JPH05332315A - Pressure oil supply device - Google Patents

Pressure oil supply device

Info

Publication number
JPH05332315A
JPH05332315A JP16193192A JP16193192A JPH05332315A JP H05332315 A JPH05332315 A JP H05332315A JP 16193192 A JP16193192 A JP 16193192A JP 16193192 A JP16193192 A JP 16193192A JP H05332315 A JPH05332315 A JP H05332315A
Authority
JP
Japan
Prior art keywords
pressure
port
valve
pump
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16193192A
Other languages
Japanese (ja)
Other versions
JP3116564B2 (en
Inventor
Tadao Karakama
忠雄 唐鎌
Mitsumasa Akashi
光正 明石
Teruo Akiyama
照夫 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP04161931A priority Critical patent/JP3116564B2/en
Publication of JPH05332315A publication Critical patent/JPH05332315A/en
Application granted granted Critical
Publication of JP3116564B2 publication Critical patent/JP3116564B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To prevent the occurrence of a large deceleration shock at the time of turning action during running for simplifying the structure of a vehicle. CONSTITUTION:A valve block 30 is provided with a directional control valve 22 with a main spool 49, a check valve part 23 with a spool 60 and a pressure reducing valve part 24 with a spool 64. The delivery path of a hydraulic pump is severally connected to the first ports 39 of right and left valve blocks for supplying pressure oil to right and left running hydraulic motors and the first port 39 and the second port 42 of a valve block for supplying the pressure oil to a turning hydraulic motor, and the second ports 42 of the right and left valve blocks are made to mutually communicate through the first passage, and a pump port 44 is made to communicate through the second passage, which is made to communicate with the pump port 44 of the valve block through the third passage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は1つ又は複数の油圧ポン
プの吐出圧油を複数のアクチュエータ、特に左右走行用
油圧モータと旋回用油圧モータに供給する圧油供給装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure oil supply device for supplying pressure oil discharged from one or a plurality of hydraulic pumps to a plurality of actuators, particularly to a left and right traveling hydraulic motor and a turning hydraulic motor.

【0002】[0002]

【従来の技術】特開昭60−11706号公報に示す圧
油供給装置が知られている。すなわち、図1に示すよう
に油圧ポンプ1の吐出導管2に複数の圧力補償弁3,1
3を並列に接続し、各圧力補償弁3,13の出口導管
4,14に方向制御弁5,15をそれぞれ設けこの各方
向制御弁5,15の出力側をアクチュエータ6,16に
それぞれ接続し、前記圧力補償弁3,13をポンプ吐出
圧と方向制御弁出口圧で開き方向に押され、方向制御弁
入口圧と最も高い負荷圧で閉じ方向に押される構造とし
た圧油供給装置である。この圧油供給装置であれば、複
数の方向制御弁3,13を同時操作した時に各アクチュ
エータにポンプ吐出圧油を所定の分配比で供給できる。
2. Description of the Related Art A pressure oil supply device disclosed in Japanese Patent Laid-Open No. 60-11706 is known. That is, as shown in FIG. 1, a plurality of pressure compensating valves 3, 1 are provided in the discharge conduit 2 of the hydraulic pump 1.
3 are connected in parallel, and directional control valves 5 and 15 are provided on the outlet conduits 4 and 14 of the pressure compensating valves 3 and 13, respectively, and the output sides of the directional control valves 5 and 15 are connected to actuators 6 and 16, respectively. A pressure oil supply device having a structure in which the pressure compensating valves 3 and 13 are pushed in the opening direction by the pump discharge pressure and the directional control valve outlet pressure, and pushed in the closing direction by the directional control valve inlet pressure and the highest load pressure. .. With this pressure oil supply device, the pump discharge pressure oil can be supplied to each actuator at a predetermined distribution ratio when a plurality of directional control valves 3 and 13 are simultaneously operated.

【0003】かかる圧油供給装置であるとアクチュエー
タの負荷圧を比較して高い方の負荷圧を圧力補償弁に供
給するためにシャトル弁7が必ず必要であり、しかもこ
のシャトル弁7はアクチュエータの数より1つ少ない数
だけ必要であり、それだけコストが高くなる。また、前
述の図1に示す圧油供給装置であると2つのアクチュエ
ータ6,12をともに作動させ、それらの負荷圧のう
ち、アクチュエータ6側の負荷圧が大きいとする。この
ときは、導管8内の圧力が最高負荷圧としてシャトル弁
7によって導管9に導かれる。次に、負荷圧が変動し
て、アクチュエータ16側の負荷圧の方がアクチュエー
タ6側の負荷圧より大きくなったとする。その際、すな
わちシャトル弁7が切換わる際、シャトル弁7内の吹き
ぬけにより導管18内の圧力がぬけ、他方の導管8内の
圧力が押しこめられる。そのため、シャトル弁7の切換
え時、過渡的にアクチュエータ6は自然降下しアクチュ
エータ6は加速される。そこで、本出願人は先に前述の
課題を解決できるようにした圧油供給装置を出願した。
In such a pressure oil supply device, the shuttle valve 7 is indispensable for comparing the load pressure of the actuator and supplying the higher load pressure to the pressure compensating valve. Only one less than the number is needed, and the cost is higher. Further, in the above-described pressure oil supply device shown in FIG. 1, it is assumed that the two actuators 6 and 12 are both actuated, and the load pressure on the actuator 6 side is large among those load pressures. At this time, the pressure in the conduit 8 is guided to the conduit 9 by the shuttle valve 7 as the maximum load pressure. Next, it is assumed that the load pressure fluctuates and the load pressure on the actuator 16 side becomes larger than the load pressure on the actuator 6 side. At that time, that is, when the shuttle valve 7 is switched, the pressure in the conduit 18 is eliminated by the blow-through in the shuttle valve 7, and the pressure in the other conduit 8 is pushed in. Therefore, when the shuttle valve 7 is switched, the actuator 6 transiently descends naturally and the actuator 6 is accelerated. Therefore, the present applicant previously applied for a pressure oil supply device capable of solving the above-mentioned problems.

【0004】かかる圧油供給装置は図2に示すように、
油圧ポンプ20の吐出路21に複数の方向制御弁22を
設け、この各方向制御弁22の入口側にチェック弁部2
3と減圧弁部24より成る圧力補償弁25をそれぞれ設
けたものであり、この方向制御弁22と圧力補償弁25
は図3に示すように構成してある。
As shown in FIG. 2, such a pressure oil supply device is
A plurality of directional control valves 22 are provided in the discharge passage 21 of the hydraulic pump 20, and the check valve unit 2 is provided on the inlet side of each directional control valve 22.
3 and a pressure reducing valve portion 24 are provided respectively, and the directional control valve 22 and the pressure compensating valve 25 are provided.
Is configured as shown in FIG.

【0005】すなわち、図3に示すように、弁ブロック
30は略直方体形状となり、この弁ブロック30の上部
寄りにスプール孔31が左右側面32,33に開口して
形成され、このスプール31に開口した第1・第2アク
チュエータポート34,35が上面36に開口して形成
してあり、弁ブロック30の下部寄りには左側面32に
開口したチェック弁用孔37と右側面33に開口した減
圧弁用孔38が同心状に形成され、前記チェック弁用孔
37に開口した第1ポート39が前後面に開口して形成
され、前記減圧弁用孔38に開口した第2、第3ポート
42,43が前後面に開口して形成してあり、複数の弁
ブロック30の前後面を突き合せて連結すると各第1・
第2・第3ポート39,42,43が連通するようにし
てある。
That is, as shown in FIG. 3, the valve block 30 has a substantially rectangular parallelepiped shape, and a spool hole 31 is formed in the left and right side surfaces 32 and 33 near the upper portion of the valve block 30, and the spool 31 is opened. The first and second actuator ports 34 and 35 are formed to open on the upper surface 36, and a check valve hole 37 opened to the left side surface 32 and a depressurization opening to the right side surface 33 are formed near the lower part of the valve block 30. The valve hole 38 is formed concentrically, the first port 39 opened to the check valve hole 37 is opened to the front and rear surfaces, and the second and third ports 42 opened to the pressure reducing valve hole 38. , 43 are formed with openings in the front and rear surfaces, and when the front and rear surfaces of the plurality of valve blocks 30 are butted and connected to each other,
The second and third ports 39, 42, 43 communicate with each other.

【0006】前記弁ブロック30にはスプール孔31に
開口したポンプポート44、第1・第2負荷圧検出ポー
ト45,46、前記第1・第2アクチュエータポート3
4,35、第1、第2タンクポート47,48が形成さ
れ、そのスプール孔31に嵌挿した主スプール49には
第1・第2小径部50,51と連通用溝52が形成して
あり、主スプール49には第1・第2負荷圧検出ポート
45,46を常時連通する第1油路53及び第2負荷圧
検出ポート46と第2タンクポート48を連通・遮断す
る第2油路54が形成され、スプール49はスプリング
で各ポートを遮断し、第2油路54で第2負荷圧検出ポ
ート46と第2タンクポート48を連通する中立位置に
保持され、スプール49を右方に摺動すると第2小径部
51で第2アクチュエータポート35を第2タンクポー
ト48に連通し、連通用溝52でポンプポート44が第
2負荷圧検出ポート46に連通し、第1小径部50で第
1アクチュエータポート34が第1負荷圧検出ポート4
5に連通し、かつ第2負荷圧検出ポート46と第2タン
クポート48が遮断する第1圧油供給位置となり、スプ
ール49を左方に摺動すると第1小径部50で第1アク
チュエータポート34を第1タンクポート47に連通
し、連通用溝52でポンプポート44が第1負荷圧検出
ポート45に連通し、第2小径部51で第2アクチュエ
ータポート35が第2負荷圧検出ポート46に連通し、
かつ第2負荷圧検出ポート46と第2タンクポート48
が遮断する第2圧油供給位置となって方向制御弁22を
構成している。
The valve block 30 has a pump port 44 opened in the spool hole 31, first and second load pressure detection ports 45 and 46, and first and second actuator ports 3
4, 35, first and second tank ports 47, 48 are formed, and first and second small diameter portions 50, 51 and a communication groove 52 are formed in the main spool 49 fitted in the spool hole 31. Yes, the main spool 49 has a first oil passage 53 that constantly connects the first and second load pressure detection ports 45 and 46, and a second oil that connects and disconnects the second load pressure detection port 46 and the second tank port 48. A passage 54 is formed, the spool 49 blocks each port with a spring, and the second oil passage 54 holds the spool 49 in a neutral position where the second load pressure detection port 46 and the second tank port 48 communicate with each other. Sliding on the second small diameter portion 51 communicates the second actuator port 35 with the second tank port 48, the communication groove 52 allows the pump port 44 to communicate with the second load pressure detection port 46, and the first small diameter portion 50. With the first actuator Over door 34 is the first load pressure detection port 4
5 and the first pressure oil supply position where the second load pressure detection port 46 and the second tank port 48 are shut off and the spool 49 is slid to the left, the first small diameter portion 50 causes the first actuator port 34 to move. To the first tank port 47, the communication groove 52 connects the pump port 44 to the first load pressure detection port 45, and the second small diameter portion 51 connects the second actuator port 35 to the second load pressure detection port 46. Communication,
And the second load pressure detection port 46 and the second tank port 48
The directional control valve 22 is constituted by the second pressure oil supply position where the valve is shut off.

