JPH0777203A - Pressure oil supply device - Google Patents

Pressure oil supply device

Info

Publication number
JPH0777203A
JPH0777203A JP5161468A JP16146893A JPH0777203A JP H0777203 A JPH0777203 A JP H0777203A JP 5161468 A JP5161468 A JP 5161468A JP 16146893 A JP16146893 A JP 16146893A JP H0777203 A JPH0777203 A JP H0777203A
Authority
JP
Japan
Prior art keywords
pressure
port
hydraulic pump
pump
check valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5161468A
Other languages
Japanese (ja)
Inventor
Mitsumasa Akashi
光正 明石
Toshio Takano
年郎 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP5161468A priority Critical patent/JPH0777203A/en
Publication of JPH0777203A publication Critical patent/JPH0777203A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Non-Deflectable Wheels, Steering Of Trailers, Or Other Steering (AREA)

Abstract

PURPOSE:To reduce a speed drop at the time of turning in the case where an engine for driving a hydraulic pump for supplying pressure oil to right and left travelling hydraulic motors drives an auxiliary hydraulic pump to operate a blade. CONSTITUTION:Discharged pressure oil from a hydraulic pump 20 is supplied from check valve parts 23 and pressure reducing valve parts 24 to right and left travelling hydraulic motors 88-1, 88-2 by pressure-compensated valves 25 and directional control valves 22. An auxiliary hydraulic pump 1 is driven by an engine for driving the hydraulic pump 20, and the discharged pressurized oil of the auxiliary hydraulic pump expands and contracts a blade cylinder 3 to operate a blade 4. The discharge path 5 of the auxiliary hydraulic pump 1 is communicated respectively with the ports 44 of the right and left directional control valves 22 through pipe-lines 8 having check valves 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は1つの油圧ポンプの吐出
圧油を左右の走行用油圧モータに供給すると共に、補助
油圧ポンプの吐出圧油をブレードシリンダに供給する圧
油供給装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure oil supply device for supplying discharge hydraulic oil from one hydraulic pump to left and right traveling hydraulic motors and supplying discharge hydraulic oil from an auxiliary hydraulic pump to a blade cylinder.

【0002】[0002]

【従来の技術】1つの油圧ポンプの吐出圧油を複数のア
クチュエータに供給する圧油供給装置としては例えば図
1に示すものが知られている。かかる圧油供給装置は図
1に示すように、油圧ポンプ20の吐出路21に複数の
方向制御弁22を設け、この各方向制御弁22の入口側
にチェック弁部23と減圧弁部24より成る圧力補償弁
25をそれぞれ設けたものであり、この方向制御弁22
と圧力補償弁25は図2に示すように構成してある。
2. Description of the Related Art As a pressure oil supply device for supplying pressure oil discharged from one hydraulic pump to a plurality of actuators, for example, one shown in FIG. 1 is known. As shown in FIG. 1, such a pressure oil supply device is provided with a plurality of directional control valves 22 in a discharge passage 21 of a hydraulic pump 20, and a check valve portion 23 and a pressure reducing valve portion 24 are provided on the inlet side of each directional control valve 22. Each of which is provided with a pressure compensating valve 25.
The pressure compensating valve 25 is constructed as shown in FIG.

【0003】すなわち、図2に示すように、弁ブロック
30は略直方体形状となり、この弁ブロック30の上部
寄りにスプール孔31が左右側面32,33に開口して
形成され、このスプール31に開口した第1・第2アク
チュエータポート34,35が上面36に開口して形成
してあり、弁ブロック30の下部寄りには左側面32に
開口したチェック弁用孔37と右側面33に開口した減
圧弁用孔38が同心状に形成され、前記チェック弁用孔
37に開口した第1ポート39が前後面に開口して形成
され、前記減圧弁用孔38に開口した第2、第3ポート
42,43が前後面に開口して形成してあり、複数の弁
ブロック30の前後面を突き合せて連結すると各第1・
第2・第3ポート39,42,43が連通するようにし
てある。
That is, as shown in FIG. 2, the valve block 30 has a substantially rectangular parallelepiped shape, and a spool hole 31 is formed in the left and right side surfaces 32 and 33 near the upper portion of the valve block 30, and the spool 31 is opened. The first and second actuator ports 34 and 35 are formed so as to open in the upper surface 36, and a check valve hole 37 opened in the left side surface 32 and a pressure reducing opening in the right side surface 33 are formed near the lower part of the valve block 30. The valve hole 38 is formed concentrically, the first port 39 opening to the check valve hole 37 is formed to open on the front and rear surfaces, and the second and third ports 42 opening to the pressure reducing valve hole 38. , 43 are formed with openings in the front and rear surfaces, and when the front and rear surfaces of the plurality of valve blocks 30 are butted and connected to each other,
The second and third ports 39, 42, 43 communicate with each other.

【0004】前記弁ブロック30にはスプール孔31に
開口したポンプポート44、第1・第2負荷圧検出ポー
ト45,46、前記第1・第2アクチェユータポート3
4,35、第1、第2タンクポート47,48が形成さ
れ、そのスプール孔31に嵌挿した主スプール49には
第1・第2小径部50,51と連通用溝52が形成して
あり、主スプール49には第1・第2負荷圧検出ポート
45,46を常時連通する第1油路53及び第2負荷圧
検出ポート46と第2タンクポート48を連通・遮断す
る第2油路54が形成され、スプール49はスプリング
で各ポートを遮断し、第2油路54で第2負荷圧検出ポ
ート46と第2タンクポート48を連通する中立位置に
保持され、スプール49を右方に摺動すると第2小径部
51で第2アクチュエータポート35を第2タンクポー
ト48に連通し、連通用溝52でポンプポート44が第
2負荷圧検出ポート46に連通し、第1小径部50で第
1アクチュエータポート34が第1負荷圧検出ポート4
5に連通し、かつ第2負荷圧検出ポート46と第2タン
クポート48が遮断する第1圧油供給位置となり、スプ
ール49を左方に摺動すると第1小径部50で第1アク
チュエータポート34を第1タンクポート47に連通
し、連通用溝52でポンプポート44が第1負荷圧検出
ポート45に連通し、第2小径部51で第2アクチュエ
ータポート35が第2負荷圧検出ポート46に連通し、
かつ第2負荷圧検出ポート46と第2タンクポート48
が遮断する第2圧油供給位置となって方向制御弁22を
構成している。
The valve block 30 has a pump port 44 opened in the spool hole 31, first and second load pressure detection ports 45 and 46, and first and second actuator ports 3
4, 35, first and second tank ports 47 and 48 are formed, and first and second small diameter portions 50 and 51 and a communication groove 52 are formed in the main spool 49 fitted in the spool hole 31. Yes, the main spool 49 has a first oil passage 53 that constantly connects the first and second load pressure detection ports 45 and 46, and a second oil that connects and disconnects the second load pressure detection port 46 and the second tank port 48. The passage 54 is formed, the spool 49 blocks each port with a spring, and is held in the neutral position where the second load pressure detection port 46 and the second tank port 48 communicate with each other by the second oil passage 54. Sliding on the second small diameter portion 51 communicates the second actuator port 35 with the second tank port 48, the communication groove 52 allows the pump port 44 to communicate with the second load pressure detection port 46, and the first small diameter portion 50. With the first actuator Over door 34 is the first load pressure detection port 4
When the spool 49 slides leftward, the first small diameter portion 50 causes the first actuator port 34 to communicate with the first actuator port 34. To the first tank port 47, the communication groove 52 connects the pump port 44 to the first load pressure detection port 45, and the second small diameter portion 51 connects the second actuator port 35 to the second load pressure detection port 46. Communication,
And the second load pressure detection port 46 and the second tank port 48
The directional control valve 22 is configured to be the second pressure oil supply position where it is shut off.

