は、概ねv1:v2である。したがって、処理装置70は、測定された体積%v1,v2から、サンプル液採取時の静止シールリングと回転シールリングとの摩耗割合v1:v2を求めることができる。 The sign v1 in FIG. 13B indicates the volume% at the peak particle diameter d1 of the wear powder generated from the stationary seal ring, and the sign v2 indicates the volume% at the peak particle diameter d2 of the wear powder generated from the rotating seal ring. Show. The volume% v1 and v2 are measured by the particle size distribution measuring device 61. As can be seen from FIGS. 13A to 13C, in each of the initial wear stage, the stable wear stage, and the final wear stage, the ratio between the volume% at the peak particle diameter d1 and the volume% at the peak particle diameter d2 is It is approximately v1: v2. Therefore, the processing device 70 can obtain the wear ratio v1: v2 between the stationary seal ring and the rotating seal ring at the time of sampling the sample liquid from the measured volume% v1, v2.
 バッチ式分析システム60は、上述したように、粒度分布のみならず、液体中に含まれる摩耗粉の体積も測定する。この液体中の摩耗粉の体積は、回転シールリングと静止シールリングの摺接面の摩耗量に概ね比例する。したがって、バッチ式分析システム60によって測定された摩耗粉の体積から、シールリングの摺接面の摩耗量を推定することも可能である。 As described above, the batch analysis system 60 measures not only the particle size distribution but also the volume of the wear powder contained in the liquid. The volume of the wear powder in the liquid is approximately proportional to the amount of wear on the sliding contact surfaces of the rotary seal ring and the stationary seal ring. Therefore, it is also possible to estimate the amount of wear on the sliding contact surface of the seal ring from the volume of wear powder measured by the batch analysis system 60.
 粒度分布測定器61は、液体中の摩耗粉の体積をサンプルセル単位で測定する。したがって、摩耗粉の体積の累積値から、静止シールリングと回転シールリングの摺接面の摩耗量を求めることができる。処理装置70には、摩耗粉の体積と、摺接面の摩耗量との関係を示すテーブルまたは関係式が予め記憶されている。処理装置70は、粒度分布測定器61によって測定された摩耗粉の体積を積算して、摩耗粉の体積の累積値を求め、さらに、得られた累積値から、静止シールリングと回転シールリングの摺接面の摩耗量「mm」を決定する。 The particle size distribution measuring device 61 measures the volume of wear powder in the liquid in units of sample cells. Therefore, the amount of wear on the sliding contact surfaces of the stationary seal ring and the rotary seal ring can be determined from the cumulative value of the volume of wear powder. The processing device 70 stores in advance a table or a relational expression indicating the relationship between the volume of wear powder and the amount of wear on the sliding surface. The processing device 70 integrates the volume of the wear powder measured by the particle size distribution measuring device 61 to obtain a cumulative value of the volume of the wear powder, and further, from the obtained cumulative value, the static seal ring and the rotary seal ring. The wear amount “mm” of the sliding contact surface is determined.
 シール漏洩通路35から採取された液体には、第1段シール組立体10および第2段シール組立体20の両方の摺接面で発生した摩耗粉が含まれている。一方、コントロールブリードオフ流路30から採取された液体には、第1段シール組立体10の摺接面で発生した摩耗粉のみが含まれている。したがって、コントロールブリードオフ流路30から排出された液体に含まれる摩耗粉の体積の累積値から、第1段シール組立体10の摩耗量を推定することができる。 The liquid collected from the seal leakage passage 35 contains wear powder generated on the sliding contact surfaces of both the first stage seal assembly 10 and the second stage seal assembly 20. On the other hand, the liquid collected from the control bleed-off flow path 30 contains only wear powder generated on the sliding contact surface of the first stage seal assembly 10. Therefore, the amount of wear of the first stage seal assembly 10 can be estimated from the cumulative value of the volume of wear powder contained in the liquid discharged from the control bleed-off flow path 30.
 さらに、第1段シール組立体10の摩耗量と、静止シールリング12と回転シールリング11との摩耗割合v1:v2とから、各シールリングの摩耗量を算出することができる。具体的には、処理装置70は、第1段シール組立体10の静止シールリング12の摩耗量および回転シールリング11の摩耗量を次のようにして求める。
 静止シールリングの摩耗量=第1段シール組立体の摩耗量×v1/(v1+v2)
 回転シールリングの摩耗量=第1段シール組立体の摩耗量×v2/(v1+v2)
Further, the wear amount of each seal ring can be calculated from the wear amount of the first stage seal assembly 10 and the wear ratio v1: v2 between the stationary seal ring 12 and the rotary seal ring 11. Specifically, the processing device 70 determines the wear amount of the stationary seal ring 12 and the wear amount of the rotary seal ring 11 of the first stage seal assembly 10 as follows.