【0007】前記チェック弁用孔37は油路56でポン
プポート44に開口し、そのチェック弁用孔37には前
記第1ポート39とポンプポート44を連通遮断する弁
60が嵌挿され、その弁60はプラグ61に設けたスト
ッパ杆62で図示位置より左方に摺動しないように規制
されて遮断位置に保持されてチェック弁部23を構成し
ている。前記減圧弁用孔38は第4ポート57と油路5
8で第2負荷圧検出ポート46に連通し、この減圧弁用
孔38にはスプール64が嵌挿されて第1圧力室65と
第2圧力室66を形成し、第1圧力室65は第4ポート
57に連通し、第2圧力室66は第3ポート43に連通
し、前記スプール64の盲穴67に挿入したフリーピス
トン68と盲穴67底部との間にばね69が設けられて
フリーピストン68はプラグ70に当接し、かつスプー
ル64に一体的に設けた押杆71が透孔72より突出し
て前記弁60をストッパ杆62に当接しており、前記ス
プール64には第2ポート42を盲穴67に連通する細
孔73が形成されて減圧弁部24を構成し、この減圧弁
部24と前記チェック弁部23とで圧力補償弁25を構
成している。
The check valve hole 37 is opened to the pump port 44 through the oil passage 56, and the check valve hole 37 is fitted with a valve 60 for shutting off the communication between the first port 39 and the pump port 44. The valve 60 is restricted by a stopper rod 62 provided on the plug 61 so as not to slide leftward from the position shown in the figure, and is held at the shutoff position to form the check valve portion 23. The pressure reducing valve hole 38 is provided with the fourth port 57 and the oil passage 5.
8 communicates with the second load pressure detection port 46, the spool 64 is fitted into the pressure reducing valve hole 38 to form a first pressure chamber 65 and a second pressure chamber 66, and the first pressure chamber 65 is the first pressure chamber 65. The second pressure chamber 66 communicates with the third port 43, and the spring 69 is provided between the free piston 68 inserted into the blind hole 67 of the spool 64 and the bottom portion of the blind hole 67. The piston 68 abuts on the plug 70, and the push rod 71 integrally provided on the spool 64 projects from the through hole 72 to abut the valve 60 on the stopper rod 62. The spool 64 has a second port 42. The pressure reducing valve portion 24 and the check valve portion 23 form a pressure compensating valve 25 by forming a fine hole 73 communicating with the blind hole 67.

【0008】そして、図2に示すように油圧ポンプ20
の吐出路21を第1ポート39、第2ポート42に連通
し、第3ポート43に負荷圧検出路82を接続し、第1
・第2アクチュエータポート34,35にアクチュエー
タ88が接続してある。図2において、83は油圧ポン
プ80の吐出流量を制御する斜板、84はサーボシリン
ダ、85はポンプ調整用方向制御弁である。
Then, as shown in FIG. 2, the hydraulic pump 20
The discharge path 21 of the first port 39 and the second port 42 are communicated with each other, and the load pressure detection path 82 is connected to the third port 43.
-The actuator 88 is connected to the second actuator ports 34 and 35. In FIG. 2, 83 is a swash plate that controls the discharge flow rate of the hydraulic pump 80, 84 is a servo cylinder, and 85 is a directional control valve for pump adjustment.

【0009】次に作動を図2に基づいて説明する。 方向制御弁22が中立位置Aのとき。油圧ポンプ20
によってタンク86から吸上げられた油は、吐出路21
を通ってチェック弁部23の開く方向の圧力室aに案内
される。この時、減圧弁部24の圧力室65,66は、
ともにタンク86に通じているので、この圧力室65,
66の圧力はともにゼロで、よって減圧弁部24は、弱
いばね69によって押され杆体71がチェック弁部23
に当接しているだけである。一方、ポンプ吐出圧は、ポ
ンプ調整用方向制御弁85のばね87によって負荷圧検
出路82の圧力との差圧がある一定に保たれる。いま、
この差圧を20kg/cm2 とすると負荷圧検出路82
の圧力はゼロなので、ポンプ吐出圧は20kg/cm2
まで上昇し、同時にチェック弁部23の圧力室aにポン
プ吐出圧が流入して方向制御弁22の入口圧(チェック
弁部63の出口圧)がポンプ吐出圧と等しくなるまでス
トロークし、等しくなれば、弱いばね69によってレシ
ートする。減圧弁部24は、ストロークエンド時のみ、
ポンプ吐出路81と圧力室66を連通させる一方、チェ
ック弁部23は、ストロークエンドに達する前に、ポン
プ吐出路81と出口側を連通させるので、方向制御弁2
2が中立位置Aのときは、ポンプ吐出路21と圧力室6
6が連通することはなく、圧力室65の圧力はゼロのま
まである。
Next, the operation will be described with reference to FIG. When the directional control valve 22 is in the neutral position A. Hydraulic pump 20
The oil sucked up from the tank 86 by the discharge passage 21
And is guided to the pressure chamber a in the opening direction of the check valve portion 23. At this time, the pressure chambers 65 and 66 of the pressure reducing valve unit 24 are
Since both communicate with the tank 86, the pressure chamber 65,
The pressures of both 66 are zero, so that the pressure reducing valve portion 24 is pushed by the weak spring 69 and the rod 71 is pushed.
It just abuts. On the other hand, the pump discharge pressure is kept constant by the spring 87 of the pump adjusting directional control valve 85, which is a differential pressure from the pressure of the load pressure detection path 82. Now
If this differential pressure is 20 kg / cm 2 , the load pressure detection path 82
Since the pressure in the pump is zero, the pump discharge pressure is 20 kg / cm 2
And at the same time, the pump discharge pressure flows into the pressure chamber a of the check valve section 23, and strokes until the inlet pressure of the directional control valve 22 (the outlet pressure of the check valve section 63) becomes equal to the pump discharge pressure. For example, the receipt is made by the weak spring 69. The pressure reducing valve section 24 is
While the pump discharge passage 81 and the pressure chamber 66 are communicated with each other, the check valve portion 23 communicates the pump discharge passage 81 and the outlet side before reaching the stroke end.
When 2 is in the neutral position A, the pump discharge passage 21 and the pressure chamber 6
6 does not communicate with each other, and the pressure in the pressure chamber 65 remains zero.

【0010】方向制御弁22のいずれか一方のみ第1
圧油供給位置Bにストロークさせるとき。いま、左側の
方向制御弁22を第1圧油供給位置Bにストロークさ
せ、右側の方向制御弁22は、中立位置Aとする。方向
制御弁22をストロークさせポンプポート44と第1ア
クチュエータポート34を接続させ、同時に、第2アク
チュエータ35と第2タンクポート48を接続させる。
この時第1アクチュエータポート34とアクチュエータ
88を接続する導管89内の圧力(負荷圧)がポンプ吐
出圧(20kg/cm2 )より大きいときはチェック弁
部23が圧力室bの圧力でレシートするため、アクチュ
エータ88の自然降下を防止することができる。アクチ
ュエータ88の導管89の圧力、すなわち負荷圧が第1
油路53、通路58より減圧弁部24の一方の圧力室6
5に導かれる。他方の圧力室66の圧力はゼロであるた
め、減圧弁部24は、チェック弁部23から解離する方
向にストロークエンドまでストロークし、減圧弁部24
の絞りを介して、ポンプ吐出路21と負荷圧検出路82
が連通する。前記導管89内の圧力(負荷圧)がポンプ
吐出圧(=20kg/cm2 )より大きいときは、チェ
ック弁部23の圧力室bの圧力で閉じ、その圧力が、減
圧弁部24の一方の圧力室65に導かれるため、他方の
圧力室66とポンプ吐出路21が連通しても、減圧弁部
24はストロークしたままである。一方、導管41内の
圧力(負荷圧)がポンプ吐出圧(=20kg/cm2
より小さいときは、その負荷圧が減圧弁部24の一方の
圧力室65に導かれ、減圧弁部24が一方の圧力室65
の圧力でストロークするが、他方の圧力室66の圧力が
一方の圧力室65の圧力(すなわち負荷圧)まで上昇す
ると、弱いばね69によって閉じチェック弁部23に当
接する。いずれの場合でも、減圧弁部24は、一方の圧
力室65内の圧力と他方の圧力室66内の圧力が等しく
なるまで、ポンプ吐出路21と圧力室66を連通させ、
両圧力室65,66内の圧力が等しくなれば弱いばね6
9によって閉じチェック弁部23に当接する。結果とし
て負荷圧検出路82内の圧力は、負荷圧と等しくなり、
ポンプ吐出圧は、ポンプ調整用方向制御弁85によっ
て、ある差圧(ここでは20kg/cm2 )分だけ、負
荷圧検出路82内の圧力より高い圧力に制御される。こ
のポンプ吐出圧は、チェック弁部23を介して、ポンプ
ポート44に導かれているので、すなわち、方向制御弁
22の入口圧と出口圧(=負荷圧)の間には、差圧(=
20kg/cm2 )が保たれることになる。よって、方
向制御弁22のストロークに伴なう入口側と出口側の間
の絞りの開口面積の変化によってのみ、アクチュエータ
88へ供給される流量が制御される。方向制御弁22を
ストロークさせる際、アクチュエータ88の導管89あ
るいは90と負荷圧導入用の第2油路53が接続され、
一方、第2油路53は、減圧弁部24の一方の圧力室6
5と接続されているが、減圧弁部24において負荷圧
は、パイロット圧力(減圧弁部のセット圧力)としての
み使われるので、その圧力がぬけることはなく、すなわ
ち、方向制御弁22をストロークさせた際、負荷圧がぬ
けることによるアクチュエータ88の自然降下はない。
Only one of the directional control valves 22 is first
When making a stroke to the pressure oil supply position B. Now, the left directional control valve 22 is stroked to the first pressure oil supply position B, and the right directional control valve 22 is set to the neutral position A. The directional control valve 22 is stroked to connect the pump port 44 and the first actuator port 34, and at the same time, connect the second actuator 35 and the second tank port 48.
At this time, when the pressure (load pressure) in the conduit 89 connecting the first actuator port 34 and the actuator 88 is higher than the pump discharge pressure (20 kg / cm 2 ), the check valve portion 23 receives the pressure in the pressure chamber b. It is possible to prevent the actuator 88 from naturally descending. The pressure of the conduit 89 of the actuator 88, that is, the load pressure is the first
One of the pressure chambers 6 of the pressure reducing valve section 24 from the oil passage 53 and the passage 58.
Guided to 5. Since the pressure in the other pressure chamber 66 is zero, the pressure reducing valve unit 24 strokes in the direction of disengagement from the check valve unit 23 to the stroke end, and the pressure reducing valve unit 24
Pump discharge passage 21 and load pressure detection passage 82
Communicate with each other. When the pressure (load pressure) inside the conduit 89 is higher than the pump discharge pressure (= 20 kg / cm 2 ), the pressure is closed by the pressure in the pressure chamber b of the check valve portion 23, and the pressure is reduced by one of the pressure reducing valve portions 24. Since it is guided to the pressure chamber 65, even if the other pressure chamber 66 and the pump discharge passage 21 communicate with each other, the pressure reducing valve portion 24 remains stroked. On the other hand, the pressure (load pressure) in the conduit 41 is the pump discharge pressure (= 20 kg / cm 2 ).
When the pressure is smaller, the load pressure is guided to one pressure chamber 65 of the pressure reducing valve portion 24, and the pressure reducing valve portion 24 has one pressure chamber 65.
Although the stroke is caused by the pressure of, the pressure of the other pressure chamber 66 rises to the pressure of the one pressure chamber 65 (that is, the load pressure), and the weak spring 69 makes contact with the check valve portion 23. In any case, the pressure reducing valve section 24 connects the pump discharge passage 21 and the pressure chamber 66 until the pressure in the one pressure chamber 65 and the pressure in the other pressure chamber 66 become equal to each other,
If the pressures in both pressure chambers 65 and 66 become equal, the weak spring 6
9 and abuts against the check valve portion 23. As a result, the pressure in the load pressure detection path 82 becomes equal to the load pressure,
The pump discharge pressure is controlled by the pump adjusting directional control valve 85 to a pressure higher than the pressure in the load pressure detection passage 82 by a certain differential pressure (here, 20 kg / cm 2 ). This pump discharge pressure is guided to the pump port 44 via the check valve portion 23, that is, between the inlet pressure and the outlet pressure (= load pressure) of the directional control valve 22.
20 kg / cm 2 ) will be maintained. Therefore, the flow rate supplied to the actuator 88 is controlled only by the change in the opening area of the throttle between the inlet side and the outlet side due to the stroke of the directional control valve 22. When the directional control valve 22 is stroked, the conduit 89 or 90 of the actuator 88 and the second oil passage 53 for introducing load pressure are connected,
On the other hand, the second oil passage 53 is connected to one pressure chamber 6 of the pressure reducing valve portion 24.
5, the load pressure in the pressure reducing valve portion 24 is used only as pilot pressure (set pressure of the pressure reducing valve portion), so the pressure is not lost, that is, the directional control valve 22 is stroked. In this case, the actuator 88 does not naturally descend due to the load pressure being removed.

