JPH05332710A - Method and device of measuring flatness of thick steel plate - Google Patents

Method and device of measuring flatness of thick steel plate

Info

Publication number
JPH05332710A
JPH05332710A JP16166692A JP16166692A JPH05332710A JP H05332710 A JPH05332710 A JP H05332710A JP 16166692 A JP16166692 A JP 16166692A JP 16166692 A JP16166692 A JP 16166692A JP H05332710 A JPH05332710 A JP H05332710A
Authority
JP
Japan
Prior art keywords
steel plate
distance
thick steel
pass filter
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16166692A
Other languages
Japanese (ja)
Inventor
Noboru Ohira
昇 大平
Kozo Maeda
孝三 前田
Mamoru Inaba
護 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP16166692A priority Critical patent/JPH05332710A/en
Publication of JPH05332710A publication Critical patent/JPH05332710A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To accurately measure the flatness of a thick steel plate by varying the cutoff frequency of a low-pass filter inserted into a distance signal passage for a distance meter in proportion to the carry speed of the thick steel plate. CONSTITUTION:For pulses generated by a pulse generator 4 directly connected to a carrying roll 2, a pulse rate is found by repeatingly calculating due number of short-time pulses and dividing it by a time. A carry speed computer 9 finds the carry speed from the pulse rate and determines the set voltage of a voltage synchronized low-pass filter 11 so as to induce a cutoff frequency proportional to the speed. In this way, the value of time cutoff frequency of the low-pass filter 11 is proportional to the carry speed, so that the cutoff frequency of the low-pass filter in a signal passage for a non-contact distance meter 3 can be lowered as much as possible, a distortional waveform from which the vibration components of a thick steel plate is only removed can be accurately measured and a distortion computed value can be thus accurately found.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は厚鋼板平坦度測定方法お
よびその装置に係り、厚鋼板製造における走間検査等の
搬送速度が変化する工程で使用する厚鋼板平坦度測定を
常に的確に行わせてようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the flatness of a thick steel plate, and always accurately measures the flatness of a thick steel plate used in a process such as a running inspection in a thick steel plate manufacturing process in which the transport speed changes. I will try to let you do it.

【0002】[0002]

【従来の技術】厚鋼板の製造工程では厚鋼板の上下面か
ら目視検査を行うために比較的低速の30〜45mpm で
搬送され、その直前まで或いは直後からは能率上比較的
高速の90mpm 程度で搬送される。一方このような方式
の場合における平坦度計はパスラインより下面に設置す
る方式のため下面の目視検査の支障とならないように或
る程度走間検査室から離して前方或いは後方に設置する
必要がある。従って走間検査室から離して前方に設置す
る場合、該平坦度計である非接触距離計の設置してある
位置に厚鋼板が進入してくるときは搬送速度は約90mp
m であり、直後から減速を開始して厚鋼板の先端部若干
以降の大部分は搬送速度30〜45mpm である。
2. Description of the Related Art In the manufacturing process of thick steel plates, they are conveyed at a relatively low speed of 30 to 45 mpm for visual inspection from the upper and lower surfaces of the thick steel plates, and immediately before or immediately after that, at a relatively high speed of about 90 mpm, they are conveyed. Be transported. On the other hand, in the case of such a method, since the flatness meter is installed on the lower surface than the pass line, it is necessary to install the flatness meter in front of or behind the running inspection room to some extent so as not to interfere with the visual inspection of the lower surface. is there. Therefore, when the steel plate is installed in front of the running distance inspection room, the transport speed is about 90 mp when the thick steel plate enters the position where the non-contact distance meter, which is the flatness meter, is installed.
m, and the deceleration starts immediately after that, and most of the thick steel plate slightly beyond the leading end has a conveying speed of 30 to 45 mpm.