Abrasion amount of stationary seal ring = Abrasion amount of first stage seal assembly × v1 / (v1 + v2)
Abrasion amount of rotating seal ring = Abrasion amount of first stage seal assembly × v2 / (v1 + v2)
 処理装置70は、さらに、得られた回転シールリング11の摩耗量と所定のしきい値(すなわち、許容摩耗量)とを比較することにより、回転シールリング11の残存寿命を推定するようになっている。同様に、処理装置70は、得られた静止シールリング12の摩耗量と所定のしきい値(すなわち、許容摩耗量)とを比較することにより、静止シールリング12の残存寿命を推定するようになっている。 The processing device 70 further estimates the remaining life of the rotary seal ring 11 by comparing the obtained wear amount of the rotary seal ring 11 with a predetermined threshold (that is, the allowable wear amount). ing. Similarly, the processing device 70 estimates the remaining life of the stationary seal ring 12 by comparing the obtained wear amount of the static seal ring 12 with a predetermined threshold (that is, the allowable wear amount). It has become.
 第2段シール組立体20の摩耗量は、第1段シール組立体10および第2段シール組立体20の全体摩耗量から、第1段シール組立体10の摩耗量を差し引くことにより求められる。すなわち、バッチ式分析システム60は、シール漏洩通路35から排出された液体中に含まれる摩耗粉の体積を測定し、処理装置70は、摩耗粉の体積の累積値を算出して全体摩耗量を決定し、さらに全体摩耗量から第1段シール組立体10の摩耗量を差し引くことにより、第2段シール組立体20の摩耗量を得る。 The amount of wear of the second stage seal assembly 20 is obtained by subtracting the amount of wear of the first stage seal assembly 10 from the total amount of wear of the first stage seal assembly 10 and the second stage seal assembly 20. That is, the batch analysis system 60 measures the volume of wear powder contained in the liquid discharged from the seal leakage passage 35, and the processing device 70 calculates the cumulative value of the volume of wear powder and calculates the total wear amount. Then, the wear amount of the second stage seal assembly 20 is obtained by subtracting the wear amount of the first stage seal assembly 10 from the total wear amount.
 第2段シール組立体20においても、ピーク粒径d1での体積%とピーク粒径d2での体積%との比は、概ねv1:v2と想定される。したがって、処理装置70は、算出された第2段シール組立体20の摩耗量と、静止シールリング22と回転シールリング21との摩耗割合v1:v2から、第2段シール組立体20の回転シールリング21の摩耗量と静止シールリング22の摩耗量を算出することができる。 Also in the second stage seal assembly 20, the ratio of the volume% at the peak particle diameter d1 to the volume% at the peak particle diameter d2 is generally assumed to be v1: v2. Therefore, the processing device 70 calculates the rotational seal of the second stage seal assembly 20 from the calculated wear amount of the second stage seal assembly 20 and the wear ratio v1: v2 between the stationary seal ring 22 and the rotary seal ring 21. The wear amount of the ring 21 and the wear amount of the stationary seal ring 22 can be calculated.
 このように、処理装置70は、連続分析システム40からの測定データにより第1段シール組立体10の摩耗量をリアルタイムで求め、バッチ式分析システム60からの測定データにより、第1段シール組立体10および第2段シール組立体20の静止シールリングの摩耗量および回転シールリングの摩耗量をバッチで求めることができる。なお、液体中に含まれる摩耗粉はサブミクロンサイズの粒子であるので、バッチ式分析システム60による粒度分布の測定においては、ポリエチレングリコールなどのナノ粒子の凝集を防止する添加剤を液体に加えてもよい。 In this way, the processing device 70 obtains the wear amount of the first stage seal assembly 10 in real time from the measurement data from the continuous analysis system 40 and uses the measurement data from the batch analysis system 60 to obtain the first stage seal assembly. The wear amount of the stationary seal ring and the wear amount of the rotary seal ring of the 10 and second stage seal assemblies 20 can be determined in batches. Since the wear powder contained in the liquid is submicron-sized particles, in the measurement of the particle size distribution by the batch analysis system 60, an additive that prevents aggregation of nanoparticles such as polyethylene glycol is added to the liquid. Also good.
 次に、上述した摩耗監視装置を用いたシールリング交換時期の設定方法を説明する。図14Aは、原子力発電所の運転サイクルを示す図である。燃料寿命の観点から1運転サイクルは約1年に設定されている。そのため、循環ポンプに使用されるメカニカルシールは、少なくとも1年の連続運転が可能であるように設計されている。 Next, a method for setting the seal ring replacement time using the above-described wear monitoring device will be described. FIG. 14A is a diagram illustrating an operation cycle of a nuclear power plant. From the viewpoint of fuel life, one operation cycle is set to about one year. Therefore, the mechanical seal used for the circulation pump is designed so that it can be continuously operated for at least one year.