【0011】前記負荷圧検出路82はもう一方の方向制
御弁22に配設されている圧力補償弁25の減圧弁部2
4の他方の圧力室66にも接続されているが、減圧弁部
24の一方の圧力室65は、方向制御弁22の中立位置
Aによってタンク86と接続しているため、負荷圧導入
用の第1油路53内の圧力はゼロで、よって圧力室66
内の圧力によって減圧弁部24は、チェック弁部23を
閉じる方向に付勢する。一方、チェック弁部24を開く
方向の圧力室aには、ポンプ吐出路81よりポンプ吐出
圧が導かれるため、全体として、ポンプ吐出圧と負荷圧
検出路82内の圧力の差圧分(=20kg/cm2 )に
よってチェック弁部23及び減圧弁部24をチェック弁
部23の開く方向にストロークさせるが、わずかにスト
ロークしポンプポート44の圧力がその差圧(=20k
g/cm2 )になれば、弱いばね69によってレシート
し、結果として、ストロークエンドまで減圧弁部24が
ストロークすることはなく、方向制御弁22側の油圧制
御には、何ら影響することはない。
The load pressure detecting path 82 is provided with the pressure reducing valve section 2 of the pressure compensating valve 25 disposed in the other directional control valve 22.
4 is also connected to the other pressure chamber 66, but one pressure chamber 65 of the pressure reducing valve portion 24 is connected to the tank 86 by the neutral position A of the directional control valve 22, and therefore is used for introducing load pressure. The pressure in the first oil passage 53 is zero, so that the pressure chamber 66
The pressure reducing valve portion 24 urges the pressure reducing valve portion 24 in a direction to close the check valve portion 23. On the other hand, since the pump discharge pressure is introduced from the pump discharge path 81 to the pressure chamber a in the direction of opening the check valve portion 24, the difference between the pump discharge pressure and the pressure in the load pressure detection path 82 (= 20 kg / cm 2 ), the check valve portion 23 and the pressure reducing valve portion 24 are stroked in the opening direction of the check valve portion 23.
g / cm 2 ), the weak spring 69 causes a receipt, and as a result, the pressure reducing valve section 24 does not stroke to the stroke end, and there is no effect on the hydraulic control of the directional control valve 22 side. ..