【0005】前記チェック弁用孔37は油路56でポン
プポート44に開口し、そのチェック弁用孔37には前
記第1ポート39とポンプポート44を連通遮断する弁
60が嵌挿され、その弁60はプラグ61に設けたスト
ッパ杆62で図示位置より左方に摺動しないように規制
されて遮断位置に保持されてチェック弁部23を構成し
ている。前記減圧弁用孔38は第4ポート57と油路5
8で第2負荷圧検出ポート46に連通し、この減圧弁用
孔38にはスプール64が嵌挿されて第1圧力室65と
第2圧力室66を形成し、第1圧力室65は第4ポート
57に連通し、第2圧力室66は第3ポート43に連通
し、前記スプール64の盲穴67に挿入したフリーピス
トン68と盲穴67底部との間にばね69が設けられて
フリーピストン68はプラグ70に当接し、かつスプー
ル64に一体的に設けた押杆71が透孔72より突出し
て前記弁60をストッパ杆62に当接しており、前記ス
プール64には第2ポート42を盲穴67に連通する細
孔73が形成されて減圧弁部24を構成し、この減圧弁
部24と前記チェック弁部23とで圧力補償弁25を構
成している。
The check valve hole 37 is opened to the pump port 44 by the oil passage 56, and the check valve hole 37 is fitted with a valve 60 for shutting off the communication between the first port 39 and the pump port 44. The valve 60 is restricted by a stopper rod 62 provided on the plug 61 so as not to slide to the left from the illustrated position, and is held at the cutoff position to form the check valve portion 23. The pressure reducing valve hole 38 is provided with the fourth port 57 and the oil passage 5.
8 communicates with the second load pressure detection port 46, and the pressure reducing valve hole 38 is fitted with the spool 64 to form a first pressure chamber 65 and a second pressure chamber 66. The second pressure chamber 66 communicates with the third port 43, and the spring 69 is provided between the free piston 68 inserted into the blind hole 67 of the spool 64 and the bottom portion of the blind hole 67. The piston 68 abuts on the plug 70, and the pushing rod 71 integrally provided on the spool 64 projects from the through hole 72 to abut the valve 60 on the stopper rod 62. The spool 64 has a second port 42. The pressure reducing valve portion 24 and the check valve portion 23 form a pressure compensating valve 25 by forming a fine hole 73 communicating with the blind hole 67.

【0006】そして、図1に示すように油圧ポンプ20
の吐出路21を第1ポート39、第2ポート42に連通
し、第3ポート43に負荷圧検出路82を接続し、第1
・第2アクチュエータポート34,35にアクチュエー
タ88が接続してある。図2において、83は油圧ポン
プ80の吐出流量を制御する斜板、84はサーボシリン
ダ、85はポンプ調整用方向制御弁である。
As shown in FIG. 1, the hydraulic pump 20
The discharge passage 21 of the first port 39 and the second port 42, and the load pressure detection passage 82 is connected to the third port 43.
-The actuator 88 is connected to the second actuator ports 34 and 35. In FIG. 2, 83 is a swash plate that controls the discharge flow rate of the hydraulic pump 80, 84 is a servo cylinder, and 85 is a directional control valve for pump adjustment.

【0007】次に作動を図1に基づいて説明する。 方向制御弁22が中立位置Aのとき。 油圧ポンプ20によってタンク86から吸上げられた油
は、吐出路21を通ってチェック弁部23の開く方向の
圧力室aに案内される。この時、減圧弁部24の圧力室
65,66は、ともにタンク86に通じているので、こ
の圧力室65,66の圧力はともにゼロで、よって減圧
弁部24は、弱いばね69によって押され杆体71がチ
ェック弁部23に当接しているだけである。一方、ポン
プ吐出圧は、ポンプ調整用方向制御弁85のばね87に
よって負荷圧検出路82の圧力との差圧がある一定に保
たれる。いま、この差圧を20kg/cm2 とすると負
荷圧検出路82の圧力はゼロなので、ポンプ吐出圧は2
0kg/cm2 まで上昇し、同時にチェック弁部23の
圧力室aにポンプ吐出圧が流入して方向制御弁22の入
口圧(チェック弁部63の出口圧)がポンプ吐出圧と等
しくなるまでストロークし、等しくなれば、弱いばね6
9によってレシートする。減圧弁部24は、ストローク
エンド時のみ、ポンプ吐出路81と圧力室66を連通さ
せる一方、チェック弁部23は、ストロークエンドに達
する前に、ポンプ吐出路81と出口側を連通させるの
で、方向制御弁22が中立位置Aのときは、ポンプ吐出
路21と圧力室66が連通することはなく、圧力室65
の圧力はゼロのままである。
Next, the operation will be described with reference to FIG. When the directional control valve 22 is in the neutral position A. The oil sucked up from the tank 86 by the hydraulic pump 20 is guided through the discharge passage 21 to the pressure chamber a in the opening direction of the check valve portion 23. At this time, since the pressure chambers 65 and 66 of the pressure reducing valve portion 24 are both communicated with the tank 86, the pressures of the pressure chambers 65 and 66 are both zero, so the pressure reducing valve portion 24 is pushed by the weak spring 69. The rod 71 is only in contact with the check valve portion 23. On the other hand, the pump discharge pressure is kept constant by the spring 87 of the pump adjustment directional control valve 85, which has a differential pressure from the pressure of the load pressure detection path 82. Now, assuming that this differential pressure is 20 kg / cm 2 , the pressure in the load pressure detection path 82 is zero, so the pump discharge pressure is 2
The stroke is increased to 0 kg / cm 2 and at the same time, the pump discharge pressure flows into the pressure chamber a of the check valve unit 23 and the inlet pressure of the directional control valve 22 (the outlet pressure of the check valve unit 63) becomes equal to the pump discharge pressure. And if equal, weak spring 6
Receipt by 9. The pressure reducing valve portion 24 connects the pump discharge passage 81 and the pressure chamber 66 only at the stroke end, while the check valve portion 23 connects the pump discharge passage 81 and the outlet side before reaching the stroke end. When the control valve 22 is in the neutral position A, the pump discharge passage 21 and the pressure chamber 66 do not communicate with each other, and the pressure chamber 65
The pressure remains at zero.

【0008】方向制御弁22のいずれか一方のみ第1
圧油供給位置Bにストロークさせるとき。 いま、左側の方向制御弁22を第1圧油供給位置Bにス
トロークさせ、右側の方向制御弁22は、中立位置Aと
する。方向制御弁22をストロークさせポンプポート4
4と第1アクチュエータポート34を接続させ、同時
に、第2アクチュエータ35と第2タンクポート48を
接続させる。この時第1アクチュエータポート34とア
クチュエータ88を接続する導管89内の圧力(負荷
圧)がポンプ吐出圧(20kg/cm2 )より大きいと
きはチェック弁部23が圧力室bの圧力でレシートする
ため、アクチュエータ88の自然降下を防止することが
できる。アクチュエータ88の導管89の圧力、すなわ
ち負荷圧が第1油路53、通路58より減圧弁部24の
一方の圧力室65に導かれる。他方の圧力室66の圧力
はゼロであるため、減圧弁部24は、チェック弁部23
から解離する方向にストロークエンドまでストローク
し、減圧弁部24の絞りを介して、ポンプ吐出路21と
負荷圧検出路82が連通する。前記導管89内の圧力
(負荷圧)がポンプ吐出圧(=20kg/cm2 )より
大きいときは、チェック弁部23の圧力室bの圧力で閉
じ、その圧力が、減圧弁部24の一方の圧力室65に導
かれるため、他方の圧力室66とポンプ吐出路21が連
通しても、減圧弁部24はストロークしたままである。
一方、導管41内の圧力(負荷圧)がポンプ吐出圧(=
20kg/cm2 )より小さいときは、その負荷圧が減
圧弁部24の一方の圧力室65に導かれ、減圧弁部24
が一方の圧力室65の圧力でストロークするが、他方の
圧力室66の圧力が一方の圧力室65の圧力(すなわち
負荷圧)まで上昇すると、弱いばね69によって閉じチ
ェック弁部23に当接する。いずれの場合でも、減圧弁
部24は、一方の圧力室65内の圧力と他方の圧力室6
6内の圧力が等しくなるまで、ポンプ吐出路21と圧力
室66を連通させ、両圧力室65,66内の圧力が等し
くなれば弱いばね69によって閉じチェック弁部23に
当接する。結果として負荷圧検出路82内の圧力は、負
荷圧と等しくなり、ポンプ吐出圧は、ポンプ調整用方向
制御弁85によって、ある差圧(ここでは20kg/c
2 )分だけ、負荷圧検出路82内の圧力より高い圧力
に制御される。このポンプ吐出圧は、チェック弁部23
を介して、ポンプポート44に導かれているので、すな
わち、方向制御弁22の入口圧と出口圧(=負荷圧)の
間には、差圧(=20kg/cm2 )が保たれることに
なる。よって、方向制御弁22のストロークに伴なう入
口側と出口側の間の絞りの開口面積の変化によっての
み、アクチュエータ88へ供給される流量が制御され
る。方向制御弁22をストロークさせる際、アクチュエ
ータ88の導管89あるいは90と負荷圧導入用の第2
油路53が接続され、一方、第2油路53は、減圧弁部
24の一方の圧力室65と接続されているが、減圧弁部
24において負荷圧は、パイロット圧力(減圧弁部のセ
ット圧力)としてのみ使われるので、その圧力がぬける
ことはなく、すなわち、方向制御弁22をストロークさ
せた際、負荷圧がぬけることによるアクチュエータ88
の自然降下はない。
Only one of the directional control valves 22 has a first
When making a stroke to the pressure oil supply position B. Now, the left direction control valve 22 is stroked to the first pressure oil supply position B, and the right direction control valve 22 is set to the neutral position A. Stroke the direction control valve 22 to pump port 4
4 and the first actuator port 34 are connected, and at the same time, the second actuator 35 and the second tank port 48 are connected. At this time, when the pressure (load pressure) in the conduit 89 connecting the first actuator port 34 and the actuator 88 is higher than the pump discharge pressure (20 kg / cm 2 ), the check valve portion 23 receives the pressure in the pressure chamber b. It is possible to prevent the actuator 88 from naturally descending. The pressure of the conduit 89 of the actuator 88, that is, the load pressure, is introduced into the pressure chamber 65 of the pressure reducing valve portion 24 from the first oil passage 53 and the passage 58. Since the pressure in the other pressure chamber 66 is zero, the pressure reducing valve unit 24 is
Strokes in the direction of disengagement from the stroke end to the stroke end, and the pump discharge passage 21 and the load pressure detection passage 82 communicate with each other via the throttle of the pressure reducing valve portion 24. When the pressure (load pressure) in the conduit 89 is higher than the pump discharge pressure (= 20 kg / cm 2 ), the pressure is closed by the pressure in the pressure chamber b of the check valve portion 23, and the pressure is one of the pressure reducing valve portions 24. Since it is guided to the pressure chamber 65, even if the other pressure chamber 66 and the pump discharge passage 21 communicate with each other, the pressure reducing valve portion 24 remains stroked.
On the other hand, the pressure (load pressure) in the conduit 41 is equal to the pump discharge pressure (=
When the pressure is less than 20 kg / cm 2 ), the load pressure is guided to one pressure chamber 65 of the pressure reducing valve section 24, and
Strokes with the pressure of one pressure chamber 65, but when the pressure of the other pressure chamber 66 rises to the pressure of one pressure chamber 65 (that is, the load pressure), the weak spring 69 closes the check valve portion 23. In any case, the pressure reducing valve section 24 is configured to change the pressure in the pressure chamber 65 on one side and the pressure chamber 6 on the other side.
The pump discharge passage 21 and the pressure chamber 66 are made to communicate with each other until the pressures in 6 become equal, and when the pressures in both pressure chambers 65, 66 become equal, they are closed by the weak spring 69 and contact the check valve portion 23. As a result, the pressure in the load pressure detection path 82 becomes equal to the load pressure, and the pump discharge pressure is adjusted to a certain differential pressure (here, 20 kg / c by the pump adjustment directional control valve 85).
The pressure is controlled to be higher than the pressure in the load pressure detection path 82 by m 2 ). This pump discharge pressure is determined by the check valve 23
Since it is guided to the pump port 44 via the, that is, the differential pressure (= 20 kg / cm 2 ) is maintained between the inlet pressure and the outlet pressure (= load pressure) of the directional control valve 22. become. Therefore, the flow rate supplied to the actuator 88 is controlled only by the change in the opening area of the throttle between the inlet side and the outlet side due to the stroke of the directional control valve 22. When the directional control valve 22 is stroked, the conduit 89 or 90 of the actuator 88 and a second load pressure introducing second
The oil passage 53 is connected, while the second oil passage 53 is connected to one pressure chamber 65 of the pressure reducing valve portion 24. However, in the pressure reducing valve portion 24, the load pressure is the pilot pressure (setting of the pressure reducing valve portion). Since the pressure is not used, the pressure is not lost, that is, when the directional control valve 22 is stroked, the load pressure is removed and the actuator 88
There is no natural descent.