 ポンプ運転においては、主として第1シール室15内の圧力Pと第2シール室25内の圧力P(図2参照)、及びシール漏洩通路35から排出される液体の流量Qsが監視される。従来では、これらP,P,Qsのうち少なくとも1つが予め設定された値に達したときにポンプの運転が停止され、そして、メカニカルシールが分解、点検され、新たなシールリングに交換される。シールリングの摩耗量および摺接面は、メカニカルシールを分解するまで評価することができない。このため、たとえシールリングの状態が良好であっても、1サイクル毎にシールリングが交換される。 In the pump operation, the pressure P L in the first seal chamber 15 and the pressure P U (see FIG. 2) in the second seal chamber 25 and the flow rate Qs of the liquid discharged from the seal leakage passage 35 are mainly monitored. . Conventionally, when at least one of these P L , P U , and Qs reaches a preset value, the operation of the pump is stopped, and the mechanical seal is disassembled, inspected, and replaced with a new seal ring. The The wear amount and sliding contact surface of the seal ring cannot be evaluated until the mechanical seal is disassembled. For this reason, even if the state of the seal ring is good, the seal ring is replaced every cycle.
 本実施形態に係る摩耗監視装置は、シールリングの摩耗量を合理的に推定することができるため、図14Bに示すように、推定摩耗量が許容摩耗量に対して十分少なければ、シールリングを交換することなく多サイクル運転が可能である。すなわち、ある運転サイクル終了時におけるシールリングの残存寿命Trが、次の運転サイクルの運転時間Tc以下の場合にのみシールリングを交換すればよい。このような運転管理により、シールリングの交換コストの低減、シールリング交換時の廃棄物の低減、さらにシールリング交換作業時の被爆線量の低減など様々な好ましい効果を得ることができる。 Since the wear monitoring apparatus according to the present embodiment can reasonably estimate the wear amount of the seal ring, as shown in FIG. 14B, if the estimated wear amount is sufficiently small relative to the allowable wear amount, the seal ring is removed. Multi-cycle operation is possible without replacement. That is, the seal ring may be replaced only when the remaining life Tr of the seal ring at the end of a certain operation cycle is equal to or shorter than the operation time Tc of the next operation cycle. By such operation management, it is possible to obtain various advantageous effects such as reduction of seal ring replacement cost, reduction of waste during replacement of the seal ring, and reduction of exposure dose during replacement of the seal ring.
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうることである。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。 The above-described embodiments are described for the purpose of enabling the person having ordinary knowledge in the technical field to which the present invention belongs to implement the present invention. Various modifications of the above embodiment can be naturally made by those skilled in the art, and the technical idea of the present invention can be applied to other embodiments. Accordingly, the present invention is not limited to the described embodiments, but is to be construed in the widest scope according to the technical idea defined by the claims.
 本発明は、メカニカルシールの摩耗監視装置に適用可能であり、特にポンプに使用される多段メカニカルシールの摩耗を監視し、さらにメカニカルシールの残存寿命を予測する装置に適用可能である。 The present invention can be applied to a mechanical seal wear monitoring device, and in particular to a device that monitors the wear of a multistage mechanical seal used in a pump and predicts the remaining life of the mechanical seal.
 1   軸
 2   羽根車
 3   ケーシング
 8   軸封機構(メカニカルシール)
 9   シールカートリッジ
10   第1段シール組立体
20   第2段シール組立体
30   コントロールブリードオフ流路
35   シール漏洩通路
40   連続分析システム
41   濃度測定器
42   フローセル
43   光源
44   受光素子
45   濃度分析器
60   バッチ式分析システム
61   粒度分布測定器
62   サンプルセル
63   光源
64   受光素子
65   粒度分布分析器
70   処理装置
1 shaft 2 impeller 3 casing 8 shaft sealing mechanism (mechanical seal)
9 Seal cartridge 10 First stage seal assembly 20 Second stage seal assembly 30 Control bleed-off flow path 35 Seal leakage path 40 Continuous analysis system 41 Concentration measuring device 42 Flow cell 43 Light source 44 Light receiving element 45 Concentration analyzer 60 Batch type analysis System 61 Particle size distribution measuring device 62 Sample cell 63 Light source 64 Light receiving element 65 Particle size distribution analyzer 70 Processing device