【0012】方向制御弁22のいずれも第1圧油供給
位置Bにストロークさせるとき。 −各アクチュエータ88に必要とされる流量の合計
が油圧ポンプ20の最大吐出流量位置のとき。いま、方
向制御弁22をともに第1圧油供給位置Bにストローク
させ、各ポンプポート44と各導管89と各負荷圧導用
の第1油路53をそれぞれ接続させたとする。一方の減
圧弁部24は、圧力室66内の圧力が一方の圧力室65
内の圧力に等しくなるまで、また他方の減圧弁部24
は、圧力室66内の圧力が、一方の圧力室65内の圧力
に等しくなるまで、それぞれストロークエンドまでスト
ロークしたままである。いま、二つのアクチュエータ8
8,88の負荷圧のうち、左側のアクチュエータ88の
負荷圧がより大きいとする。仮に、左側アクチュエータ
26の負荷圧を100(kg/cm2 )、右側のアクチ
ュエータ27の負荷圧を10(kg/cm2 )とする。
負荷圧検出路82は、絞り91を介してタンク86と接
続されているので、方向制御弁ストローク前は負荷圧検
出路82内の圧力はゼロである。よって、各減圧弁部2
4は負荷圧検出用の第1油路53内の圧力によってもス
トロークし、ポンプ吐出圧が圧力検出導管34内の圧力
と連通させる。負荷圧検出路82内の圧力が低圧側であ
る右側のアクチュエータ88の導管90内の圧力(10
kg/cm2 )まで上昇すると、まず、右方の圧力補償
弁25の減圧弁部24が閉じる。左方の圧力補償弁25
の減圧弁部24はストロークしたままであり、負荷圧検
出路82内の圧力はポンプ吐出圧(20kg/cm2
と等しくなるまで上昇する。このとき高圧側である左側
のアクチュエータ88の方向制御弁55のポンプポート
44の圧力は100(kg/cm2 )であり、圧力補償
弁25のチェック弁部23は閉じていて、減圧弁部24
とは解離している。一方圧力補償弁25の減圧弁部24
は、二つの圧力室65と66内の圧力の差(20−10
=10kg/cm2 )でチェック弁部23を閉じる方向
に付勢する。一方、チェック弁部23の開く方向の圧力
室a内の圧力(ポンプ吐出圧)は20(kg/cm2
であるため、結果として方向制御弁22のポンプポート
44の圧力が10(kg/cm2 )になるまでチェック
弁部23が開いた後、弱いばね69によってレシートす
る。ポンプ調整用方向制御弁85によって、ある差圧
(20kg/cm2 )分だけ、負荷圧検出路82内の圧
力(20kg/cm2 )より高い圧力にポンプ吐出圧が
制御される(40kg/cm2 )。このときも高圧側の
圧力補償弁25のチェック弁部23は閉じたままで減圧
弁部24はストロークしたままで負荷圧検出路82内の
圧力は40(kg/cm2 )となり、一方、低圧側の圧
力補償弁25の減圧弁部24は、負荷圧検出路82と負
荷圧導入用の第1油路53内の圧力差(=30kg/c
2 )でチェック弁部23を閉じる方向に付勢し、結果
として方向制御弁22のポンプポート44の圧力は10
kg/cm2 のままである。このようにして、負荷圧検
出路82内の圧力とポンプ吐出圧が上昇し続け、やがて
ポンプ吐出圧が高圧側のアクチュエータ88の負荷圧
(100kg/cm2)と等しくなると、高圧側の圧力
補償弁25の減圧弁部23の二つの圧力室65と66内
の圧力はともに100kg/cm2 となり、弱いばね6
9によって、閉じチェック弁部23に当接する。このと
き低圧側の圧力補償弁25の減圧弁部24は負荷圧検出
路82と負荷圧導入用の第1油路53内の圧力差(10
0−10=90kg/cm2 )でチェック弁部23を閉
じる方向に付勢し、結果として低圧側の方向制御弁22
のポンプポート44の圧力は10kg/cm2 のままで
ある。再び、ポンプ調整用方向制御弁85によって、ポ
ンプ吐出圧が120(kg/cm2 )に制御される。こ
のとき高圧側の圧力補償弁25の減圧弁部23は、弱い
ばね69によってチェック弁部23に当接しているだけ
であり、チェック弁部23の二つの圧力室aとbの圧力
差によって、ここで始めてチェック弁部23が開き、ポ
ンプ吐出圧(120kg/cm2 )が方向制御弁22の
ポンプポート44に導かれる。一方、低圧側の圧力補償
弁25の減圧弁部24は負荷圧検出路82と負荷圧導入
用の第1油路53内の圧力差(=90kg/cm2 )分
でチェック弁部23を閉じる方向に付勢し続けるが、チ
ェック弁部23の開く方向の圧力室a内の圧力が120
(kg/cm2 )になったので方向制御弁22の入口ポ
ート44の圧力が30(kg/cm2 )(120−9
0)となる状態で、チェック弁部23及び減圧弁部24
が圧力バランスする。すなわち、チェック弁部23及び
減圧弁部24はわずかにストロークし、チェック弁部2
3において、120kg/cm2 から30kg/cm2
になるように絞っている状態となる。ここで初めて、こ
の油圧制御系はつり合い、高圧側の方向制御弁22のポ
ンプポート44の圧力が120kg/cm2 、低圧側の
方向制御弁22のポンプポート44の圧力が30kg/
cm2 となり、すなわち、二つの方向制御弁22,22
の入口圧と出口圧(負荷圧)の差は、ともに20kg/
cm2 に保たれることにより、二つの方向制御弁22,
22はともに、ストローク分だけで、アクチュエータ8
8,88に供給する流量を制御することができるように
なる。
When any of the directional control valves 22 is stroked to the first pressure oil supply position B. -When the total flow rate required for each actuator 88 is at the maximum discharge flow rate position of the hydraulic pump 20. Now, it is assumed that the directional control valve 22 is both stroked to the first pressure oil supply position B, and the pump ports 44, the conduits 89, and the first oil passages 53 for introducing the load pressure are connected to each other. In the pressure reducing valve portion 24, the pressure in the pressure chamber 66 is one pressure chamber 65.
Until it becomes equal to the internal pressure, and the other pressure reducing valve section 24
Respectively continue to stroke to the stroke end until the pressure in the pressure chamber 66 becomes equal to the pressure in one pressure chamber 65. Now two actuators 8
It is assumed that the load pressure of the left actuator 88 is larger than the load pressure of 8,88. It is assumed that the load pressure of the left actuator 26 is 100 (kg / cm 2 ) and the load pressure of the right actuator 27 is 10 (kg / cm 2 ).
Since the load pressure detection path 82 is connected to the tank 86 via the throttle 91, the pressure in the load pressure detection path 82 is zero before the stroke of the directional control valve. Therefore, each pressure reducing valve unit 2
4 also makes a stroke by the pressure in the first oil passage 53 for load pressure detection, so that the pump discharge pressure communicates with the pressure in the pressure detection conduit 34. The pressure in the conduit 90 of the actuator 88 on the right side where the pressure in the load pressure detection path 82 is the low pressure side (10
When the pressure is increased to (kg / cm 2 ), first, the pressure reducing valve portion 24 of the pressure compensating valve 25 on the right side is closed. Left pressure compensation valve 25
The pressure reducing valve section 24 of the No. 2 is still stroked, and the pressure in the load pressure detecting path 82 is the pump discharge pressure (20 kg / cm 2 ).
Rises up to. At this time, the pressure of the pump port 44 of the directional control valve 55 of the left side actuator 88 on the high pressure side is 100 (kg / cm 2 ), the check valve portion 23 of the pressure compensation valve 25 is closed, and the pressure reducing valve portion 24 is closed.
Is dissociated from. On the other hand, the pressure reducing valve section 24 of the pressure compensating valve 25
Is the pressure difference between the two pressure chambers 65 and 66 (20-10
= 10 kg / cm 2 ), the check valve portion 23 is urged in the closing direction. On the other hand, the pressure in the pressure chamber a in the opening direction of the check valve portion 23 (pump discharge pressure) is 20 (kg / cm 2 ).
Therefore, as a result, the check valve portion 23 is opened until the pressure of the pump port 44 of the directional control valve 22 becomes 10 (kg / cm 2 ), and then the receipt is made by the weak spring 69. By a pump adjusting direction control valve 85, there differential pressure (20kg / cm 2) amount corresponding, pump discharge pressure from the high pressure pressure (20kg / cm 2) of the load pressure Detchi 82 is controlled (40 kg / cm 2 ). Also at this time, the pressure in the load pressure detection path 82 becomes 40 (kg / cm 2 ) with the check valve portion 23 of the pressure compensation valve 25 on the high pressure side kept closed and the pressure reducing valve portion 24 still on the stroke, while the low pressure side The pressure reducing valve portion 24 of the pressure compensating valve 25 of No. 2 has a pressure difference (= 30 kg / c) between the load pressure detection path 82 and the first oil path 53 for introducing load pressure.
m 2 ), the check valve portion 23 is biased in the closing direction, and as a result, the pressure of the pump port 44 of the directional control valve 22 becomes 10
It remains kg / cm 2 . In this way, the pressure in the load pressure detection path 82 and the pump discharge pressure continue to rise, and when the pump discharge pressure eventually becomes equal to the load pressure (100 kg / cm 2 ) of the high-pressure side actuator 88, the high-pressure side pressure compensation is performed. The pressures in the two pressure chambers 65 and 66 of the pressure reducing valve portion 23 of the valve 25 are both 100 kg / cm 2 , and the weak spring 6
9, the closing check valve portion 23 is abutted. At this time, the pressure reducing valve portion 24 of the pressure compensating valve 25 on the low pressure side has the pressure difference (10) between the load pressure detecting passage 82 and the first oil passage 53 for introducing the load pressure.
0-10 = 90 kg / cm 2 ), the check valve portion 23 is biased in the closing direction, and as a result, the low-pressure side directional control valve 22
The pump port 44 pressure remains at 10 kg / cm 2 . Again, the pump adjusting directional control valve 85 controls the pump discharge pressure to 120 (kg / cm 2 ). At this time, the pressure reducing valve portion 23 of the pressure compensating valve 25 on the high pressure side is only in contact with the check valve portion 23 by the weak spring 69, and due to the pressure difference between the two pressure chambers a and b of the check valve portion 23, For the first time, the check valve portion 23 opens and the pump discharge pressure (120 kg / cm 2 ) is introduced to the pump port 44 of the directional control valve 22. On the other hand, the pressure reducing valve portion 24 of the pressure compensating valve 25 on the low pressure side closes the check valve portion 23 by the pressure difference (= 90 kg / cm 2 ) in the load pressure detecting passage 82 and the first oil passage 53 for introducing the load pressure. However, the pressure in the pressure chamber a in the opening direction of the check valve portion 23 is 120
(Kg / cm 2 ), the pressure of the inlet port 44 of the directional control valve 22 is 30 (kg / cm 2 ) (120-9
0), the check valve portion 23 and the pressure reducing valve portion 24
Balances pressure. That is, the check valve portion 23 and the pressure reducing valve portion 24 make a slight stroke, and the check valve portion 2
3 to 120 kg / cm 2 to 30 kg / cm 2
It will be in a state where it is squeezed to become. For the first time, this hydraulic control system is balanced so that the pressure at the pump port 44 of the directional control valve 22 on the high pressure side is 120 kg / cm 2 , and the pressure at the pump port 44 of the directional control valve 22 on the low pressure side is 30 kg / cm 2 .
cm 2 , that is, the two directional control valves 22, 22
The difference between the inlet pressure and the outlet pressure (load pressure) is 20 kg /
By being kept at cm 2 , the two directional control valves 22,
22 is the actuator 8
It becomes possible to control the flow rate supplied to 8,88.

【0013】−各アクチュエータ88,88に必要
とされる流量は合計が油圧ポンプ80の最大吐出流量以
上のとき。いま、アクチュエータ88,88の負荷圧お
よび必要流量を左側のアクチュエータ88が100kg
/cm2 、501/min、右側のアクチュエータ88
が10kg/cm2 、501/minとする。油圧ポン
プ80の最大吐出流量が1001/min以上のとき
は、前述の通り、方向制御弁22,22の入口圧と出口
圧の差が一定に保たれる(=20kg/cm2 )ため、
ストロークによって流量制御ができ、501/minず
つ流量分配することはできる。次に、油圧ポンプ80の
滞在吐出量が701/minになったとする。二つの方
向制御弁22,22の入口圧は前述の通り120kg/
cm2 、30kg/cm2 であるので、高圧側の方向制
御弁22への流量が501/minから201/min
に減る。低圧側の方向制御弁22への流量は、501/
minのままである。二つの方向制御弁22,22のス
トローク(開口面積)を変えないとすると、高圧側の方
向制御弁22の入口圧と出口圧の差圧が流量が減った
分、20kg/cm2 から下がる。いま、差圧が14k
g/cm2 、すなわち、入口圧が、120kg/cm2
から114(100+14)kg/cm2 に下がったと
する。この時圧力補償弁25の減圧弁部24の二つの圧
力室65,66の圧力は、ともに100kg/cm2
ままであるから、減圧弁部24は弱いばね69によって
チェック弁部23に当接しているだけであり、チェック
弁部23の閉じる方向の圧力室b内の圧力が120kg
/cm2 から114kg/cm2 に減少すれば、チェッ
ク弁部23が開いたまま(ストロークエンド)で、チェ
ック弁部23の開く方向の圧力室a内の圧力、すなわ
ち、ポンプ吐出圧が120kg/cm2 から114kg
/cm2 に減少する。この時(ポンプ吐出流量不足時)
にはポンプ吐出圧はポンプ調整用方向制御弁85の制御
によらなくなる。一方、低圧側の圧力補償弁25の減圧
弁部24の二つの圧力室65と66は、100kg/c
2 、10kg/cm2 のままで、その差圧90kg/
cm2 でチェック弁部63の閉じる方向に付勢し続け
る。一方、チェック弁部23の開く方向の圧力室a内の
圧力、すなわちポンプ吐出圧が114kg/cm2 に減
少したので、チェック弁部23の閉じる方向の圧力室b
内の圧力が30kg/cm2から24kg/cm2 に減
少した状態でチェック弁部23及び減圧弁部24が圧力
バランスする。よって、低圧側の方向制御弁22の入口
圧と出口圧の差圧は20kg/cm2 から14kg/c
2 (24−10)に減少する。方向制御弁22のこの
差圧の減少により低圧側のアクチュエータ88への供給
流量は501/minから減少し、その分高圧側のアク
チュエータ88への供給流量が201/minから増え
る。すなわち、方向制御弁22および22の入口圧と出
口圧の差圧が等しく、かつ、二つのアクチュエータ8
8,88への供給量がともに351/minずつに分配
される状態で、この油圧制御系がつり合う。
The total flow rate required for each actuator 88, 88 is greater than or equal to the maximum discharge flow rate of the hydraulic pump 80. Now, the load pressure and required flow rate of the actuators 88, 88 are set to 100 kg for the actuator 88 on the left side.
/ Cm 2 , 501 / min, right actuator 88
Is 10 kg / cm 2 and 501 / min. When the maximum discharge flow rate of the hydraulic pump 80 is 1001 / min or more, as described above, the difference between the inlet pressure and the outlet pressure of the directional control valves 22, 22 is kept constant (= 20 kg / cm 2 ),
The flow rate can be controlled by the stroke, and the flow rate can be distributed by 501 / min. Next, assume that the stay discharge amount of the hydraulic pump 80 becomes 701 / min. The inlet pressure of the two directional control valves 22, 22 is 120 kg /
Since it is cm 2 and 30 kg / cm 2 , the flow rate to the directional control valve 22 on the high pressure side is 501 / min to 201 / min.
Decrease to. The flow rate to the directional control valve 22 on the low pressure side is 501 /
It remains at min. If the strokes (opening areas) of the two directional control valves 22 and 22 are not changed, the differential pressure between the inlet pressure and the outlet pressure of the directional control valve 22 on the high pressure side is reduced from 20 kg / cm 2 by the amount of the reduced flow rate. Now the differential pressure is 14k
g / cm 2 , that is, the inlet pressure is 120 kg / cm 2.
To 114 (100 + 14) kg / cm 2 . At this time, the pressures of the two pressure chambers 65 and 66 of the pressure reducing valve portion 24 of the pressure compensating valve 25 both remain at 100 kg / cm 2 , so the pressure reducing valve portion 24 abuts against the check valve portion 23 by the weak spring 69. The pressure inside the pressure chamber b in the closing direction of the check valve portion 23 is 120 kg.
/ Cm 2 to 114 kg / cm 2 , the pressure in the pressure chamber a in the opening direction of the check valve portion 23, that is, the pump discharge pressure is 120 kg /, while the check valve portion 23 remains open (stroke end). cm 2 to 114 kg
Reduced to / cm 2. At this time (when pump discharge flow rate is insufficient)
Therefore, the pump discharge pressure does not depend on the control of the pump adjusting directional control valve 85. On the other hand, the two pressure chambers 65 and 66 of the pressure reducing valve portion 24 of the pressure compensating valve 25 on the low pressure side are 100 kg / c.
m 2 , 10 kg / cm 2 , the differential pressure is 90 kg /
Continue to urge the check valve portion 63 to close in cm 2 . On the other hand, since the pressure in the pressure chamber a in the opening direction of the check valve portion 23, that is, the pump discharge pressure is reduced to 114 kg / cm 2 , the pressure chamber b in the closing direction of the check valve portion 23 is reduced.
When the internal pressure is reduced from 30 kg / cm 2 to 24 kg / cm 2 , the check valve portion 23 and the pressure reducing valve portion 24 balance the pressure. Therefore, the differential pressure between the inlet pressure and the outlet pressure of the directional control valve 22 on the low pressure side is 20 kg / cm 2 to 14 kg / c.
m 2 (24-10). Due to the decrease in the differential pressure of the directional control valve 22, the supply flow rate to the low-pressure side actuator 88 decreases from 501 / min, and the supply flow rate to the high-pressure side actuator 88 increases from 201 / min. That is, the differential pressure between the inlet pressure and the outlet pressure of the directional control valves 22 and 22 is equal, and the two actuators 8 are
This hydraulic control system is balanced in a state where the supply amounts to 8 and 88 are both divided into 351 / min.