【0009】前記負荷圧検出路82はもう一方の方向制
御弁22に配設されている圧力補償弁25の減圧弁部2
4の他方の圧力室66にも接続されているが、減圧弁部
24の一方の圧力室65は、方向制御弁22の中立位置
Aによってタンク86と接続しているため、負荷圧導入
用の第1油路53内の圧力はゼロで、よって圧力室66
内の圧力によって減圧弁部24は、チェック弁部23を
閉じる方向に付勢する。一方、チェック弁部24を開く
方向の圧力室aには、ポンプ吐出路81よりポンプ吐出
圧が導かれるため、全体として、ポンプ吐出圧と負荷圧
検出路82内の圧力の差圧分(=20kg/cm2 )に
よってチェック弁部23及び減圧弁部24をチェック弁
部23の開く方向にストロークさせるが、わずかにスト
ロークしポンプポート44の圧力がその差圧(=20k
g/cm2 )になれば、弱いばね69によってレシート
し、結果として、ストロークエンドまで減圧弁部24が
ストロークすることはなく、方向制御弁22側の油圧制
御には、何ら影響することはない。
The load pressure detecting path 82 is provided in the other directional control valve 22 and the pressure reducing valve portion 2 of the pressure compensating valve 25 is arranged.
4 is also connected to the other pressure chamber 66, but one pressure chamber 65 of the pressure reducing valve portion 24 is connected to the tank 86 by the neutral position A of the directional control valve 22, and therefore is used for introducing load pressure. The pressure in the first oil passage 53 is zero, so the pressure chamber 66
The pressure reducing valve portion 24 urges the pressure reducing valve portion 24 in a direction to close the check valve portion 23. On the other hand, since the pump discharge pressure is guided from the pump discharge passage 81 to the pressure chamber a in the direction of opening the check valve portion 24, the difference between the pump discharge pressure and the pressure in the load pressure detection passage 82 (= 20 kg / cm 2 ), the check valve portion 23 and the pressure reducing valve portion 24 are stroked in the opening direction of the check valve portion 23, but they are slightly stroked so that the pressure at the pump port 44 is equal to the differential pressure (= 20 k).
g / cm 2 ), the weak spring 69 causes a receipt, and as a result, the pressure reducing valve section 24 does not stroke to the stroke end, and there is no influence on the hydraulic control of the directional control valve 22 side. .