【0003】本発明者等の種々検討した結果によると、
通常の歪み状態の厚鋼板では搬送中の振動周波数は7Hz
以上で搬送速度に依存しないことを確認した。また鋼板
歪みそのものの周波数は、最高搬送速度の90mpm でも
6Hz以下であることから、本出願人側の先願技術である
特願平02−162719号では振動成分はカットオフ周波数7
Hzの急峻なローパスフィルタで除去している。
According to the results of various studies by the present inventors,
The vibration frequency during transportation is 7 Hz for normal thick steel plates
From the above, it was confirmed that it did not depend on the transport speed. Further, since the frequency of the steel sheet distortion itself is 6 Hz or less even at the maximum conveying speed of 90 mpm, in the Japanese Patent Application No. 02-162719, which is the prior application of the applicant, the vibration component has a cutoff frequency of 7
It is removed by a steep low-pass filter of Hz.

【0004】[0004]

【発明が解決しようとする課題】上記したような従来技
術によるときはそれなりに好ましいものであるとして
も、なお種々の課題を有している。即ち搬送される鋼板
において、後述する図3のように山のピッチが大きい場
合、あるいは図5に示すような反り部分が長い場合にお
いては搬送中の振動周波数は7Hzより低くカットオフ周
波数7Hzのローパスフィルタでは除去できずに、観測さ
れる歪み波形は図4(a)、図6(a)のように本来の
歪み波形に振動波形が重畳された波形となる。又斯かる
平坦度計では図7に示すように種々の歪み演算を行って
いるが、図7の(c)の急峻度(e)の2m歪み、
(f)の1m歪みの演算に特に悪影響がある。
The above-mentioned conventional techniques still have various problems even if they are preferable as such. That is, in the steel sheet to be conveyed, when the pitch of the crests is large as shown in FIG. 3 described later or when the warped portion is long as shown in FIG. 5, the vibration frequency during conveyance is lower than 7 Hz and the cutoff frequency is 7 Hz. The distortion waveform that cannot be removed by the filter is an observed distortion waveform in which the vibration waveform is superimposed on the original distortion waveform as shown in FIGS. 4A and 6A. Further, in such a flatness meter, various distortion calculations are performed as shown in FIG. 7, but 2 m distortion of steepness (e) in FIG. 7C,
There is a particular adverse effect on the calculation of the 1 m distortion in (f).

【0005】[0005]

【課題を解決するための手段】本発明は上記したような
従来のものにおける技術的課題を解決することについて
検討を重ねた結果、前記のような厚鋼板平坦度計におい
て、その距離信号経路に挿入するローパスフィルターに
おけるカットオフ周波数を適切に制御することにより有
効な解決を得しめたものであって、以下の如くである。
As a result of repeated studies to solve the above-mentioned technical problems of the present invention, in the thick steel plate flatness meter as described above, the distance signal path is An effective solution has been obtained by appropriately controlling the cutoff frequency in the low-pass filter to be inserted, and is as follows.

【0006】(1)搬送テーブルの2本のロール間の下
面に複数の非接触距離計を垂直に設置し、厚鋼板搬送テ
ーブル上で移動させながら該厚鋼板の全面にわたって前
記距離計により厚鋼板の裏までの距離を長手方向一定距
離ピッチ毎に測定し、予め求めておいた該距離計とパス
ラン間の距離を差し引くことによって得た、パスライン
と厚鋼板裏面間の間隔変化、すなわち歪み波形を用い歪
み演算を行う厚鋼板平坦度計において、前記非接触距離
計の距離信号経路に挿入するパスフィルタにおけるカッ
トオフ周波数を厚鋼板の搬送速度に比例して可変するこ
とを特徴とする厚鋼板平坦度測定方法。
(1) A plurality of non-contact distance meters are vertically installed on the lower surface between two rolls of a transport table, and the steel sheet is moved over the transport table of the thick steel sheet by the distance gauge over the entire surface of the thick steel sheet. The distance change between the pass line and the back surface of the thick steel plate, that is, the strain waveform, obtained by measuring the distance to the back of the In a steel plate flatness meter for performing distortion calculation using, a steel plate characterized by varying a cutoff frequency in a pass filter inserted in a distance signal path of the non-contact distance meter in proportion to a transport speed of the steel plate. Flatness measurement method.