【0014】一つの油圧ポンプ80によって負荷され
るアクチュエータが3つ以上のとき。アクチュエータが
3つ以上のときも、方向制御弁と油圧ポンプの間に、同
じチェック弁部23及び減圧弁部24を備えた圧力補償
弁25を配設し、各減圧弁部の閉じる方向の圧力差を負
荷圧検出路82によってすべて連通するだけで、アクチ
ュエータが3つ以上のときも前述の作動原理による作動
が実現される。
When the number of actuators loaded by one hydraulic pump 80 is three or more. Even when there are three or more actuators, the pressure compensating valve 25 having the same check valve portion 23 and pressure reducing valve portion 24 is disposed between the directional control valve and the hydraulic pump, and the pressure in the closing direction of each pressure reducing valve portion is arranged. Even if the number of actuators is three or more, the operation according to the above-described operation principle can be realized only by communicating all the differences by the load pressure detection path 82.

【0015】[0015]

【発明が解決しようとする課題】かかる圧油供給装置に
おいては負荷圧検出路82の最高負荷圧(以下制御圧と
いう)をポンプ調整用方向制御弁85に作用して油圧ポ
ンプ20のポンプ吐出量をポンプ吐出圧に基づいて増減
して油圧ポンプ20の吸収トルクを制御し、油圧ポンプ
20を駆動するエンジの過負荷を防止している。他方、
前述の圧油供給装置によってパワーショベルの左右走行
用油圧モータと旋回用油圧モータに圧油を供給する場合
に、左右走行用油圧モータにポンプ吐出圧油を供給して
走行している状態で旋回用油圧モータにポンプ吐出圧油
を供給してパワーショベルの上部車体を旋回動作する
と、上部車体の慣性が大きいために旋回用油圧モータの
負荷圧が走行中の左右走行用油圧モータの負荷圧よりも
急激に高くリリーフ圧となるから制御圧が高圧となって
ポンプ吐出量が減少するので、走行速度が急激に低下し
て大きな減速ショックが発生する。このために、図2に
示す従来の圧油供給装置においては旋回用油圧モータ側
の負荷圧検出部に接続した回路に開閉弁を設け、旋回用
油圧モータ以外のアクチュエータに圧油を供給する時に
は開閉弁を閉として旋回用油圧モータの負荷圧が検出さ
れないようにして圧力補償弁を他のアクチュエータの負
荷圧によってセットしている。
In such a pressure oil supply device, the maximum load pressure (hereinafter referred to as control pressure) of the load pressure detection path 82 is applied to the pump adjusting directional control valve 85 to discharge the pump of the hydraulic pump 20. Is increased or decreased based on the pump discharge pressure to control the absorption torque of the hydraulic pump 20 to prevent the engine driving the hydraulic pump 20 from being overloaded. On the other hand,
When pressure oil is supplied to the left and right running hydraulic motors and the turning hydraulic motor of the power shovel by the above-mentioned pressure oil supply device, turning is performed while the pump discharging pressure oil is supplied to the left and right running hydraulic motors. If the upper body of the power shovel is turned by supplying pump discharge pressure oil to the hydraulic motor for driving, the load pressure of the turning hydraulic motor will be greater than the load pressure of the left and right running hydraulic motors due to the large inertia of the upper body. Also becomes a high relief pressure abruptly, the control pressure becomes high and the pump discharge amount decreases, so that the traveling speed abruptly decreases and a large deceleration shock occurs. For this reason, in the conventional pressure oil supply device shown in FIG. 2, an on-off valve is provided in the circuit connected to the load pressure detection unit on the turning hydraulic motor side, and when pressure oil is supplied to actuators other than the turning hydraulic motor. The on-off valve is closed so that the load pressure of the turning hydraulic motor is not detected, and the pressure compensation valve is set by the load pressure of another actuator.

【0016】しかしながら前述の開閉弁を開閉して旋回
用油圧モータの負荷圧を検出したり、検出しないように
すると、開閉弁の開閉切替を判別するロジック回路が必
要となり、回路が複雑となってコスト高となる。
However, if the above-mentioned opening / closing valve is opened / closed to detect or not detect the load pressure of the turning hydraulic motor, a logic circuit for determining the opening / closing switching of the opening / closing valve is required, which complicates the circuit. High cost.

【0017】そこで、本発明は前述の課題を解決できる
ようにした圧油供給装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a pressure oil supply device which can solve the above-mentioned problems.

【0018】[0018]

【課題を解決するための手段】油圧ポンプ20の吐出路
21を、左右走行用油圧モータに圧油を供給する左右の
弁ブロック30−1,30−1の第1ポート39と旋回
用油圧モータに圧油を供給する弁ブロック30−2の第
1ポート39と第2ポート42にそれぞれ接続し、前記
左右の弁ブロック30−1,30−1の第2ポート42
相互を第1通路115で連通し、ポンプポート44を第
2通路116で連通し、この第2通路116を第3通路
117で前記弁ブロック30−2のポンプポート44に
連通して成る圧油供給装置。
A discharge passage 21 of a hydraulic pump 20 is provided with a first port 39 of left and right valve blocks 30-1 and 30-1 for supplying pressure oil to the left and right traveling hydraulic motors and a turning hydraulic motor. Connected to the first port 39 and the second port 42 of the valve block 30-2 for supplying pressurized oil to the second port 42 of the left and right valve blocks 30-1 and 30-1, respectively.
Pressure oil that communicates with each other through the first passage 115, the pump port 44 through the second passage 116, and the second passage 116 through the third passage 117 to the pump port 44 of the valve block 30-2. Supply device.

【0019】[0019]

【作 用】左右の弁ブロック30−1,30−1の主
スプール49を操作して左右の走行用油圧モータに油圧
ポンプ20の吐出圧油を供給している状態で弁ブロック
30−2の主スプール49を操作して旋回用油圧モータ
に油圧ポンプ20の吐出圧油を供給すると、その旋回駆
動圧によって油圧ポンプ20の吐出圧油が上昇しようと
するが、その圧油の一部がポンプポート44、第3通路
117、第2通路116より左右の弁ブロック30−
1,30−1のポンプポート44より左右走行用油圧モ
ータにバイパスして圧力上昇が低減され、油圧ポンプ2
0の吐出量が急激に大幅に低下しないから、走行中に旋
回動作しても大きな減速ショックが生じないし、各弁ブ
ロック30のポンプポート44を第3・第2通路11
7,116で連通しただけであって、どの弁ブロック3
0の主スプールを操作したかを判断するロジック回路が
不要となるから構造簡単である。
[Operation] The main spool 49 of the left and right valve blocks 30-1 and 30-1 is operated to supply the discharge pressure oil of the hydraulic pump 20 to the left and right traveling hydraulic motors. When the main spool 49 is operated to supply the discharge pressure oil of the hydraulic pump 20 to the swing hydraulic motor, the discharge pressure oil of the hydraulic pump 20 tends to rise due to the swing drive pressure, but a part of the pressure oil is pumped. The valve blocks 30 on the left and right of the port 44, the third passage 117, and the second passage 116
The pressure rise is reduced by bypassing the left and right hydraulic motors from the pump ports 44 of the hydraulic pumps 1 and 30-1.
Since the discharge amount of 0 does not decrease sharply and drastically, a large deceleration shock does not occur even if the vehicle makes a turning motion during traveling, and the pump port 44 of each valve block 30 is connected to the third and second passages 11.
7116, which valve block 3
The structure is simple because a logic circuit for determining whether the 0 main spool has been operated is not required.