【0010】方向制御弁22のいずれも第1圧油供給
位置Bにストロークさせるとき。 −各アクチュエータ88に必要とされる流量の合計
が油圧ポンプ20の最大吐出流量位置のとき。 いま、方向制御弁22をともに第1圧油供給位置Bにス
トロークさせ、各ポンプポート44と各導管89と各負
荷圧導用の第1油路53をそれぞれ接続させたとする。
一方の減圧弁部24は、圧力室66内の圧力が一方の圧
力室65内の圧力に等しくなるまで、また他方の減圧弁
部24は、圧力室66内の圧力が、一方の圧力室65内
の圧力に等しくなるまで、それぞれストロークエンドま
でストロークしたままである。いま、二つのアクチュエ
ータ88,88の負荷圧のうち、左側のアクチュエータ
88の負荷圧がより大きいとする。仮に、左側アクチュ
エータ26の負荷圧を100(kg/cm2 )、右側の
アクチュエータ27の負荷圧を10(kg/cm2 )と
する。負荷圧検出路82は、絞り91を介してタンク8
6と接続されているので、方向制御弁ストローク前は負
荷圧検出路82内の圧力はゼロである。よって、各減圧
弁部24は負荷圧検出用の第1油路53内の圧力によっ
てもストロークし、ポンプ吐出圧が圧力検出導管34内
の圧力と連通させる。負荷圧検出路82内の圧力が低圧
側である右側のアクチュエータ88の導管90内の圧力
(10kg/cm2 )まで上昇すると、まず、右方の圧
力補償弁25の減圧弁部24が閉じる。左方の圧力補償
弁25の減圧弁部24はストロークしたままであり、負
荷圧検出路82内の圧力はポンプ吐出圧(20kg/c
2 )と等しくなるまで上昇する。このとき高圧側であ
る左側のアクチュエータ88の方向制御弁55のポンプ
ポート44の圧力は100(kg/cm2 )であり、圧
力補償弁25のチェック弁部23は閉じていて、減圧弁
部24とは解離している。一方圧力補償弁25の減圧弁
部24は、二つの圧力室65と66内の圧力の差(20
−10=10kg/cm2 )でチェック弁部23を閉じ
る方向に付勢する。一方、チェック弁部23の開く方向
の圧力室a内の圧力(ポンプ吐出圧)は20(kg/c
2 )であるため、結果として方向制御弁22のポンプ
ポート44の圧力が10(kg/cm2 )になるまでチ
ェック弁部23が開いた後、弱いばね69によってレシ
ートする。ポンプ調整用方向制御弁85によって、ある
差圧(20kg/cm2 )分だけ、負荷圧検出路82内
の圧力(20kg/cm2 )より高い圧力にポンプ吐出
圧が制御される(40kg/cm2 )。このときも高圧
側の圧力補償弁25のチェック弁部23は閉じたままで
減圧弁部24はストロークしたままで負荷圧検出路82
内の圧力は40(kg/cm2 )となり、一方、低圧側
の圧力補償弁25の減圧弁部24は、負荷圧検出路82
と負荷圧導入用の第1油路53内の圧力差(=30kg
/cm2 )でチェック弁部23を閉じる方向に付勢し、
結果として方向制御弁22のポンプポート44の圧力は
10kg/cm2 のままである。このようにして、負荷
圧検出路82内の圧力とポンプ吐出圧が上昇し続け、や
がてポンプ吐出圧が高圧側のアクチュエータ88の負荷
圧(100kg/cm2)と等しくなると、高圧側の圧
力補償弁25の減圧弁部23の二つの圧力室65と66
内の圧力はともに100kg/cm2 となり、弱いばね
69によって、閉じチェック弁部23に当接する。この
とき低圧側の圧力補償弁25の減圧弁部24は負荷圧検
出路82と負荷圧導入用の第1油路53内の圧力差(1
00−10=90kg/cm2 )でチェック弁部23を
閉じる方向に付勢し、結果として低圧側の方向制御弁2
2のポンプポート44の圧力は10kg/cm2 のまま
である。再び、ポンプ調整用方向制御弁85によって、
ポンプ吐出圧が120(kg/cm2 )に制御される。
このとき高圧側の圧力補償弁25の減圧弁部23は、弱
いばね69によってチェック弁部23に当接しているだ
けであり、チェック弁部23の二つの圧力室aとbの圧
力差によって、ここで始めてチェック弁部23が開き、
ポンプ吐出圧(120kg/cm2 )が方向制御弁22
のポンプポート44に導かれる。一方、低圧側の圧力補
償弁25の減圧弁部24は負荷圧検出路82と負荷圧導
入用の第1油路53内の圧力差(=90kg/cm2
分でチェック弁部23を閉じる方向に付勢し続けるが、
チェック弁部23の開く方向の圧力室a内の圧力が12
0(kg/cm2 )になったので方向制御弁22の入口
ポート44の圧力が30(kg/cm2 )(120−9
0)となる状態で、チェック弁部23及び減圧弁部24
が圧力バランスする。すなわち、チェック弁部23及び
減圧弁部24はわずかにストロークし、チェック弁部2
3において、120kg/cm2 から30kg/cm2
になるように絞っている状態となる。ここで初めて、こ
の油圧制御系はつり合い、高圧側の方向制御弁22のポ
ンプポート44の圧力が120kg/cm2 、低圧側の
方向制御弁22のポンプポート44の圧力が30kg/
cm2 となり、すなわち、二つの方向制御弁22,22
の入口圧と出口圧(負荷圧)の差は、ともに20kg/
cm2 に保たれることにより、二つの方向制御弁22,
22はともに、ストローク分だけで、アクチュエータ8
8,88に供給する流量を制御することができるように
なる。
When any of the directional control valves 22 is stroked to the first pressure oil supply position B. -When the total flow rate required for each actuator 88 is at the maximum discharge flow rate position of the hydraulic pump 20. Now, it is assumed that the directional control valve 22 is both stroked to the first pressure oil supply position B, and the pump ports 44, the conduits 89, and the first oil passages 53 for guiding the load pressure are connected to each other.
One of the pressure reducing valve portions 24 has the pressure in the pressure chamber 66 equal to the pressure in one of the pressure chambers 65, and the other pressure reducing valve portion 24 has the pressure in the pressure chamber 66 of the one pressure chamber 65. Each stroke remains to the stroke end until it becomes equal to the internal pressure. Now, assume that the load pressure of the left actuator 88 is larger than the load pressure of the two actuators 88, 88. It is assumed that the load pressure of the left actuator 26 is 100 (kg / cm 2 ) and the load pressure of the right actuator 27 is 10 (kg / cm 2 ). The load pressure detection path 82 is connected to the tank 8 via the throttle 91.
6, the pressure in the load pressure detection path 82 is zero before the stroke of the directional control valve. Therefore, each pressure reducing valve section 24 also strokes by the pressure in the first oil passage 53 for detecting the load pressure, and the pump discharge pressure communicates with the pressure in the pressure detecting conduit 34. When the pressure in the load pressure detection path 82 rises to the pressure (10 kg / cm 2 ) in the conduit 90 of the actuator 88 on the right side which is the low pressure side, first, the pressure reducing valve portion 24 of the pressure compensating valve 25 on the right side is closed. The pressure reducing valve portion 24 of the pressure compensating valve 25 on the left side remains stroked, and the pressure in the load pressure detection path 82 is the pump discharge pressure (20 kg / c).
m 2 ). At this time, the pressure of the pump port 44 of the direction control valve 55 of the left side actuator 88 on the high pressure side is 100 (kg / cm 2 ), the check valve portion 23 of the pressure compensation valve 25 is closed, and the pressure reducing valve portion 24 is closed. Is dissociated from. On the other hand, the pressure reducing valve portion 24 of the pressure compensating valve 25 is provided with a pressure difference (20) between the two pressure chambers 65 and 66.
The check valve portion 23 is urged in the closing direction at −10 = 10 kg / cm 2 ). On the other hand, the pressure in the pressure chamber a in the opening direction of the check valve portion 23 (pump discharge pressure) is 20 (kg / c
m 2 ), the check valve portion 23 is opened until the pressure of the pump port 44 of the directional control valve 22 becomes 10 (kg / cm 2 ), and then a receipt is made by the weak spring 69. By a pump adjusting direction control valve 85, there differential pressure (20kg / cm 2) amount corresponding, pump discharge pressure from the high pressure pressure (20kg / cm 2) of the load pressure Detchi 82 is controlled (40 kg / cm 2 ). At this time as well, the check valve portion 23 of the high-pressure side pressure compensating valve 25 remains closed and the pressure reducing valve portion 24 remains in the stroke, and the load pressure detection path 82
The internal pressure is 40 (kg / cm 2 ), while the pressure reducing valve portion 24 of the pressure compensating valve 25 on the low pressure side has the load pressure detecting path 82.
And the pressure difference in the first oil passage 53 for introducing the load pressure (= 30 kg
/ Cm 2 ) urges the check valve portion 23 in the closing direction,
As a result, the pressure at the pump port 44 of the directional control valve 22 remains at 10 kg / cm 2 . In this way, the pressure in the load pressure detection path 82 and the pump discharge pressure continue to rise, and when the pump discharge pressure eventually becomes equal to the load pressure (100 kg / cm 2 ) of the high-pressure side actuator 88, the high-pressure side pressure compensation is performed. Two pressure chambers 65 and 66 of the pressure reducing valve portion 23 of the valve 25
The internal pressures are both 100 kg / cm 2 , and the weak spring 69 makes contact with the closing check valve portion 23. At this time, the pressure reducing valve portion 24 of the pressure compensating valve 25 on the low pressure side has a pressure difference (1) between the load pressure detecting passage 82 and the first oil passage 53 for introducing the load pressure.
00-10 = 90 kg / cm 2 ) to urge the check valve portion 23 in the closing direction, and as a result, the directional control valve 2 on the low pressure side
The pressure at the second pump port 44 remains at 10 kg / cm 2 . Again, by the directional control valve 85 for pump adjustment,
The pump discharge pressure is controlled to 120 (kg / cm 2 ).
At this time, the pressure reducing valve portion 23 of the pressure compensating valve 25 on the high pressure side is only in contact with the check valve portion 23 by the weak spring 69, and due to the pressure difference between the two pressure chambers a and b of the check valve portion 23, For the first time, the check valve section 23 opens,
The pump discharge pressure (120 kg / cm 2 ) depends on the direction control valve 22.
Of the pump port 44. On the other hand, the pressure reducing valve portion 24 of the pressure compensating valve 25 on the low pressure side has a pressure difference (= 90 kg / cm 2 ) between the load pressure detecting passage 82 and the first oil passage 53 for introducing the load pressure.
Continue to urge the check valve unit 23 in the direction to close in minutes,
The pressure in the pressure chamber a in the opening direction of the check valve portion 23 is 12
Since it has become 0 (kg / cm 2 ), the pressure of the inlet port 44 of the directional control valve 22 is 30 (kg / cm 2 ) (120-9
0), the check valve portion 23 and the pressure reducing valve portion 24
Balances pressure. That is, the check valve portion 23 and the pressure reducing valve portion 24 make a slight stroke, and the check valve portion 2
3 to 120 kg / cm 2 to 30 kg / cm 2
It will be in a state where it is squeezed so that it becomes. For the first time, the hydraulic control system is balanced so that the pressure of the pump port 44 of the directional control valve 22 on the high pressure side is 120 kg / cm 2 and the pressure of the pump port 44 of the directional control valve 22 on the low pressure side is 30 kg / cm 2 .
cm 2 , that is, the two directional control valves 22, 22
The difference between the inlet pressure and the outlet pressure (load pressure) of both is 20 kg /
By being kept at cm 2 , the two directional control valves 22,
22 is only for the stroke and actuator 8
It becomes possible to control the flow rate supplied to 8,88.