【0007】(2)搬送テーブルの2本のロール間の下
面に複数の非接触距離計を垂直に設置し、厚鋼板を搬送
テーブル上で移動させながら該厚鋼板の全面にわたって
前記距離計により厚鋼板の裏面までの距離を長手方向一
定距離ピッチ毎に測定し、予め求めておいた該距離計と
パスライン間の距離を差し引くことによって得た、パラ
フインと厚鋼板裏面間の間隔変化、すなわち歪み波形を
用い歪み演算を行う厚鋼板平坦度計において、前記非接
触距離計の距離信号経路に挿入したローパスフィルタに
対し厚鋼板の搬送速度に比例して可変するカットオフ周
波数を導入し、厚鋼板の振動による歪み波形への悪影響
を除去することを特徴とする厚鋼板平坦度測定装置。
(2) A plurality of non-contact distance meters are installed vertically on the lower surface between the two rolls of the transport table, and while the thick steel plate is being moved on the transport table, the thickness of the non-contact distance meter is measured by the distance meter over the entire surface of the thick steel plate. The distance to the back surface of the steel sheet was measured at each constant distance pitch in the longitudinal direction, and the distance change between the paraffin and the thick steel sheet back surface obtained by subtracting the distance between the distance meter and the pass line, which was obtained in advance, that is, strain In a steel plate flatness meter that performs distortion calculation using a waveform, a cut-off frequency that is variable in proportion to the transport speed of the steel plate is introduced into the low-pass filter inserted in the distance signal path of the non-contact distance meter. An apparatus for measuring the flatness of a thick steel plate, which eliminates an adverse effect on the distortion waveform due to the vibration of the.

【0008】[0008]

【作用】厚鋼板の歪みのうちピッチの小さな波状のもの
を小波と呼んでおり、小波のある厚鋼板は基本的に検査
で不可とされるがその小波のピッチは最小で250−3
00mmであることがわかっている。従って厚鋼板の搬送
速度を搬送ロールに直結したパルス発生器によって検出
演算し通過すべき厚鋼板の歪みの周波数の最大値を25
0mmピッチの小波に合わせて求め、各非接触距離計の信
号経路に挿入するローパスフィルタのカットオフ周波数
を上記周波数に一致させながら自動的に可変とすること
によって、厚鋼板の歪みを漏れなく採取しながら、不要
な搬送に伴う振動成分を削除することを可能とする。
[Function] Among the distortions of the thick steel plate, the wavy ones with a small pitch are called small waves. Thick steel plates with small waves are basically impossible to inspect, but the pitch of the small waves is 250-3
It is known to be 00 mm. Therefore, the conveying speed of the thick steel plate is detected and calculated by the pulse generator directly connected to the conveying roll, and the maximum value of the distortion frequency of the thick steel plate to be passed is 25
Strain of thick steel plate can be collected without omission by automatically adjusting the cutoff frequency of the low-pass filter inserted in the signal path of each non-contact distance meter to match the above frequency, which is obtained in accordance with the 0 mm pitch small wave. However, it is possible to eliminate the vibration component caused by unnecessary conveyance.

【0009】これを更に具体的に説明すると、上記した
ような平坦度計を構成する非接触距離計の信号経路に周
波数可変方式のローパスフィルタを挿入したときの作用
を図4、図6、図7に示すが、搬送される厚鋼板が図3
のように山のピッチが大きい場合、図5のように反りの
部分が長い場合には搬送中の振動周波数は7Hzより低く
カットオフ周波数7Hzのローパスフィルターでは除去で
きずに、観測される歪み波形は図4(a)、図6(a)
のように本来の歪み波形に振動波形が重畳された波形と
なる。これは高速の搬送速度90mpm 時にピッチ250
mmの小波成分を採取可能とし、カットオフ周波数固定の
ローパスフィルタを使用する以上避けられない問題点で
あった。
To explain this more specifically, the operation when a low-pass filter of the frequency variable system is inserted in the signal path of the non-contact distance meter which constitutes the flatness meter as described above will be described with reference to FIGS. 7, the thick steel plate to be conveyed is shown in FIG.
As shown in Fig. 5, when the warp is long, the vibration frequency during conveyance is lower than 7 Hz and cannot be removed by a low-pass filter with a cut-off frequency of 7 Hz. Is shown in FIG. 4 (a) and FIG. 6 (a).
As described above, a vibration waveform is superimposed on the original distortion waveform. This is pitch 250 at high speed 90 mpm
This is an unavoidable problem as long as a low-pass filter with a fixed cutoff frequency can be used because it is possible to collect small wave components of mm.