【0020】[0020]

【実 施 例】本発明の実施例を図4以降を参照して説
明する。なお従来と同一部材は符号を同一とする。図4
は左右走行用油圧モータに圧油を供給する弁ブロック3
0−1の断面図であり、その方向制御弁22の主スプー
ル49にはポンプポート44と第1・第2負荷圧検出ポ
ート45,46を連通・遮断する中間小径部120が形
成してある。減圧弁部24の第3ポート43と第2圧力
室66をスプール64で遮断し、第3ポート43と第2
ポート42を連通・遮断するスリット状の開口100を
スプール64の外周面に形成し、第3ポート43に負荷
圧検出路82を接続する。スプール64の盲穴67を段
付形状とし、シート68を盲穴68aと環状凹部68b
を有する形状とし、そのシート68を盲穴67の外向段
部67aに当接しで固定し、そのシート68とプラグ7
0との間にバネ69を設け、前記シート68の盲穴68
aの開口周縁にチェック弁101をバネ102で押しつ
けて盲穴68aとチェック弁101との間に圧力室10
3を構成し、その圧力室103を第1絞り104で第2
圧力室66に連通し、かつ第2絞り105で環状凹部6
8bに連通し、その環状凹部68bをスプール64の絞
り106で第3ポート43に開口し、チェック弁101
のバネ室107を絞り108で第2ポート42に開口す
る。前記第1圧力室65をスプール64の切欠部109
と細孔110でシート68とチェック弁101との間に
連通してある。
EXAMPLES Examples of the present invention will be described with reference to FIG. It should be noted that the same members as the conventional ones have the same reference numerals. Figure 4
Is a valve block 3 that supplies pressure oil to the left and right hydraulic motors.
0-1 is a cross-sectional view of the directional control valve 22, and a main spool 49 of the directional control valve 22 is formed with an intermediate small diameter portion 120 that connects and disconnects the pump port 44 and the first and second load pressure detection ports 45 and 46. .. The third port 43 of the pressure reducing valve section 24 and the second pressure chamber 66 are shut off by the spool 64, and the third port 43 and the second port 43
A slit-shaped opening 100 for communicating and blocking the port 42 is formed on the outer peripheral surface of the spool 64, and the load pressure detection path 82 is connected to the third port 43. The blind hole 67 of the spool 64 has a stepped shape, and the seat 68 has a blind hole 68a and an annular recess 68b.
And the seat 68 is abutted against the outward step 67a of the blind hole 67 to be fixed.
A spring 69 is provided between the sheet 68 and the blind hole 68 of the seat 68.
The check valve 101 is pressed against the opening peripheral edge of a by the spring 102 so that the pressure chamber 10 is provided between the blind hole 68a and the check valve 101.
3, and the pressure chamber 103 is provided with a first throttle 104 and a second
The annular recess 6 is communicated with the pressure chamber 66, and is connected to the second throttle 105.
8b, the annular recess 68b is opened in the third port 43 by the throttle 106 of the spool 64, and the check valve 101
The spring chamber 107 is opened to the second port 42 by the diaphragm 108. The first pressure chamber 65 is formed in the notch 109 of the spool 64.
The pores 110 communicate with the seat 68 and the check valve 101.

【0021】図5は旋回用油圧モータに圧油を供給する
弁ブロック30−2の断面図であり、減圧弁部24の第
3ポート43と第2圧力室66をスプール64で遮断
し、第3ポート43と第2ポート42を連通・遮断する
スリット状の開口111をスプール64に形成し、第2
ポート42の圧油を第3ポート43より負荷圧検出路8
2に直接供給する。第2圧力室66はダンパ用絞り11
2を介した第3ポート43に連通し、フリーピストン6
8の圧力室113をダンパ用絞り114で前記開口11
1に開口連通する。なお、この弁ブロック30−2の減
圧弁部24は図3に示すものとしても良い。これによ
り、スプール64が右方に摺動する時には第2圧力室6
6内の圧油がダンパ用絞り112を通って第3ポート4
3に流れ、圧力室113の圧油はダンパ用絞り114を
通って第2ポート42に流れるのでスプール64が急激
に右方に摺動することを防止できるし、スプール64が
左方に摺動する時には前述と反対に流れるから左方に急
激に摺動することを防止できる。
FIG. 5 is a sectional view of the valve block 30-2 for supplying pressure oil to the turning hydraulic motor. The spool 64 blocks the third port 43 of the pressure reducing valve portion 24 and the second pressure chamber 66. A slit-shaped opening 111 for communicating and blocking the 3rd port 43 and the 2nd port 42 is formed in the spool 64.
The pressure oil of the port 42 is fed from the third port 43 to the load pressure detection path 8
Supply directly to 2. The second pressure chamber 66 is the damper throttle 11
Communicating with the third port 43 through the free piston 6
The pressure chamber 113 of No. 8 is opened by the diaphragm 114 for damper.
1. Open communication with 1. The pressure reducing valve portion 24 of the valve block 30-2 may be the one shown in FIG. As a result, when the spool 64 slides to the right, the second pressure chamber 6
The pressure oil in 6 passes through the damper throttle 112 to the third port 4
3 and the pressure oil in the pressure chamber 113 flows through the damper throttle 114 to the second port 42, so that the spool 64 can be prevented from suddenly sliding to the right, and the spool 64 can slide to the left. When doing, the flow flows in the opposite direction to the above, so it is possible to prevent sudden sliding to the left.

【0022】図6に示すように左右走行用油圧モータに
圧油を供給する左右の弁ブロック30−1,30−1の
減圧弁部24,24における第2ポート42相互を第1
通路115で連通してあり、この左右の弁ブロック30
−1,30−1の第1・第2アクチュエータポート3
4,35に連通したアクチュエータ88は左右走行用油
圧モータとなっていると共に、油圧ポンプ20の吐出路
21は各弁ブロック30−1,30−1,30−2の第
1ポート39にそれぞれ接続し、かつ旋回用油圧モータ
に圧油を供給する弁ブロック30−2の第2ポート42
に接続し、各弁ブロック30−1,30−1,30−2
の第3ポート43は負荷圧検出路82にそれぞれ接続し
ている。前記左右の弁ブロック30−1,30−1のポ
ンプポート44は第2通路116で連通し、この第2通
路116は第3通路117で弁ブロック30−2のポン
プポート44に連通し、その第3通路117には絞り1
18とチェック弁119が設けられて弁ブロック30−
2のポンプポート44より弁ブロック30−1のポンプ
ポート44に圧油を減圧して供給できるようにしてあ
る。
As shown in FIG. 6, the second ports 42 of the pressure reducing valve portions 24, 24 of the left and right valve blocks 30-1, 30-1 for supplying pressure oil to the hydraulic motors for left and right traveling are first connected to each other.
The left and right valve blocks 30 communicate with each other through a passage 115.
-1, 30-1 first and second actuator ports 3
The actuator 88 communicating with 4, 35 is a left-right traveling hydraulic motor, and the discharge passage 21 of the hydraulic pump 20 is connected to the first ports 39 of the valve blocks 30-1, 30-1, 30-2, respectively. The second port 42 of the valve block 30-2 that supplies pressure oil to the turning hydraulic motor.
Connected to each valve block 30-1, 30-1, 30-2
The third ports 43 of are connected to the load pressure detection paths 82, respectively. The pump ports 44 of the left and right valve blocks 30-1, 30-1 communicate with a second passage 116, and the second passage 116 communicates with a pump port 44 of the valve block 30-2 with a third passage 117. A diaphragm 1 is installed in the third passage 117.
18 and a check valve 119 are provided and a valve block 30-
The pressure oil can be decompressed and supplied from the second pump port 44 to the pump port 44 of the valve block 30-1.

【0023】次に作動を説明する。直進走行時。左右の
弁ブロック30−1,30−1の方向制御弁22の主ス
プール49を左方に摺動させると、図4に示すように油
圧ポンプ20の吐出圧油は第1ポート39、ポンプポー
ト44、中間小径部120、左側切欠部121、第1負
荷圧検出ポート45、連通路122、第2負荷圧検出ポ
ート46、左側切欠き123、第2小径部51、第2ア
クチュエータポート35よりアクチュエータ88の一方
のポート88aに流入し、その他方のポート88bから
の戻り油は第1アクチュエータポート34、第1小径部
51、左側切欠き124より第1タンクポート47に流
出する。アクチュエータ88である左右走行用油圧モー
タの負荷圧は第2アクチュエータポート35、第2負荷
圧検出ポート46、通路58より第1圧力室65に作用
してスプール64を右方に押圧してストロークさせる。
この時、第2ポート42の圧力はスプール64の絞り1
08でチェック弁101のバネ室107に導入されてチ
ェック弁101の左側面に作用する。他方、チェック弁
101と盲穴68aとの間の圧力室103にはスプール
64の絞り106、環状凹部68b、シート68の第2
絞り105より第3ポート43の圧力が流入してチェッ
ク弁101の右側面に作用する。そして、前記第2ポー
ト42の圧力と第3ポート43の圧力はほぼ同一である
からチェック弁101はバネ102でフリーピストン6
8に押しつけ保持される。
Next, the operation will be described. When driving straight ahead. When the main spool 49 of the directional control valve 22 of the left and right valve blocks 30-1 and 30-1 is slid to the left, the discharge pressure oil of the hydraulic pump 20 is the first port 39 and the pump port as shown in FIG. 44, the intermediate small diameter portion 120, the left cutout portion 121, the first load pressure detection port 45, the communication passage 122, the second load pressure detection port 46, the left cutout 123, the second small diameter portion 51, and the second actuator port 35. The return oil from one of the ports 88 a of 88 and the return oil from the other port 88 b of the other 88 flows out from the first actuator port 34, the first small diameter portion 51, and the left cutout 124 to the first tank port 47. The load pressure of the hydraulic motor for left and right traveling, which is the actuator 88, acts on the first pressure chamber 65 from the second actuator port 35, the second load pressure detection port 46, and the passage 58, and pushes the spool 64 to the right to make it stroke. ..
At this time, the pressure of the second port 42 is equal to the throttle 1 of the spool 64.
At 08, it is introduced into the spring chamber 107 of the check valve 101 and acts on the left side surface of the check valve 101. On the other hand, in the pressure chamber 103 between the check valve 101 and the blind hole 68a, the throttle 106 of the spool 64, the annular recess 68b, and the second seat 68 of the seat 68.
The pressure of the third port 43 flows from the throttle 105 and acts on the right side surface of the check valve 101. Since the pressure at the second port 42 and the pressure at the third port 43 are almost the same, the check valve 101 is a spring 102 and the free piston 6
It is pressed against 8 and held.