Claims (10)

  1.  多段メカニカルシールの段間の圧力差を調整するためのコントロールブリードオフ機構と、各段の回転シールリングと静止シールリングとの摺接面を通過した液体を排出するためのシール漏洩通路とを有する多段メカニカルシールの摩耗監視装置であって、
     前記コントロールブリードオフ機構から排出される液体中の摩耗粉の濃度を連続的に測定する濃度測定器と、
     前記濃度測定器によって測定された摩耗粉の濃度から、前記多段メカニカルシールの摩耗量を推定する処理装置とを備えたことを特徴とする摩耗監視装置。
    A control bleed-off mechanism for adjusting the pressure difference between the stages of the multistage mechanical seal, and a seal leakage passage for discharging the liquid that has passed through the sliding contact surface between the rotary seal ring and the stationary seal ring of each stage A multistage mechanical seal wear monitoring device,
    A concentration measuring device for continuously measuring the concentration of wear powder in the liquid discharged from the control bleed-off mechanism;
    A wear monitoring device comprising: a processing device that estimates a wear amount of the multistage mechanical seal from a wear powder concentration measured by the concentration measuring device.
  2.  前記濃度測定器は、前記液体が通過するフローセルと、前記フローセルを流れる前記液体に光を照射する光源と、前記液体を通過した光の強度を検出する受光素子と、前記受光素子によって検出された光の強度から前記液体中の前記摩耗粉の濃度を決定する濃度分析器とを備えたことを特徴とする請求項1に記載の摩耗監視装置。 The concentration measuring device is detected by the flow cell through which the liquid passes, a light source that irradiates light to the liquid flowing through the flow cell, a light receiving element that detects the intensity of light that has passed through the liquid, and the light receiving element. The wear monitoring apparatus according to claim 1, further comprising a concentration analyzer that determines a concentration of the wear powder in the liquid from light intensity.
  3.  前記処理装置は、前記摩耗粉の濃度を時間に関して積分することにより、前記摺接面の摩耗量を決定することを特徴とする請求項1または2に記載の摩耗監視装置。 The wear monitoring apparatus according to claim 1 or 2, wherein the processing device determines the wear amount of the sliding contact surface by integrating the concentration of the wear powder with respect to time.
  4.  前記処理装置は、決定された前記摩耗量と、予め設定された許容摩耗量とを比較することにより、前記回転シールリングおよび前記静止シールリングの残存寿命を推定することを特徴とする請求項3に記載の摩耗監視装置。 The said processing apparatus estimates the remaining lifetime of the said rotation seal ring and the said stationary seal ring by comparing the determined said wear amount with the preset allowable wear amount. The wear monitoring device described in 1.
  5.  前記コントロールブリードオフ流路および前記シール漏洩通路に接続された粒度分布測定器をさらに備えたことを特徴とする請求項1乃至4のいずれか一項に記載の摩耗監視装置。 The wear monitoring apparatus according to any one of claims 1 to 4, further comprising a particle size distribution measuring instrument connected to the control bleed-off flow path and the seal leakage passage.
  6.  多段メカニカルシールの段間の圧力差を調整するためのコントロールブリードオフ機構と、各段の回転シールリングと静止シールリングの摺接面を通過した液体を排出するためのシール漏洩通路とを有する多段メカニカルシールの摩耗監視装置であって、
     前記コントロールブリードオフ流路および前記シール漏洩通路に接続された粒度分布測定器を備えたことを特徴とする摩耗監視装置。