【0010】然し、図1のように搬送ロールに直結した
PLGによって発生するパルスのパルスレートを演算
し、パルスレートから搬送速度を求め、搬送速度に比例
したカットオフ周波数になるように電圧同調ローパスフ
ィルタの設定電圧を決定する。これによって図7に示す
ようにローパスフィルタのカットオフ周波数は搬送速度
に比例した値となり、採取可能な鋼板の歪みピッチを2
50mm以上としながら可能なかぎり非接触距離計の信号
経路のローパスフィルタのカットオフ周波数を下げるこ
とができ、先端部分のみ高速で他の大部分は30〜45
mpm の低速度で搬送される走間検査工程では、図4
(b)、図6(b)のように効果的に鋼板の振動成分の
み除去し歪み波形が正確に測定され、その結果歪み演算
値が正確に求められる。
However, as shown in FIG. 1, the pulse rate of the pulse generated by the PLG directly connected to the transport roll is calculated, the transport speed is obtained from the pulse rate, and the voltage tuning low-pass is set so that the cutoff frequency is proportional to the transport speed. Determine the set voltage of the filter. As a result, as shown in FIG. 7, the cutoff frequency of the low-pass filter becomes a value proportional to the transport speed, and the strain pitch of the steel sheet that can be sampled is 2
The cutoff frequency of the low-pass filter in the signal path of the non-contact distance meter can be lowered as much as possible while keeping the distance to 50 mm or more.
Fig. 4 shows the running inspection process carried at a low speed of mpm.
As shown in (b) and (b) of FIG. 6, only the vibration component of the steel sheet is effectively removed and the strain waveform is accurately measured. As a result, the strain calculation value is accurately obtained.

【0011】[0011]

【実施例】上記したような本発明によるものの具体的な
実施例について説明すると、図1に示すように搬送ロー
ル2に直結したパルスゼネレータ4によって発生するパ
ルスのパルスレートを演算する。ロール半径をr(m
m)、ロール周長を2×π×r(mm)、パルスゼネレー
タの1周パルス数をN(ppr)、搬送速度をV(mpm )、
パルスレートをPR(p/sec)とすると、搬送速度V
(mpm )のときのパルスレートPRは PR=V×1000/60÷(2×π×r)×N p/
sec となり、搬送速度Vに比例する。実際にはパルスレート
演算器8では短時間(例えば0.5sec 間)のパルス数を
繰り返し計算してそれを時間で割ることによってパルス
レートを求めることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Explaining a specific embodiment of the present invention as described above, the pulse rate of the pulse generated by the pulse generator 4 directly connected to the transport roll 2 as shown in FIG. 1 is calculated. Roll radius is r (m
m), the roll circumference is 2 x π x r (mm), the number of pulses per revolution of the pulse generator is N (ppr), the transport speed is V (mpm),
If the pulse rate is PR (p / sec), the transport speed V
The pulse rate PR at (mpm) is PR = V × 1000/60 ÷ (2 × π × r) × N p /
sec, which is proportional to the transport speed V. In practice, the pulse rate calculator 8 can calculate the pulse rate by repeatedly calculating the number of pulses in a short time (for example, 0.5 sec) and dividing the number by the time.