【0011】−各アクチュエータ88,88に必要
とされる流量は合計が油圧ポンプ80の最大吐出流量以
上のとき。 いま、アクチュエータ88,88の負荷圧および必要流
量を左側のアクチュエータ88が100kg/cm2
501/min、右側のアクチュエータ88が10kg
/cm2 、501/minとする。油圧ポンプ80の最
大吐出流量が1001/min以上のときは、前述の通
り、方向制御弁22,22の入口圧と出口圧の差が一定
に保たれる(=20kg/cm2 )ため、ストロークに
よって流量制御ができ、501/minずつ流量分配す
ることはできる。次に、油圧ポンプ80の滞在吐出量が
701/minになったとする。二つの方向制御弁2
2,22の入口圧は前述の通り120kg/cm2 、3
0kg/cm2 であるので、高圧側の方向制御弁22へ
の流量が501/minから201/minに減る。低
圧側の方向制御弁22への流量は、501/minのま
まである。二つの方向制御弁22,22のストローク
(開口面積)を変えないとすると、高圧側の方向制御弁
22の入口圧と出口圧の差圧が流量が減った分、20k
g/cm2 から下がる。いま、差圧が14kg/c
2 、すなわち、入口圧が、120kg/cm2 から1
14(100+14)kg/cm2 に下がったとする。
この時圧力補償弁25の減圧弁部24の二つの圧力室6
5,66の圧力は、ともに100kg/cm2 のままで
あるから、減圧弁部24は弱いばね69によってチェッ
ク弁部23に当接しているだけであり、チェック弁部2
3の閉じる方向の圧力室b内の圧力が120kg/cm
2 から114kg/cm2 に減少すれば、チェック弁部
23が開いたまま(ストロークエンド)で、チェック弁
部23の開く方向の圧力室a内の圧力、すなわち、ポン
プ吐出圧が120kg/cm2 から114kg/cm2
に減少する。この時(ポンプ吐出流量不足時)にはポン
プ吐出圧はポンプ調整用方向制御弁85の制御によらな
くなる。一方、低圧側の圧力補償弁25の減圧弁部24
の二つの圧力室65と66は、100kg/cm2 、1
0kg/cm2 のままで、その差圧90kg/cm2
チェック弁部63の閉じる方向に付勢し続ける。一方、
チェック弁部23の開く方向の圧力室a内の圧力、すな
わちポンプ吐出圧が114kg/cm2 に減少したの
で、チェック弁部23の閉じる方向の圧力室b内の圧力
が30kg/cm2から24kg/cm2 に減少した状
態でチェック弁部23及び減圧弁部24が圧力バランス
する。よって、低圧側の方向制御弁22の入口圧と出口
圧の差圧は20kg/cm2 から14kg/cm2 (2
4−10)に減少する。方向制御弁22のこの差圧の減
少により低圧側のアクチュエータ88への供給流量は5
01/minから減少し、その分高圧側のアクチュエー
タ88へ供給流量が201/minから増える。すなわ
ち、方向制御弁22および22の入口圧と出口圧の差圧
が等しく、かつ、二つアクチュエータ88,88への供
給量がともに351/minずつに分配される状態で、
この油圧制御系がつり合う。
The total flow rate required for each actuator 88, 88 is greater than the maximum discharge flow rate of the hydraulic pump 80. Now, the load pressure and the required flow rate of the actuators 88, 88 are 100 kg / cm 2 for the left actuator 88,
501 / min, the right actuator 88 is 10 kg
/ Cm 2 , 501 / min. When the maximum discharge flow rate of the hydraulic pump 80 is 1001 / min or more, as described above, the difference between the inlet pressure and the outlet pressure of the directional control valves 22, 22 is kept constant (= 20 kg / cm 2 ), so that the stroke The flow rate can be controlled by, and the flow rate can be distributed by 501 / min. Next, assume that the stay discharge amount of the hydraulic pump 80 becomes 701 / min. Two directional control valves 2
The inlet pressure of 2, 22 is 120 kg / cm 2 , 3 as described above.
Since it is 0 kg / cm 2 , the flow rate to the directional control valve 22 on the high pressure side is reduced from 501 / min to 201 / min. The flow rate to the low-pressure side directional control valve 22 remains at 501 / min. If the strokes (opening areas) of the two directional control valves 22 and 22 are not changed, the pressure difference between the inlet pressure and the outlet pressure of the directional control valve 22 on the high-pressure side is reduced by 20 k
Down from g / cm 2 . Now the differential pressure is 14kg / c
m 2 , that is, the inlet pressure is 120 kg / cm 2 to 1
Suppose it has fallen to 14 (100 + 14) kg / cm 2 .
At this time, the two pressure chambers 6 of the pressure reducing valve portion 24 of the pressure compensating valve 25
Since the pressures of 5 and 66 are still 100 kg / cm 2 , the pressure reducing valve portion 24 is only in contact with the check valve portion 23 by the weak spring 69, and the check valve portion 2
The pressure in the pressure chamber b in the closing direction of 3 is 120 kg / cm
If the pressure is reduced from 2 to 114 kg / cm 2 , the pressure in the pressure chamber a in the opening direction of the check valve portion 23, that is, the pump discharge pressure is 120 kg / cm 2 while the check valve portion 23 remains open (stroke end). To 114 kg / cm 2
Decrease to. At this time (when the pump discharge flow rate is insufficient), the pump discharge pressure is not controlled by the pump adjustment directional control valve 85. On the other hand, the pressure reducing valve portion 24 of the pressure compensating valve 25 on the low pressure side
The two pressure chambers 65 and 66 are 100 kg / cm 2 , 1
While maintaining 0 kg / cm 2 , the pressure difference of 90 kg / cm 2 continues to urge the check valve portion 63 in the closing direction. on the other hand,
Since the pressure in the pressure chamber a in the opening direction of the check valve portion 23, that is, the pump discharge pressure is reduced to 114 kg / cm 2 , the pressure in the pressure chamber b in the closing direction of the check valve portion 23 is 30 kg / cm 2 to 24 kg. The pressure is balanced by the check valve portion 23 and the pressure reducing valve portion 24 in the state where the pressure is reduced to / cm 2 . Therefore, the differential pressure between the inlet pressure and the outlet pressure of the directional control valve 22 on the low pressure side is 20 kg / cm 2 to 14 kg / cm 2 (2
4-10). Due to the decrease in the differential pressure of the directional control valve 22, the supply flow rate to the low-pressure side actuator 88 is 5
The flow rate decreases from 01 / min, and the supply flow rate to the high-pressure side actuator 88 increases from 201 / min. That is, in a state in which the differential pressure between the inlet pressure and the outlet pressure of the directional control valves 22 and 22 is equal, and the supply amounts to the two actuators 88, 88 are both divided into 351 / min,
This hydraulic control system is in balance.

【0012】一つの油圧ポンプ80によって負荷され
るアクチュエータが3つ以上のとき。 アクチュエータが3つ以上のときも、方向制御弁と油圧
ポンプの間に、同じチェック弁部23及び減圧弁部24
を備えた圧力補償弁25を配設し、各減圧弁部の閉じる
方向の圧力差を負荷圧検出路82によってすべて連通す
るだけで、アクチュエータが3つ以上のときも前述の作
動原理による作動が実現される。
When the number of actuators loaded by one hydraulic pump 80 is three or more. Even when there are three or more actuators, the same check valve section 23 and pressure reducing valve section 24 are provided between the directional control valve and the hydraulic pump.
Even if there are three or more actuators, the operation according to the above-described operation principle can be achieved simply by disposing the pressure compensating valve 25 provided with, and communicating all the pressure differences in the closing direction of each pressure reducing valve section by the load pressure detecting path 82. Will be realized.

【0013】[0013]

【発明が解決しようとする課題】かかる圧油供給装置に
より図3に示すように左右走行用油圧モータ88−1,
88−2に油圧ポンプ20の吐出圧油を供給すると共
に、その油圧ポンプ20を駆動するエンジンEで補助油
圧ポンプ1を駆動し、その吐出圧油をブレード方向制御
弁2でブレードシリンダ3に供給してブレード4を作動
するようにした場合に次のような不具合を有する。
With such a pressure oil supply device, as shown in FIG.
The discharge pressure oil of the hydraulic pump 20 is supplied to 88-2, the auxiliary hydraulic pump 1 is driven by the engine E that drives the hydraulic pump 20, and the discharge pressure oil is supplied to the blade cylinder 3 by the blade direction control valve 2. Then, when the blade 4 is operated, the following problems occur.

【0014】左右方向制御弁22を同一ストローク操作
して左右走行用油圧モータ88−1,88−2を同一回
転数で駆動して直進走行する時には、走行抵抗が小さく
負荷圧が低いから油圧ポンプ20の吐出圧が低く吸収馬
力に余裕があるので、補助油圧ポンプ1の駆動馬力だけ
油圧ポンプ20の吸収馬力が減少しても所定の走行速度
で走行できる。
When the left and right direction control valve 22 is operated with the same stroke to drive the left and right traveling hydraulic motors 88-1 and 88-2 at the same number of revolutions to travel straight, the traveling resistance is small and the load pressure is low, so the hydraulic pump. Since the discharge pressure of 20 is low and the absorption horsepower has a margin, the vehicle can travel at a predetermined traveling speed even if the absorption horsepower of the hydraulic pump 20 is reduced by the driving horsepower of the auxiliary hydraulic pump 1.