    A multistage having a control bleed-off mechanism for adjusting the pressure difference between the stages of the multistage mechanical seal, and a seal leakage passage for discharging the liquid that has passed through the sliding contact surface of each stage of the rotary seal ring and the stationary seal ring A mechanical seal wear monitoring device,
    A wear monitoring apparatus comprising a particle size distribution measuring instrument connected to the control bleed-off flow path and the seal leakage passage.
  7.  前記粒度分布測定器は、液体を貯留するためのサンプルセルと、前記サンプルセル内の前記液体に光を照射する光源と、前記液体を通過した光の強度分布を検出する受光素子と、前記光の強度分布を分析して前記液体中の摩耗粉の粒度分布を測定する粒度分布分析器とを備えたことを特徴とする請求項6に記載の摩耗監視装置。 The particle size distribution measuring device includes a sample cell for storing a liquid, a light source that irradiates light to the liquid in the sample cell, a light receiving element that detects an intensity distribution of light that has passed through the liquid, and the light. The wear monitoring apparatus according to claim 6, further comprising: a particle size distribution analyzer that analyzes a strength distribution of the wear powder to measure a particle size distribution of the wear powder in the liquid.
  8.  前記粒度分布から、前記静止シールリングと前記回転シールリングとの摩耗割合を決定する処理装置をさらに備えたことを特徴とする請求項7に記載の摩耗監視装置。 The wear monitoring device according to claim 7, further comprising a processing device for determining a wear rate between the stationary seal ring and the rotary seal ring from the particle size distribution.
  9.  前記粒度分布分析器は、液体中の摩耗粉の体積を測定する機能をさらに有し、前記処理装置は、前記摩耗粉の体積の累積値を算出し、さらに前記摩耗割合と前記摩耗粉の体積の累積値とから、前記静止シールリングの摩耗量と前記回転シールリングの摩耗量を決定することを特徴とする請求項8に記載の摩耗監視装置。 The particle size distribution analyzer further has a function of measuring the volume of the wear powder in the liquid, and the processing device calculates a cumulative value of the volume of the wear powder, and further calculates the wear ratio and the volume of the wear powder. The wear monitoring apparatus according to claim 8, wherein the wear amount of the stationary seal ring and the wear amount of the rotary seal ring are determined from the accumulated value of the above.
  10.  前記処理装置は、
      前記回転シールリングの摩耗量と、予め設定された許容摩耗量とを比較することにより、前記回転シールリングの残存寿命を推定し、
      前記静止シールリングの摩耗量と、予め設定された許容摩耗量とを比較することにより、前記静止シールリングの残存寿命を推定することを特徴とする請求項9に記載の摩耗監視装置。
    The processor is
    By comparing the wear amount of the rotary seal ring and a preset allowable wear amount, the remaining life of the rotary seal ring is estimated,
    The wear monitoring apparatus according to claim 9, wherein the remaining life of the stationary seal ring is estimated by comparing a wear amount of the stationary seal ring with a preset allowable wear amount.
PCT/JP2012/056639 2011-03-23 2012-03-15 Abrasion monitoring device for mechanical seal WO2012128164A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-063682 2011-03-23
JP2011063682A JP5718695B2 (en) 2011-03-23 2011-03-23 Mechanical seal wear monitoring device