【0012】搬送速度演算器9では前記パルスレートか
ら下式による搬送速度Vを求める。 V=60×2×π×r×PR/(1000×N) mpm また、この搬送速度Vに比例したカットオフ周波数にな
るように電圧同調ローパスフィルタ11の設定電圧を決
定する。設定すべきカットオフ周波数fcは fc=V×1000/(60×250) Hz である。電圧同調ローパスフィルタ11のカットオフ周
波数fcが設定電圧に比例する場合に設定電圧をSVと
するとき fc=kl×SV Hz となる。ここでklは比例定数である。設定電圧演算器
10では設定電圧SVは SV=V/(15×kl) のように求める。
The transport speed calculator 9 obtains the transport speed V from the above-mentioned pulse rate by the following equation. V = 60 × 2 × π × r × PR / (1000 × N) mpm Further, the set voltage of the voltage tuning low-pass filter 11 is determined so that the cutoff frequency is proportional to the carrier speed V. The cutoff frequency fc to be set is fc = V × 1000 / (60 × 250) Hz. When the set voltage is SV when the cutoff frequency fc of the voltage tuning low-pass filter 11 is proportional to the set voltage, fc = kl × SV Hz. Here, kl is a proportional constant. In the set voltage calculator 10, the set voltage SV is obtained as SV = V / (15 × kl).

【0013】これによって次の表1に示すようにローパ
スフィルタのカットオフ周波数fcは搬送速度に比例し
た値となり、採取可能な厚鋼板1の歪みピッチを250
mm以上としながら可能なかぎり非接触距離計3の信号経
路のローパスフィルタのカットオフ周波数fcを下げる
ことができ、先端部分のみ高速で他の大部分は30〜4
5mpm の低速度で搬送される走間検査工程では、図4
(b)、図6(b)のように効果的に厚鋼板1の振動成
分24また27のみ除去し歪み波形が正確に測定され、
その結果歪み演算値が正確に求められる。
As a result, as shown in Table 1 below, the cut-off frequency fc of the low-pass filter becomes a value proportional to the conveying speed, and the strain pitch of the thick steel plate 1 that can be sampled is set to 250.
The cut-off frequency fc of the low-pass filter in the signal path of the non-contact distance meter 3 can be lowered as much as possible while keeping the value at least mm, and only the tip portion is high speed and most of the rest is 30 to 4
Fig. 4 shows the running inspection process carried at a low speed of 5 mpm.
(B), as shown in FIG. 6 (b), only the vibration component 24 or 27 of the thick steel plate 1 is effectively removed, and the strain waveform is accurately measured.
As a result, the distortion calculation value is accurately obtained.

【0014】[0014]

【表1】 [Table 1]

【0015】また、本願発明を搬送速度の早いあるいは
遅い熱延鋼板に対しても適用できること当然であって、
以下の表2の如くにローパスフィルタのカットオフ周波
数fcは搬送速度に比例した値となる。なお、ここで搬
送速度は15〜120mpm 、問題となる最少歪みピッチ
は700mmとして、鋼板振動除去用ローパスフィルタの
カットオフ周波数fcは、 fc=V×1000/60×700 Hz = 0.024
×V Hz としている。
It goes without saying that the present invention can be applied to hot-rolled steel sheets having a high or low conveying speed.
As shown in Table 2 below, the cutoff frequency fc of the low pass filter has a value proportional to the transport speed. Here, the transport speed is 15 to 120 mpm, the minimum strain pitch in question is 700 mm, and the cutoff frequency fc of the steel plate vibration elimination low-pass filter is fc = V × 1000/60 × 700 Hz = 0.024.
× V Hz.

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【発明の効果】以上説明したような、本発明によれば、
非接触距離計の信号経路に挿入するローパスフィルタを
カットオフ周波数可変方式とし、そのカットオフ周波数
を搬送速度に比例する値に設定するように構成したの
で、効果的に厚鋼板の振動成分のみ除去し歪み波形が正
確に測定され、その結果歪み演算値が正確にもとめられ
らるものであって、工業的にその効果の大きい発明であ
る。
According to the present invention as described above,
The low-pass filter inserted in the signal path of the non-contact distance meter has a variable cut-off frequency, and the cut-off frequency is set to a value proportional to the carrier speed, so only the vibration component of thick steel plate is effectively removed. The distortion waveform is accurately measured, and as a result, the distortion calculation value can be accurately determined, which is an invention having a great effect industrially.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例についての構成説明図であ
る。
FIG. 1 is a configuration explanatory diagram of an embodiment of the present invention.

【図2】従来技術についての構成説明図である。FIG. 2 is an explanatory diagram of a configuration of a conventional technique.