【0015】しかしながら、左右方向制御弁22を異な
るストローク操作して左右走行用油圧モータ88−1,
88−2を異なる速度で駆動して旋回走行する旋回走行
時には旋回内側の走行用油圧モータ88−1の負荷圧が
高く旋回走行抵抗が大きくなるので、油圧ポンプ20の
吐出圧が高く吐出量が減少して旋回走行速度が直進走行
速度よりも低速となる。
However, the left and right traveling hydraulic motors 88-1 and 88-1 are operated by operating the left and right direction control valve 22 with different strokes.
Since the load pressure of the traveling hydraulic motor 88-1 on the inner side of the swing is high and the swing traveling resistance is large during the swing traveling in which the 88-2 is driven to rotate at different speeds, the discharge pressure of the hydraulic pump 20 is high and the discharge amount is large. It decreases and the turning traveling speed becomes lower than the straight traveling speed.

【0016】つまり、油圧ポンプ20は吐出量×吐出圧
(吸収馬力)が一定となるように制御され、前述の旋回
走行時には油圧ポンプ20の吐出量は左右走行用油圧モ
ータ88−1,88−2における高い方の負荷圧に見合
う流量となり、車両はその流量に見合う旋回走行速度で
走行する。
That is, the hydraulic pump 20 is controlled so that the discharge amount × the discharge pressure (absorption horsepower) becomes constant, and the discharge amount of the hydraulic pump 20 during the above-described turning traveling is the left and right traveling hydraulic motors 88-1, 88-. The flow rate corresponds to the higher load pressure in 2, and the vehicle travels at a turning speed corresponding to the flow rate.

【0017】しかしながら、油圧ポンプ20を駆動する
エンジンEで補助油圧ポンプ1を駆動すると、そのエン
ジンEの馬力の一部が補助油圧ポンプ1で消費されて油
圧ポンプ20の吸収馬力はその馬力分だけ減少するの
で、左右走行用油圧モータ88−1,88−2における
高い方の負荷圧が同一、つまり旋回走行抵抗が同一であ
っても油圧ポンプの吐出量が減少して旋回走行速度の低
下量が大きくなってしまう。
However, when the auxiliary hydraulic pump 1 is driven by the engine E which drives the hydraulic pump 20, a part of the horsepower of the engine E is consumed by the auxiliary hydraulic pump 1 and the absorbed horsepower of the hydraulic pump 20 is equal to that horsepower. Therefore, even if the higher load pressures of the left and right traveling hydraulic motors 88-1 and 88-2 are the same, that is, even if the turning traveling resistance is the same, the discharge amount of the hydraulic pump is reduced and the turning traveling speed is reduced. Will become bigger.

【0018】そこで、本発明は前述の課題を解決できる
ようにした圧油供給装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a pressure oil supply device capable of solving the above problems.

【0019】[0019]

【課題を解決するための手段】弁ブロック30にスプー
ル孔31に開口したポンプポート44、第1・第2負荷
圧検出ポート45,46、第1・第2アクチュエータポ
ート34,35、第1・第2タンクポート47,48を
それぞれ形成し、このスプール孔31に各ポートを連通
・遮断する主スプール49を嵌挿して方向制御弁22と
し、弁ブロック30にチェック弁用孔37に開口した第
1ポート39及びチェック弁用孔37をポンプポート4
4に連通する油路56を形成し、そのチェック弁用孔3
7に第1ポート39と油路56を連通・遮断し、かつ遮
断位置でストップされるスプール60を挿入してチェッ
ク弁部23とし、前記弁ブロック30には減圧弁用孔3
8に開口する第2・第3ポート42,43を形成し、こ
の減圧弁用孔38にスプール64を嵌挿して第1圧力室
65と第2圧力室66を形成し、その第1圧力室65を
第2負荷圧検出ポート64に連通し、第2圧力室66を
第3ポート43に連通し、前記スプール64をばね69
で一方向に付勢して前記チェック弁部23のスプール6
0を遮断位置に押しつけ保持して減圧弁部24とし、こ
の減圧弁部24と前記チェック弁部23で圧力補償弁2
5とし、油圧ポンプ20の吐出路21に前記一対の圧力
補償弁25と一対の方向制御弁22を設けて油圧ポンプ
20の吐出圧油を左右走行用油圧モータ88−1,88
−2に供給し、前記油圧ポンプ20を駆動するエンジン
Eで補助油圧ポンプ1を駆動し、その吐出路5をブレー
ド方向制御弁2でブレードシリンダ3に接続し、前記補
助油圧ポンプ1の吐出路5をチェック弁9を介して前記
一対の方向制御弁22のポンプポート44に接続した圧
油供給装置。
[Means for Solving the Problems] A pump port 44 opened in a spool hole 31 in a valve block 30, first and second load pressure detection ports 45 and 46, first and second actuator ports 34 and 35, and first and second actuator ports 34 and 35, respectively. The second tank ports 47 and 48 are formed, and the main spool 49 that connects and disconnects the respective ports is fitted into the spool hole 31 to form the directional control valve 22, and the valve block 30 is opened to the check valve hole 37. 1 port 39 and check valve hole 37 to pump port 4
4, an oil passage 56 communicating with the check valve hole 3 is formed.
7, a spool 60 that connects and disconnects the first port 39 and the oil passage 56 and that is stopped at the cut-off position is inserted into the check valve portion 23, and the valve block 30 includes the pressure reducing valve hole 3
8, second and third ports 42 and 43 are formed, and a spool 64 is inserted into the pressure reducing valve hole 38 to form a first pressure chamber 65 and a second pressure chamber 66. 65 communicates with the second load pressure detection port 64, communicates the second pressure chamber 66 with the third port 43, and connects the spool 64 with the spring 69.
Is urged in one direction by the spool 6 of the check valve portion 23.
0 is pressed to the shut-off position and held to form the pressure reducing valve section 24. The pressure reducing valve section 24 and the check valve section 23 make the pressure compensating valve 2
5, the pair of pressure compensating valves 25 and the pair of directional control valves 22 are provided in the discharge passage 21 of the hydraulic pump 20 so that the discharge pressure oil of the hydraulic pump 20 is moved to the left and right traveling hydraulic motors 88-1 and 88.
-2, and the auxiliary hydraulic pump 1 is driven by the engine E that drives the hydraulic pump 20, and the discharge passage 5 is connected to the blade cylinder 3 by the blade direction control valve 2, and the discharge passage of the auxiliary hydraulic pump 1 is connected. A pressure oil supply device in which 5 is connected to a pump port 44 of the pair of directional control valves 22 via a check valve 9.

【0020】[0020]

【作 用】旋回走行時に補助油圧ポンプ1の吐出圧油
の一部を左右方向制御弁22のポンプポート44より左
右走行用油圧モータ88−1,88−2に応援できるの
で、旋回走行時の速度低下を低減できる。
[Operation] Since a part of the pressure oil discharged from the auxiliary hydraulic pump 1 can be supported by the left and right traveling hydraulic motors 88-1 and 88-2 from the pump port 44 of the left and right direction control valve 22 during turning traveling, The decrease in speed can be reduced.

【0021】[0021]

【実 施 例】図4に示すように、補助油圧ポンプ1の
吐出路5におけるブレード方向制御弁2のポンプポート
6に接続したチェック弁7の上流側を管路8を介して左
右の圧力補償弁25の油路65、つまり左右の方向制御
弁22のポンプポート44にそれぞれ接続し、この管路
8にチェック弁9をそれぞれ設ける。
[Example] As shown in FIG. 4, the upstream side of the check valve 7 connected to the pump port 6 of the blade directional control valve 2 in the discharge passage 5 of the auxiliary hydraulic pump 1 is pressure-compensated to the left and right via the pipe line 8. The oil passage 65 of the valve 25, that is, the pump ports 44 of the left and right direction control valves 22 are respectively connected, and the check valves 9 are provided in the pipe lines 8.

【0022】次に作動を説明する。左右の方向制御弁2
2を同時に同一ストローク切換えて油圧ポンプ20の吐
出圧油を左右走行用油圧モータ88−1,88−2に供
給して直進走行する直進走行時。油圧ポンプ20の吐出
量は負荷圧検出路82で検出される負荷圧に見合う流量
となり、その負荷圧が低圧であるから吐出量は多いし、
左右走行用油圧モータ88−1,88−2への供給量は
左右方向制御弁22のスプール49の切欠52の開口
量、つまり方向制御弁22のメータイン開口面積により
決定される。このために、補助油圧ポンプ1のドレーン
回路の抵抗による補助油圧ポンプ1の吐出圧よりも走行
抵抗による油圧ポンプ20の吐出圧が低くとも前記メー
タイン開口面積により決定される油量以上は油圧ポンプ
20が吐出しないため走行速度は補助油圧ポンプ1がな
い場合と同一となる。
Next, the operation will be described. Left and right directional control valve 2
At the same time, the two strokes are simultaneously switched to the same stroke to supply the hydraulic oil discharged from the hydraulic pump 20 to the left and right traveling hydraulic motors 88-1 and 88-2 to travel straight. The discharge amount of the hydraulic pump 20 becomes a flow rate commensurate with the load pressure detected by the load pressure detection path 82, and since the load pressure is low, the discharge amount is large,
The supply amount to the left and right traveling hydraulic motors 88-1 and 88-2 is determined by the opening amount of the cutout 52 of the spool 49 of the left and right direction control valve 22, that is, the meter-in opening area of the direction control valve 22. For this reason, even if the discharge pressure of the hydraulic pump 20 due to the running resistance is lower than the discharge pressure of the auxiliary hydraulic pump 1 due to the resistance of the drain circuit of the auxiliary hydraulic pump 1, the hydraulic pump 20 is equal to or more than the oil amount determined by the meter-in opening area. Is not discharged, the traveling speed is the same as when there is no auxiliary hydraulic pump 1.