Publications (1)

Publication Number Publication Date
WO2012128164A1 true WO2012128164A1 (en) 2012-09-27

Family

ID=46879315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056639 WO2012128164A1 (en) 2011-03-23 2012-03-15 Abrasion monitoring device for mechanical seal

Country Status (2)

Country Link
JP (1) JP5718695B2 (en)
WO (1) WO2012128164A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411761A (en) * 2013-04-18 2013-11-27 清华大学 Testing experiment table for studying lip seal life
CN105527081A (en) * 2015-12-24 2016-04-27 北京金风科创风电设备有限公司 Dynamic seal testing device
CN107063653A (en) * 2017-01-11 2017-08-18 江苏鑫信润科技有限公司 Brush seal test experience platform
JP2017533409A (en) * 2014-08-26 2017-11-09 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Sealing system for optical sensors in gas turbine engines
CN112504661A (en) * 2020-11-18 2021-03-16 南京航空航天大学 Device and method for measuring pressure distribution among multiple layers of sealing rings

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6167600B2 (en) * 2013-03-27 2017-07-26 セイコーエプソン株式会社 Recording device
DE102015105105B3 (en) * 2015-04-02 2016-07-21 Netzsch-Feinmahltechnik Gmbh A method of monitoring a barrier seal of a dynamic seal and a dynamic seal device
JP6701104B2 (en) * 2017-01-23 2020-05-27 日立Geニュークリア・エナジー株式会社 Mechanical seal condition monitoring system and mechanical seal condition monitoring method
DE102020132453B4 (en) 2020-12-07 2023-02-02 Eagleburgmann Germany Gmbh & Co. Kg Mechanical seal arrangement with detection of contamination