【図3】本発明について搬送ロールと厚鋼板の山ピッチ
の関係を示した説明図である。
FIG. 3 is an explanatory view showing a relationship between a carrier roll and a mountain pitch of thick steel plates in the present invention.

【図4】パスラインと歪み波形の関係についての説明図
である。
FIG. 4 is an explanatory diagram of a relationship between a pass line and a distortion waveform.

【図5】搬送ロールパスラインと厚鋼板ソリ部高さの関
係を示した説明図である。
FIG. 5 is an explanatory diagram showing a relationship between a transport roll pass line and a height of a thick steel plate warp portion.

【図6】パスラインと歪み波形についてのソリ部に関す
る説明図である。
FIG. 6 is an explanatory diagram of a warp portion for a pass line and a distortion waveform.

【図7】平坦度計における各種歪み演算についての説明
図である。
FIG. 7 is an explanatory diagram of various distortion calculations in the flatness meter.

【符号の説明】[Explanation of symbols]

1 厚鋼板 2 搬送ロール 3 非接触距離計 4 パルスゼネレータ 5 コロ 6 通過検出器 7 パルスカウンター 8 パルススレート演算器 9 搬送速度演算器 10 設定電圧演算器 11 電圧同調ローパスフィルター 12 絶縁プリアンプ 13 第1演算器 14 第2演算器 15 コントローラ 16 ローパスフィルター 17 演算部 18 プリンター 19 端末 20 端末 21 出力部 22 パスライン 23 山のピッチ 24 歪み波形 25 歪み波形 26 ソリ部の長さ 27 歪み波形 28 歪み波形 1 Thick Steel Plate 2 Transport Roll 3 Non-contact Distance Meter 4 Pulse Generator 5 Roller 6 Passage Detector 7 Pulse Counter 8 Pulse Slate Calculator 9 Transport Speed Calculator 10 Set Voltage Calculator 11 Voltage Tuning Low Pass Filter 12 Insulation Pre-Amplifier 13 First Calculation Device 14 Second calculator 15 Controller 16 Low-pass filter 17 Calculation unit 18 Printer 19 Terminal 20 Terminal 21 Output unit 22 Path line 23 Pitch of mountain 24 Distorted waveform 25 Distorted waveform 26 Length of sled part 27 Distorted waveform 28 Distorted waveform

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 搬送テーブルの2本のロール間の下面に
複数の非接触距離計を垂直に設置し、厚鋼板を搬送テー
ブル上で移動させながら該厚鋼板の全面にわたって前記
距離計により厚鋼板の裏面までの距離を長手方向一定距
離ピッチ毎に測定し、予め求めておいた該距離計とパス
ライン間の距離を差し引くことによって得た、パラフイ
ンと厚鋼板裏面間の間隔変化、すなわち歪み波形を用い
歪み演算を行う厚鋼板平坦度計において、 前記非接触距離計の距離信号経路に挿入するローパスフ
ィルタにおけるカットオフ周波数を厚鋼板の搬送速度に
比例して可変とすることを特徴とする厚鋼板平坦度測定
方法。
1. A plurality of non-contact distance meters are vertically installed on a lower surface between two rolls of a transport table, and the steel sheet is moved by the distance meter over the entire surface of the steel sheet while moving the steel sheet on the transport table. The distance to the back surface of the paraffin and the back surface of the thick steel plate obtained by subtracting the distance between the distance meter and the pass line, which was obtained in advance, by measuring the distance in the longitudinal direction at constant pitches, that is, the distortion waveform In a steel plate flatness meter for performing distortion calculation using, the cutoff frequency in the low-pass filter inserted in the distance signal path of the non-contact distance meter is variable in proportion to the transport speed of the steel plate. Steel plate flatness measurement method.
【請求項2】 搬送テーブルの2本のロール間の下面に
複数の非接触距離計を垂直に設置し、厚鋼板を搬送テー
ブル上で移動させながら該厚鋼板の全面にわたって前記
距離計により厚鋼板の裏面までの距離を長手方向一定距
離ピッチ毎に測定し、予め求めておいた該距離計とパス
ライン間の距離を差し引くことによって得た、パラフイ
ンと厚鋼板裏面間の間隔変化、すなわち歪み波形を用い
歪み演算を行う厚鋼板平坦度計において、 前記非接触距離計の距離信号経路に挿入したローパスフ
ィルタに対し厚鋼板の搬送速度に比例して可変するカッ
トオフ周波数を導入し、厚鋼板の振動による歪み波形へ
の悪影響を除去することを特徴とする厚鋼板平坦度測定
装置。
2. A plurality of non-contact distance meters are vertically installed on a lower surface between two rolls of a transport table, and the steel sheet is moved over the transport table while the steel sheet is moved over the entire surface of the steel sheet by the distance gauge. The distance to the back surface of the paraffin and the thick steel plate back surface obtained by subtracting the distance between the distance meter and the pass line, which was obtained in advance, by measuring the distance in the longitudinal direction at constant pitches, that is, the strain waveform In a steel plate flatness meter that performs distortion calculation using, a cutoff frequency that is variable in proportion to the transport speed of the steel plate is introduced to the low-pass filter inserted in the distance signal path of the non-contact distance meter, An apparatus for measuring the flatness of a thick steel plate, which is characterized by eliminating the adverse effect of vibration on a distorted waveform.
JP16166692A 1992-05-29 1992-05-29 Method and device of measuring flatness of thick steel plate Pending JPH05332710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16166692A JPH05332710A (en) 1992-05-29 1992-05-29 Method and device of measuring flatness of thick steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16166692A JPH05332710A (en) 1992-05-29 1992-05-29 Method and device of measuring flatness of thick steel plate