【0023】左右方向制御弁22を同時に異なるストロ
ークに切換えて油圧ポンプ20の吐出圧油を左右走行用
油圧モータ88−1,88−2に供給して旋回走する旋
回走行時。油圧ポンプ20の吐出量は旋回走行抵抗が大
きくなって負荷圧が高い分減少する。直進走行時の吐出
量を(Q−1)、旋回走行時の吐出量を(Q−2)とす
ると、 (Q−1)−(Q−2)/(Q−1)×100%だけ減
少する。
At the time of turning traveling in which the left and right direction control valve 22 is simultaneously switched to different strokes to supply the pressure oil discharged from the hydraulic pump 20 to the left and right traveling hydraulic motors 88-1 and 88-2. The discharge amount of the hydraulic pump 20 decreases as the turning traveling resistance increases and the load pressure increases. Assuming that the discharge amount during straight running is (Q-1) and the discharge amount during turning is (Q-2), it decreases by (Q-1)-(Q-2) / (Q-1) x 100%. To do.

【0024】しかも、補助油圧ポンプ1を駆動するため
に油圧ポンプ20が吸収するエンジン馬力が補助油圧ポ
ンプ1の駆動馬力分だけ減少するから、前述の旋回走行
時の油圧ポンプ20の吐出量はエンジンEで油圧ポンプ
20のみを駆動する場合と比較してより多く減少する。
Moreover, since the engine horsepower absorbed by the hydraulic pump 20 for driving the auxiliary hydraulic pump 1 is reduced by the amount of the driving horsepower of the auxiliary hydraulic pump 1, the discharge amount of the hydraulic pump 20 at the time of turning traveling is the engine. Compared with the case where only the hydraulic pump 20 is driven by E, the amount is reduced more.

【0025】しかしながら、補助油圧ポンプ1の吐出圧
が回路抵抗分だけ上昇し、その補助油圧ポンプ1の吐出
量が管路8より左右方向制御弁22のポンプポート44
に応援流量(Q−3)として流入する。
However, the discharge pressure of the auxiliary hydraulic pump 1 rises by the amount of the circuit resistance, and the discharge amount of the auxiliary hydraulic pump 1 is increased from the pipe 8 to the pump port 44 of the left / right direction control valve 22.
Flows in as a support flow rate (Q-3).

【0026】このために、左右走行用油圧モータ88−
1,88−2には(Q−2)+(Q−3)の流量が旋回
内側の方向制御弁22のメータイン開口面積A1 と旋回
外側の方向制御弁22のメータイン開口面積A2 に各々
比較配分されて供給される。したがって、旋回走行度の
減少量は (Q−1)−(Q−2)+(Q−3)/(Q−1)×1
00%となり、(Q−3)/(Q−1)分だけ旋回走行
度の減少量が改善される。
For this reason, the left and right traveling hydraulic motor 88-
1, 88-2 has a flow rate of (Q-2) + (Q-3) in the meter-in opening area A 1 of the directional control valve 22 on the inside of the turn and the meter-in opening area A 2 of the directional control valve 22 on the outside of the turn, respectively. It is supplied after being distributed comparatively. Therefore, the reduction amount of the turning traveling degree is (Q-1)-(Q-2) + (Q-3) / (Q-1) * 1.
It becomes 00%, and the reduction amount of the turning traveling degree is improved by (Q-3) / (Q-1).

【0027】図5は第2実施例を示し、ブレード方向制
御弁2のドレーン回路10に背圧補償弁11を設け、そ
の背圧補償弁11の上流側を管路8で左右方向制御弁2
2のポンプポート44に接続してある。このようにすれ
ば、管路8の圧力が高くなるので左右走行用油圧モータ
88−1,88−2への応援流量が多くできる。
FIG. 5 shows a second embodiment, in which a back pressure compensating valve 11 is provided in the drain circuit 10 of the blade direction control valve 2, and the upstream side of the back pressure compensating valve 11 is connected to the right and left direction control valve 2 by a pipe line 8.
It is connected to two pump ports 44. In this way, the pressure in the conduit 8 is increased, so that the support flow rate to the left and right traveling hydraulic motors 88-1 and 88-2 can be increased.

【0028】図6は第3実施例を示し、補助油圧ポンプ
1の吐出路5に絞り12を設け、この絞り12の上流側
を管路8で左右方向制御弁22のポンプポート44に接
続してある。このようにすれば、管路8の圧力が高くな
るので左右走行用油圧モータ88−1,88−2への応
援流量を多くできる。
FIG. 6 shows a third embodiment, in which a discharge passage 5 of the auxiliary hydraulic pump 1 is provided with a throttle 12, and the upstream side of the throttle 12 is connected to a pump port 44 of the left / right direction control valve 22 by a pipe line 8. There is. In this way, the pressure in the conduit 8 is increased, so that the support flow rate to the left and right traveling hydraulic motors 88-1 and 88-2 can be increased.

【0029】以上の第1・第2・第3実施例に示す圧力
補償弁25は図7に示すように構成してある。つまり、
減圧弁部24の第3ポート43と第2圧力室66をスプ
ール64で遮断し、第3ポート43と第2ポート42を
連通・遮断するスリット状の開口100をスプール64
の外周面に形成し、第3ポート43に負荷圧検出路82
を接続する。スプール64の盲穴67を段付形状とし、
シート68を盲穴68aと環状凹部68bを有する形状
とし、そのシート68を盲穴67の外向段部67aに当
接して固定し、そのシート68とプラグ70との間にバ
ネ69を設け、前記シート68の盲穴68aの開口周縁
にチェック弁101をバネ102で押しつけて盲穴68
aとチェック弁101との間に圧力室103を構成し、
その圧力室103を第1絞り104で第2圧力室66に
連通し、かつ第2絞り105で環状凹部68bに連通
し、その環状凹部68bをスプール64の絞り106で
第3ポート43に開口し、チェック弁101のバネ室1
07を絞り108で第2ポート42に開口する。前記第
1圧力室65をスプール64の切欠部109と細孔11
0でシート68とチェック弁101との間に連通してあ
る。
The pressure compensating valve 25 shown in the above first, second and third embodiments is constructed as shown in FIG. That is,
The spool 64 blocks the third port 43 and the second pressure chamber 66 of the pressure reducing valve portion 24, and the spool 64 has a slit-shaped opening 100 for communicating and blocking the third port 43 and the second port 42.
Formed on the outer peripheral surface of the load pressure detecting path 82 on the third port 43.
Connect. The blind hole 67 of the spool 64 has a stepped shape,
The seat 68 has a shape having a blind hole 68a and an annular recess 68b, the seat 68 is fixed by abutting against the outward step 67a of the blind hole 67, and a spring 69 is provided between the seat 68 and the plug 70. The check valve 101 is pressed against the opening peripheral edge of the blind hole 68a of the seat 68 with the spring 102, and the blind hole 68a is opened.
a pressure chamber 103 is formed between a and the check valve 101,
The pressure chamber 103 is communicated with the second pressure chamber 66 by the first throttle 104, and is communicated with the annular recess 68b by the second throttle 105, and the annular recess 68b is opened by the throttle 106 of the spool 64 to the third port 43. , Check valve 101 spring chamber 1
07 is opened to the second port 42 by the diaphragm 108. In the first pressure chamber 65, the notch 109 of the spool 64 and the fine hole 11 are formed.
At 0, communication is established between the seat 68 and the check valve 101.