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599836A (en) * 1991-10-04 1993-04-23 Toshiba Corp Particle monitor
JPH05164251A (en) * 1991-12-06 1993-06-29 Hitachi Ltd Inspection method for mechanical seal
JPH05332916A (en) * 1992-05-29 1993-12-17 Toshiba Corp Cell for detector for monitoring of particle
JP2004240642A (en) * 2003-02-05 2004-08-26 Hitachi Ltd Maintenance support device for plant equipment
JP2007135369A (en) * 2005-11-14 2007-05-31 Nikkiso Co Ltd Bearing wear supervisory system of motor
JP2009042228A (en) * 2007-08-01 2009-02-26 Lockheed Martin Corp Optical flow cell used in high-temperature and/or high-pressure environment
JP2009138867A (en) * 2007-12-07 2009-06-25 Nippon Pillar Packing Co Ltd Mechanical seal with discharge mechanism
JP2012031896A (en) * 2010-07-29 2012-02-16 Nippon Pillar Packing Co Ltd Mechanical seal of nonmetal structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599836A (en) * 1991-10-04 1993-04-23 Toshiba Corp Particle monitor
JPH05164251A (en) * 1991-12-06 1993-06-29 Hitachi Ltd Inspection method for mechanical seal
JPH05332916A (en) * 1992-05-29 1993-12-17 Toshiba Corp Cell for detector for monitoring of particle
JP2004240642A (en) * 2003-02-05 2004-08-26 Hitachi Ltd Maintenance support device for plant equipment
JP2007135369A (en) * 2005-11-14 2007-05-31 Nikkiso Co Ltd Bearing wear supervisory system of motor
JP2009042228A (en) * 2007-08-01 2009-02-26 Lockheed Martin Corp Optical flow cell used in high-temperature and/or high-pressure environment
JP2009138867A (en) * 2007-12-07 2009-06-25 Nippon Pillar Packing Co Ltd Mechanical seal with discharge mechanism
JP2012031896A (en) * 2010-07-29 2012-02-16 Nippon Pillar Packing Co Ltd Mechanical seal of nonmetal structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103411761A (en) * 2013-04-18 2013-11-27 清华大学 Testing experiment table for studying lip seal life
JP2017533409A (en) * 2014-08-26 2017-11-09 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Sealing system for optical sensors in gas turbine engines
CN105527081A (en) * 2015-12-24 2016-04-27 北京金风科创风电设备有限公司 Dynamic seal testing device
CN107063653A (en) * 2017-01-11 2017-08-18 江苏鑫信润科技有限公司 Brush seal test experience platform
CN107063653B (en) * 2017-01-11 2023-10-10 江苏鑫信润科技股份有限公司 Brush seal detection experiment table
CN112504661A (en) * 2020-11-18 2021-03-16 南京航空航天大学 Device and method for measuring pressure distribution among multiple layers of sealing rings

Also Published As

Publication number Publication date
JP5718695B2 (en) 2015-05-13
JP2012197907A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP5718695B2 (en) Mechanical seal wear monitoring device
CN107560984B (en) A kind of oil liquid pollution on-line monitoring device and monitoring method of hydraulic system
US8564237B2 (en) Seal leakage and seal oil contamination detection in generator
KR20170040478A (en) Apparatus for life evaluation test of pump mechanical seal and its method
JP7099816B2 (en) Lubricating oil deterioration diagnostic method, lubricating oil monitoring system and method for rotating machinery
US9063075B2 (en) Method and device for determining the state of degradation of a lubricant oil
CA2831883C (en) System and method for monitoring pump lining wear
KR101285479B1 (en) Steam generator tube on-line leak monitoring and methodology by using ion chromatography in pwr
US11852294B2 (en) Diagnosis system of lubricating oil and diagnosis method of lubricating oil
CN109964119B (en) Process for calibrating a sensor and automatic method for online monitoring of liquid changes
US20180231454A1 (en) Particle-measuring apparatus and method of operating same
KR20070117832A (en) Method for testing condition of lubricating oil
CN104597115A (en) Vacuum acquisition device for EUV irradiation material test system and corresponding test method
KR101883820B1 (en) Seal leakage and seal oil contamination detection in generator
JP2011168325A (en) Dry gas holder and method for detecting abnormal state of sealing device
CN110375925B (en) Nuclear power station oil filter and method for detecting oil leakage
KR101911918B1 (en) A system for detecting defect and managing history information of nuclear fuel
JP2020084899A (en) Diagnosis system of lubricant, wind power generator and module for property measurement of lubricant
CN116097390A (en) Monitoring of an X-ray tube
JP3168161U (en) Fluid contamination inspection system
JP4885258B2 (en) Sealing capacity determination method and apparatus
JP7104713B2 (en) Operation management method for mechanical equipment including sliding parts
CN117092305A (en) Sewage information acquisition device based on big data
CN204758456U (en) A vacuum pumping system for utmost point ultraviolet radiation material test equipment
CN216691581U (en) Low-water-consumption desulfurization pump system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12761277

Country of ref document: EP

Kind code of ref document: A1