【0024】これによりスプール64の切欠溝109が
第2ポート42に開口して第1通路115で連通するか
ら左右の弁ブロック30−1,30−1に接続した左右
のアクチュエータ88,88である左右走行用油圧モー
タの負荷圧は第2ポート42と第1通路115で同一圧
力となり、しかもこの第2ポート42は開口100で第
3ポート43に連通するから、前記負荷圧が負荷圧検出
回路82に制御圧として供給されるので、左右のアクチ
ュエータ88の一方のポート88aに供給される流量が
同一となって直進走行できる。この時、図6において第
2通路116のポンプ吐出圧油はチェック弁119で第
3通路117に流れることを阻止される。
As a result, the notch groove 109 of the spool 64 is opened to the second port 42 and communicates with the first passage 115. Therefore, the left and right actuators 88 and 88 are connected to the left and right valve blocks 30-1 and 30-1. The load pressure of the left and right traveling hydraulic motors becomes the same pressure in the second port 42 and the first passage 115, and since the second port 42 communicates with the third port 43 at the opening 100, the load pressure is detected by the load pressure detection circuit. Since it is supplied to 82 as a control pressure, the flow rate supplied to one port 88a of the left and right actuators 88 is the same, and the vehicle can travel straight. At this time, in FIG. 6, the pump discharge pressure oil in the second passage 116 is blocked by the check valve 119 from flowing into the third passage 117.

【0025】前述の直進走行状態で旋回用油圧モータに
圧油を供給する弁ブロック30−2の方向制御弁22の
主スプール49を左方に摺動すると図5のように油圧ポ
ンプ20の吐出圧油がその弁ブロック30−2の第1ポ
ート39より前述と同様にして第2アクチュエータポー
ト35よりアクチュエータ88である旋回用油圧モータ
に供給され、その戻り油は前述と同様に第1アクチュエ
ータポート34より第1タンクポート47に流出する。
この時、旋回駆動負荷は走行負荷より大きいので油圧ポ
ンプ20の吐出圧が上昇しようとするが、油圧ポンプ2
0の吐出圧油の一部はポンプポート44、第3通路11
7、絞り118、チェック弁119、第2通路116よ
り左右の弁ブロック30−1,30−1のポンプポート
44にバイパスし、前述と同様に左右走行用油圧モータ
に流れるから油圧ポンプ20の吐出圧が旋回駆動圧によ
って上昇することが低減され、油圧ポンプ20の吐出量
が急激に大幅に減少しないので左右走行用油圧モータへ
の流量が急激に減少せずに大きな減速ショックが生じな
い。
When the main spool 49 of the directional control valve 22 of the valve block 30-2 for supplying pressure oil to the turning hydraulic motor in the above straight running state is slid to the left, the hydraulic pump 20 discharges as shown in FIG. Pressure oil is supplied from the first port 39 of the valve block 30-2 to the swing hydraulic motor that is the actuator 88 from the second actuator port 35 in the same manner as described above, and the return oil is similar to that described above in the first actuator port. It flows from 34 to the first tank port 47.
At this time, since the turning drive load is larger than the traveling load, the discharge pressure of the hydraulic pump 20 tends to rise.
A part of the discharge pressure oil of 0 is the pump port 44 and the third passage 11
7, the throttle 118, the check valve 119, and the second passage 116 are bypassed to the pump ports 44 of the left and right valve blocks 30-1 and 30-1 and flow to the left and right traveling hydraulic motors as described above, so that the discharge of the hydraulic pump 20 is performed. The pressure is prevented from rising due to the swing drive pressure, and the discharge amount of the hydraulic pump 20 does not drastically and drastically decrease. Therefore, the flow rate to the left and right traveling hydraulic motor does not drastically decrease, and a large deceleration shock does not occur.

【0026】前記左右走行用油圧モータへのバイパス量
は絞り118によって調整される。また、第3通路11
7に設けたチェック弁119によって左右の弁ブロック
30−1,30−1のポンプポート44から弁ブロック
30−2のポンプポート44に圧油が流れることが阻止
されるので、パワーショベルが走行登坂しながら上部車
体を坂下側に旋回した時に、その旋回初期に弁ブロック
30−1のポンプポート44の圧油が弁ブロク30−2
の入口ポート44に流れて旋回用油圧モータに供給され
ることがないので、上部車体が急激に旋回開始すること
を防止できる。しかし、このことが実用上問題がなけれ
ばチェック弁119は設けなくとも良い。また、旋回用
油圧モータに単独で油圧ポンプ20の吐出圧油を供給す
る場合には弁ブロック30−2のポンプポート44より
第3通路117、絞り118、チェック弁119より第
2通路116で通って弁ブロック30−1のポンプポー
ト44に圧油の一部が流れるが、この時弁ブロック30
−1の方向制御弁22の主スプール49は中立位置であ
るから何ら問題がない。
The bypass amount to the left and right traveling hydraulic motors is adjusted by the diaphragm 118. Also, the third passage 11
The check valve 119 provided in FIG. 7 prevents pressure oil from flowing from the pump ports 44 of the left and right valve blocks 30-1 and 30-1 to the pump port 44 of the valve block 30-2. However, when the upper body is turned to the downhill side, the pressure oil in the pump port 44 of the valve block 30-1 is released from the valve block 30-2 at the beginning of the turn.
Since it does not flow into the inlet port 44 of the vehicle and is not supplied to the turning hydraulic motor, it is possible to prevent the upper vehicle body from rapidly turning. However, if this is not a practical problem, the check valve 119 may not be provided. When supplying the discharge hydraulic fluid of the hydraulic pump 20 to the turning hydraulic motor alone, the valve block 30-2 passes through the pump passage 44 through the third passage 117, the throttle 118, and the check valve 119 through the second passage 116. Part of the pressure oil flows through the pump port 44 of the valve block 30-1.
Since the main spool 49 of the -1 direction control valve 22 is in the neutral position, there is no problem.

【0027】左右旋回走行時。前述の直進走行状態から
右側の弁ブロック30−1の方向制御弁22の主スプー
ル49を中立位置に向けて右方に摺動すると、第2負荷
圧検出ポート46と第2アクチュエータポート35との
開口面積が小さくなるため右側のアクチュエータ88の
一方のポート88aに流れる流量が減少する。この結
果、右側のアクチュエータ88の負荷圧が低下して右側
の弁ブロック30−1の減圧弁部24の第1圧力室65
の圧力が低下し、そのスプール64は第2圧力室66に
負荷圧検出路82で供給されている左側の弁ブロック3
0の第2圧力室66内の負荷圧(つまり制御圧)により
左方に押されて第2ポート42と第1圧力室65が切欠
溝109によって連通されなくなるから、左右側の負荷
圧が同圧にならずに右側のアクチュエータ88の負荷圧
が低く、左側のアクチュエータ88の負荷圧が高くなっ
て右旋回走行する。この時、右側の弁ブロック30−1
の減圧弁部24のチェック弁101のバネ室102には
通路115、第2ポート42、絞り108より左側のア
クチュエータ88である左走行用油圧モータの負荷圧が
導入されてチェック弁101の左側面に作用する。他
方、チェック弁101の右側面には負荷圧検出路82、
第3ポート43、スプール64の絞り106、第2絞り
105より制御圧が作用するが、この制御圧は左側のア
クチュエータ88である左走行用油圧モータの負荷圧と
ほぼ等しいからチェック弁101はシート68に押しつ
けた状態となる。
During left / right turning. When the main spool 49 of the directional control valve 22 of the right valve block 30-1 is slid rightward from the straight running state described above, the second load pressure detection port 46 and the second actuator port 35 are separated from each other. Since the opening area becomes smaller, the flow rate flowing to one port 88a of the actuator 88 on the right side decreases. As a result, the load pressure of the actuator 88 on the right side decreases and the first pressure chamber 65 of the pressure reducing valve section 24 of the valve block 30-1 on the right side decreases.
Is reduced, and the spool 64 is supplied to the second pressure chamber 66 through the load pressure detection path 82.
The load pressure (that is, the control pressure) in the second pressure chamber 66 of 0 is pushed to the left and the second port 42 and the first pressure chamber 65 are not communicated by the notch groove 109, so that the load pressures on the left and right sides are the same. The load pressure of the actuator 88 on the right side is low without increasing the pressure, and the load pressure of the actuator 88 on the left side is high, so that the vehicle turns right. At this time, the right valve block 30-1
The left side surface of the check valve 101 is introduced into the spring chamber 102 of the check valve 101 of the pressure reducing valve section 24 by introducing the load pressure of the left traveling hydraulic motor that is the actuator 88 on the left side of the passage 115, the second port 42, and the throttle 108. Act on. On the other hand, on the right side surface of the check valve 101, the load pressure detection path 82,
Control pressure is applied from the third port 43, the throttle 106 of the spool 64, and the second throttle 105. Since the control pressure is substantially equal to the load pressure of the left traveling hydraulic motor that is the left actuator 88, the check valve 101 is seated. It is pressed against 68.

【0028】図5と図6において、チェック弁部23の
スプール60に第1ポート39とポンプポート44を連
通・遮断する小径部150を形成してスプール60を右
方に押す圧力室151と第1ポート39と区画し、スプ
ール60に形成したダンパ用絞り152と連通孔153
で第1ポート39に連通する。これにより、スプール6
0が右方、左方に摺動する時に第1ポート39と圧力室
151との間にダンパ用絞り152を通して圧油が流れ
るから、スプール60が急激に左方、右方に摺動するこ
とを防止できる。
5 and 6, the spool 60 of the check valve portion 23 is formed with a small diameter portion 150 for communicating and blocking the first port 39 and the pump port 44, and the pressure chamber 151 for pushing the spool 60 to the right and the first portion. The damper diaphragm 152 and the communication hole 153 formed on the spool 60 by partitioning from the one port 39
Communicates with the first port 39. This allows the spool 6
When 0 slides to the right and left, pressure oil flows between the first port 39 and the pressure chamber 151 through the damper throttle 152, so that the spool 60 suddenly slides to the left and right. Can be prevented.