Publications (1)

Publication Number Publication Date
JPH05332710A true JPH05332710A (en) 1993-12-14

Family

ID=15739530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16166692A Pending JPH05332710A (en) 1992-05-29 1992-05-29 Method and device of measuring flatness of thick steel plate

Country Status (1)

Country Link
JP (1) JPH05332710A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287930A (en) * 2008-05-27 2009-12-10 Ebara Corp Substrate observing device and substrate polishing device
JP2014029291A (en) * 2012-07-31 2014-02-13 Nisshin Steel Co Ltd Flatness measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287930A (en) * 2008-05-27 2009-12-10 Ebara Corp Substrate observing device and substrate polishing device
JP2014029291A (en) * 2012-07-31 2014-02-13 Nisshin Steel Co Ltd Flatness measuring method

Similar Documents

Publication Publication Date Title
ATE317118T1 (en) METHOD AND DEVICE FOR DETECTING ERRORS IN TAPE
US5678447A (en) On-line web planarity measurement apparatus and method
CN104903719B (en) Defective locations modification method
JPH05332710A (en) Method and device of measuring flatness of thick steel plate
JPS61178608A (en) Flatness detector
JP2536668B2 (en) Steel plate flatness measuring device
ATE260151T1 (en) METHOD AND DEVICE FOR MEASURING THE FLATNESS OF BELTS
JPH06123606A (en) Detection of overlap part of striplike materials
JP4018932B2 (en) Method and apparatus for measuring shape of steel sheet during and immediately after rolling
JP3286549B2 (en) Surface flaw detection method for long steel materials
JPS638503A (en) Shape measuring method for cold-rolled steel sheet
JP4617563B2 (en) Ultrasonic flaw detector and flaw detection method
JPH08159728A (en) Shape measuring instrument
JPH10113720A (en) Pretreatment descaling method for ultrasonic flaw detecting of rail and device therefor
JP2002365041A (en) Measuring method for bend of longer material
JP2988645B2 (en) Measurement method of sheet material distortion shape
JP2605158B2 (en) Flatness measuring device
JPH0518907A (en) Method for surface-flaw inspection of steel strip
JPH09210664A (en) Method and apparatus for measuring selvage wave of coil
JP2650316B2 (en) Strip shape detector
JP2517687B2 (en) Conveyor device for online measurement of cold rolled steel sheet dimensions
JPH051912A (en) Flatness measuring-device
JP2007108036A (en) Extension coefficient measurement device for steel plate and extension coefficient measurement method
JPS6073309A (en) Measurement of surface roughness pattern of running sheet material
JPH07122601B2 (en) Rolling mill plate shape detection value correction method