【0029】[0029]

【発明の効果】左右の弁ブロック30−1,30−1の
主スプール49を操作して左右の走行用油圧モータに油
圧ポンプ20の吐出圧油を供給している状態で弁ブロッ
ク30−2の主スプール49を操作して旋回用油圧モー
タに油圧ポンプ20の吐出圧油を供給すると、その旋回
駆動圧によって油圧ポンプ20の吐出圧油が上昇しよう
とするが、その圧油の一部がポンプポート44、第3通
路117、第2通路116より左右の弁ブロック30−
1,30−1のポンプポート44より左右走行用油圧モ
ータにバイパスして圧力上昇が低減され、油圧ポンプ2
0の吐出量が急激に大幅に低下しない。したがって、走
行中に旋回動作しても大きな減速ショックが生じない。
また、各弁ブロック30のポンプポート44を第3・第
2通路117,116で連通しただけであって、どの弁
ブロック30の主スプールを操作したかを判断するロジ
ック回路が不要となるから構造簡単である。
The main spool 49 of the left and right valve blocks 30-1, 30-1 is operated to supply the discharge pressure oil of the hydraulic pump 20 to the left and right hydraulic motors for traveling, and the valve block 30-2. If the discharge pressure oil of the hydraulic pump 20 is supplied to the swing hydraulic motor by operating the main spool 49 of the above, the discharge pressure oil of the hydraulic pump 20 tries to rise due to the swing drive pressure, but a part of the pressure oil is The valve blocks 30 on the left and right of the pump port 44, the third passage 117, and the second passage 116
The pressure rise is reduced by bypassing the left and right hydraulic motors from the pump ports 44 of the hydraulic pumps 1 and 30-1.
The discharge amount of 0 does not decrease sharply. Therefore, a large deceleration shock does not occur even if the vehicle makes a turning motion during traveling.
Further, since the pump port 44 of each valve block 30 is simply communicated with the third and second passages 117 and 116, a logic circuit for determining which valve block 30 the main spool is operated becomes unnecessary. It's easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の圧油供給装置の回路図である。FIG. 1 is a circuit diagram of a conventional pressure oil supply device.

【図2】先に出願した圧油供給装置の回路図である。FIG. 2 is a circuit diagram of a pressure oil supply device previously applied.

【図3】圧力補償弁と方向制御弁の具体例を示す断面図
である。
FIG. 3 is a cross-sectional view showing a specific example of a pressure compensation valve and a direction control valve.

【図4】本発明の実施例を示す走行用油圧モータ用の弁
ブロックの断面図である。
FIG. 4 is a cross-sectional view of a valve block for a traveling hydraulic motor showing an embodiment of the present invention.

【図5】本発明の実施例を示す作業機シリンダ用の弁ブ
ロックの断面図である。
FIG. 5 is a sectional view of a valve block for a working machine cylinder showing an embodiment of the present invention.

【図6】各弁ブロックを接続した状態の説明図である。FIG. 6 is an explanatory diagram of a state in which each valve block is connected.

【符号の説明】[Explanation of symbols]

20…油圧ポンプ、21…吐出路、22…方向制御弁、
23…チェック弁部、24…減圧弁部、25…圧力補償
弁、30…弁ブロック、31…スプール孔、34…第1
アクチュエータポート、35…第2アクチュエータポー
ト、37…チェック弁用孔、38…減圧弁用孔、39…
第1ポート、42…第2ポート、43…第3ポート、4
4…ポンプポート、45…第1負荷圧検出ポート、46
…第2負荷圧検出ポート、47…第1タンクポート、4
8…第2タンクポート、49…主スプール、53…第1
油路、54…第2油路、56…油孔、58…油孔、60
…スプール、64…スプール、65…第1圧力室、66
…第2圧力室、69…ばね、82…負荷圧検出路、88
…アクチュエータ、115…第1通路、116…第2通
路、117…第3通路。
20 ... Hydraulic pump, 21 ... Discharge passage, 22 ... Direction control valve,
23 ... Check valve part, 24 ... Pressure reducing valve part, 25 ... Pressure compensation valve, 30 ... Valve block, 31 ... Spool hole, 34 ... First
Actuator port, 35 ... Second actuator port, 37 ... Check valve hole, 38 ... Pressure reducing valve hole, 39 ...
1st port, 42 ... 2nd port, 43 ... 3rd port, 4
4 ... Pump port, 45 ... First load pressure detection port, 46
… Second load pressure detection port, 47… First tank port, 4
8 ... Second tank port, 49 ... Main spool, 53 ... First
Oil passage, 54 ... Second oil passage, 56 ... Oil hole, 58 ... Oil hole, 60
... Spool, 64 ... Spool, 65 ... First pressure chamber, 66
... second pressure chamber, 69 ... spring, 82 ... load pressure detection path, 88
... actuator, 115 ... first passage, 116 ... second passage, 117 ... third passage.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 弁ブロック30にスプール孔31とチェ
ック弁用孔37と減圧弁用孔38を形成し、前記弁ブロ
ック30にはスプール孔31に開口したポンプポート4
4、第1・第2負荷圧検出ポート45,46、第1・第
2アクチュエータポート34,35、第1・第2タンク
ポート47,48をそれぞれ形成し、このスプール孔3
1に各ポートを連通・遮断する主スプール49を嵌挿し
て方向制御弁22とし、 前記弁ブロック30にはチェック弁用孔37に開口した
第1ポート39及びチェック弁用孔37をポンプポート
44に連通する油路56を形成し、そのチェック弁用孔
37に第1ポート39と油路56を連通・遮断し、かつ
遮断位置でストップされるスプール60を挿入してチェ
ック弁部23とし、 前記弁ブロック30には減圧弁用孔38に開口する第2
・第3ポート42,43を形成し、この減圧弁用孔38
にスプール64を嵌挿して第1圧力室65と第2圧力室
66を形成し、その第1圧力室65を第2負荷圧検出ポ
ート46に連通し、第2圧力室66を第3ポート43に
連通し、前記スプール64をばね69で一方向に付勢し
て前記チェック弁部23のスプール60を遮断位置に押
しつけ保持して減圧弁部24とし、この減圧弁部24と
前記チェック弁部23で圧力補償弁25とし、 油圧ポンプ20の吐出路21を、左右走行用油圧モータ
に圧油を供給する左右の弁ブロック30−1,30−1
の第1ポート39と旋回用油圧モータに圧油を供給する
弁ブロック30−2の第1ポート39と第2ポート42
にそれぞれ接続し、前記左右の弁ブロック30−1,3
0−1の第2ポート42相互を第1通路115で連通
し、ポンプポート44を第2通路116で連通し、この
第2通路116を第3通路117で前記弁ブロック30
−2のポンプポート44に連通して成る圧油供給装置。
1. A spool hole 31, a check valve hole 37 and a pressure reducing valve hole 38 are formed in a valve block 30, and a pump port 4 opened in the spool hole 31 in the valve block 30.
4, first and second load pressure detection ports 45 and 46, first and second actuator ports 34 and 35, and first and second tank ports 47 and 48, respectively.
The main spool 49 that connects and disconnects each port is fitted into the directional control valve 22 to form a directional control valve 22, and the valve block 30 includes a first port 39 opened in the check valve hole 37 and a check valve hole 37. Forming an oil passage 56 communicating with the first valve 39 and the oil passage 56 in the check valve hole 37, and inserting the spool 60 that is stopped at the cutoff position into the check valve portion 23, The valve block 30 is provided with a second opening 38 for reducing the pressure reducing valve.
-The third port 42, 43 is formed, and the pressure reducing valve hole 38 is formed.
The first pressure chamber 65 and the second pressure chamber 66 are formed by inserting the spool 64 into the first pressure chamber 65, the first pressure chamber 65 is communicated with the second load pressure detection port 46, and the second pressure chamber 66 is connected to the third port 43. And the spool 64 of the check valve portion 23 is pressed and held in the shut-off position to form the pressure reducing valve portion 24, and the pressure reducing valve portion 24 and the check valve portion are connected to each other. A pressure compensating valve 25 is provided at 23, and the discharge passage 21 of the hydraulic pump 20 is provided with left and right valve blocks 30-1 and 30-1 for supplying pressure oil to the left and right traveling hydraulic motors.
First port 39 and the first port 39 and second port 42 of the valve block 30-2 for supplying pressure oil to the turning hydraulic motor.
To the left and right valve blocks 30-1, 3 respectively.
The 0-1 second ports 42 are communicated with each other through the first passage 115, the pump port 44 is communicated with the second passage 116, and the second passage 116 is communicated through the third passage 117.
-2 is a pressure oil supply device which is connected to the pump port 44.
JP04161931A 1992-05-29 1992-05-29 Pressure oil supply device Expired - Fee Related JP3116564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04161931A JP3116564B2 (en) 1992-05-29 1992-05-29 Pressure oil supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04161931A JP3116564B2 (en) 1992-05-29 1992-05-29 Pressure oil supply device

Publications (2)

Publication Number Publication Date
JPH05332315A true JPH05332315A (en) 1993-12-14
JP3116564B2 JP3116564B2 (en) 2000-12-11

Family

ID=15744761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04161931A Expired - Fee Related JP3116564B2 (en) 1992-05-29 1992-05-29 Pressure oil supply device

Country Status (1)

Country Link
JP (1) JP3116564B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995009282A1 (en) * 1993-09-28 1995-04-06 Komatsu Ltd. Pressure oil supply apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995009282A1 (en) * 1993-09-28 1995-04-06 Komatsu Ltd. Pressure oil supply apparatus
GB2300027A (en) * 1993-09-28 1996-10-23 Komatsu Mfg Co Ltd Pressure oil supply apparatus
GB2300027B (en) * 1993-09-28 1998-01-21 Komatsu Mfg Co Ltd Pressurized fluid feed system
US5794510A (en) * 1993-09-28 1998-08-18 Komatsu Ltd. Pressurized fluid feed system

Also Published As

Publication number Publication date
JP3116564B2 (en) 2000-12-11

Similar Documents

Publication Publication Date Title
US5533334A (en) Pressurized fluid supply system
JP2557000B2 (en) Control valve device
US4531369A (en) Flushing valve system in closed circuit hydrostatic power transmission
US5784885A (en) Pressurized fluid supply system
US5535663A (en) Operating valve assembly with pressure compensation valve
KR940008818B1 (en) Hydraulic circuit
JP3116564B2 (en) Pressure oil supply device
JP3119317B2 (en) Pressure oil supply device
JP3454313B2 (en) Pressure oil supply device
JPH05332311A (en) Pressure oil supply device
JP3119316B2 (en) Pressure oil supply device
JPH05332312A (en) Pressure oil supply device
JPH05332306A (en) Pressure oil supply device
JPH05332305A (en) Pressure oil supply device
JPH05332308A (en) Pressure oil supply device
JP2577676Y2 (en) Pressure oil supply device
JPH05332314A (en) Pressure oil supply device
JP2577675Y2 (en) Pressure oil supply device
JP2556999B2 (en) Hydraulic circuit
JPH0444121B2 (en)
JPH05332307A (en) Suction safety structure for pressure oil supply device
JP2578622Y2 (en) Directional control valve device with pressure compensating valve
JPH0777203A (en) Pressure oil supply device
JPH0625682Y2 (en) Poppet type fluid control valve
JPH0643301U (en) Directional control valve device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081006

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081006

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091006

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091006

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20101006

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20111006

LAPS Cancellation because of no payment of annual fees