【0030】かかる圧力補償弁25とすれば、左右方向
制御弁22の主スプールを同一ストローク操作した直進
走行状態から右方向制御弁22の主スプール49を中立
位置に向けて右方に摺動すると、第2負荷圧検出ポート
46と第2アクチュエータポート35との開口面積が小
さくなるため右走行用油圧モータ88−2の一方に流れ
る流量が減少する。この結果、右走行用油圧モータ88
−2の負荷圧が低下して右側の減圧弁部24の第1圧力
室65の圧力が低下し、そのスプール64は第2圧力室
66に負荷圧検出路82で供給されている左側の第2圧
力室66内の負荷圧(つまり制御圧)により左方に押さ
れて第2ポート42と第1圧力室65が切欠溝109に
よって連通されなくなるから、左右側の負荷圧が同圧に
ならずに走行用油圧モータ88−2の負荷圧が低く、左
走行用油圧モータ88−1の負荷圧が高くなって右旋回
走行する。この時、右側の減圧弁部24のチェック弁1
01のバネ室102には通路115、第2ポート42、
絞り108より左側のアクチュエータ88である左走行
用油圧モータの負荷圧が導入されてチェック弁101の
左側面に作用する。他方、チェック弁101の右側面に
は負荷圧検出路82、第3ポート43、スプール64の
絞り106、第2絞り105より制御圧が作用するが、
この制御圧は左側のアクチュエータ88である左走行用
油圧モータの負荷圧とほぼ等しいからチェック弁101
はシート68に押しつけた状態となる。
With such a pressure compensating valve 25, when the main spool of the left / right direction control valve 22 is operated in the same stroke, the main spool 49 of the right direction control valve 22 is slid rightward toward the neutral position. Since the opening areas of the second load pressure detection port 46 and the second actuator port 35 are small, the flow rate flowing to one of the right traveling hydraulic motors 88-2 is reduced. As a result, the right traveling hydraulic motor 88
-2 decreases and the pressure in the first pressure chamber 65 of the pressure reducing valve section 24 on the right side decreases, and the spool 64 of the spool 64 on the left side is supplied to the second pressure chamber 66 by the load pressure detection path 82. Since the second port 42 and the first pressure chamber 65 are not communicated with each other by the cutout groove 109 because they are pushed leftward by the load pressure (that is, control pressure) in the second pressure chamber 66, if the load pressures on the left and right sides are the same pressure. Instead, the load pressure of the traveling hydraulic motor 88-2 is low, and the load pressure of the left traveling hydraulic motor 88-1 is high, so that the vehicle turns right. At this time, the check valve 1 of the pressure reducing valve section 24 on the right side
In the spring chamber 102 of 01, the passage 115, the second port 42,
The load pressure of the left traveling hydraulic motor, which is the actuator 88 on the left side of the throttle 108, is introduced and acts on the left side surface of the check valve 101. On the other hand, the control pressure acts on the right side surface of the check valve 101 from the load pressure detection path 82, the third port 43, the throttle 106 of the spool 64, and the second throttle 105.
Since this control pressure is substantially equal to the load pressure of the left traveling hydraulic motor that is the left actuator 88, the check valve 101
Is pressed against the sheet 68.

【0031】また前述の第1・第2・第3実施例におけ
る圧力補償弁25のチェック弁部23のスプール60に
は図7に示すように第1ポート39とポンプポート44
を連通・遮断する小径部150を形成してスプール60
を右方に押す圧力室151と第1ポート39と区画し、
スプール60に形成したダンパ用絞り152と連通孔1
53で第1ポート39に連通する。これにより、スプー
ル60が右方、左方に摺動する時に第1ポート39と圧
力室151との間にダンパ用絞り152を通して圧油が
流れるから、スプール60が急激に左方、右方に摺動す
ることを防止できる。
Further, as shown in FIG. 7, the spool 60 of the check valve portion 23 of the pressure compensating valve 25 in the above-mentioned first, second and third embodiments has a first port 39 and a pump port 44, as shown in FIG.
Forming a small diameter part 150 for communicating and blocking the spool 60
To the right to partition the pressure chamber 151 and the first port 39,
Damper diaphragm 152 formed on the spool 60 and the communication hole 1
53 communicates with the first port 39. As a result, when the spool 60 slides to the right and left, pressure oil flows between the first port 39 and the pressure chamber 151 through the damper throttle 152, so that the spool 60 suddenly moves to the left and right. It is possible to prevent sliding.

【0032】なお、第1・第2・第3実施例に示す圧力
補償弁25は図2に示すものとしても良い。また、圧力
補償弁25と方向制御弁22は別の弁ブロックに設けて
各ポートを配管で接続しても良い。
The pressure compensating valve 25 shown in the first, second and third embodiments may be the one shown in FIG. Further, the pressure compensating valve 25 and the direction control valve 22 may be provided in different valve blocks and each port may be connected by piping.

【0033】[0033]

【発明の効果】旋回走行時に補助油圧ポンプ1の吐出圧
油の一部を左右方向制御弁22のポンプポート44より
左右走行用油圧モータ88−1,88−2に応援できる
ので、旋回走行時の速度低下を低減できる。
[Effects of the Invention] Since a part of the hydraulic fluid discharged from the auxiliary hydraulic pump 1 can be supported by the left and right traveling hydraulic motors 88-1 and 88-2 from the pump port 44 of the left and right direction control valve 22 during the turning traveling, The decrease in speed can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の圧油供給装置の回路図である。FIG. 1 is a circuit diagram of a conventional pressure oil supply device.

【図2】圧力補償弁と方向制御弁の具体例を示す断面図
である。
FIG. 2 is a sectional view showing a specific example of a pressure compensation valve and a direction control valve.

【図3】従来の不具合説明図である。FIG. 3 is a diagram illustrating a conventional defect.

【図4】本発明の第1実施例を示す説明図である。FIG. 4 is an explanatory diagram showing a first embodiment of the present invention.

【図5】本発明の第2実施例を示す説明図である。FIG. 5 is an explanatory diagram showing a second embodiment of the present invention.

【図6】本発明の第3実施例を示す説明図である。FIG. 6 is an explanatory diagram showing a third embodiment of the present invention.

【図7】本発明における圧力補償弁の具体例を示す断面
図である。
FIG. 7 is a cross-sectional view showing a specific example of a pressure compensation valve according to the present invention.

【符号の説明】[Explanation of symbols]

1…補助油圧ポンプ、2…ブレード方向制御弁、3…ブ
レードシリンダ、4…ブレード、5…吐出路、8…管
路、9…チェック弁、20…油圧ポンプ、21…吐出
路、22…方向制御弁、23…チェック弁部、24…減
圧弁部、25…圧力補償弁、30…弁ブロック、31…
スプール孔、34…第1アクチュエータポート、35…
第2アクチュエータポート、37…チェック弁用孔、3
8…減圧弁用孔、39…第1ポート、42…第2ポー
ト、43…第3ポート、44…ポンプポート、45…第
1負荷圧検出ポート、46…第2負荷圧検出ポート、4
7…第1タンクポート、48…第2タンクポート、49
…主スプール、53…第1油路、54…第2油路、56
…油孔、58…油孔、60…スプール、64…スプー
ル、65…第1圧力室、66…第2圧力室、69…ば
ね、82…負荷圧検出路、88−1…左走行用油圧モー
タ、88−2…右走行用油圧モータ、E…エンジン。
DESCRIPTION OF SYMBOLS 1 ... Auxiliary hydraulic pump, 2 ... Blade direction control valve, 3 ... Blade cylinder, 4 ... Blade, 5 ... Discharge passage, 8 ... Pipe line, 9 ... Check valve, 20 ... Hydraulic pump, 21 ... Discharge passage, 22 ... Direction Control valve, 23 ... Check valve section, 24 ... Pressure reducing valve section, 25 ... Pressure compensation valve, 30 ... Valve block, 31 ...
Spool hole, 34 ... First actuator port, 35 ...
2nd actuator port, 37 ... Check valve hole, 3
8 ... Pressure reducing valve hole, 39 ... First port, 42 ... Second port, 43 ... Third port, 44 ... Pump port, 45 ... First load pressure detection port, 46 ... Second load pressure detection port, 4
7 ... 1st tank port, 48 ... 2nd tank port, 49
... Main spool, 53 ... First oil passage, 54 ... Second oil passage, 56
... Oil hole, 58 ... Oil hole, 60 ... Spool, 64 ... Spool, 65 ... First pressure chamber, 66 ... Second pressure chamber, 69 ... Spring, 82 ... Load pressure detection path, 88-1 ... Left traveling hydraulic pressure Motor, 88-2 ... right running hydraulic motor, E ... engine.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 弁ブロック30にスプール孔31に開口
したポンプポート44、第1・第2負荷圧検出ポート4
5,46、第1・第2アクチュエータポート34,3
5、第1・第2タンクポート47,48をそれぞれ形成
し、このスプール孔31に各ポートを連通・遮断する主
スプール49を嵌挿して方向制御弁22とし、 弁ブロック30にチェック弁用孔37に開口した第1ポ
ート39及びチェック弁用孔37をポンプポート44に
連通する油路56を形成し、そのチェック弁用孔37に
第1ポート39と油路56を連通・遮断し、かつ遮断位
置でストップされるスプール60を挿入してチェック弁
部23とし、 前記弁ブロック30には減圧弁用孔38に開口する第2
・第3ポート42,43を形成し、この減圧弁用孔38
にスプール64を嵌挿して第1圧力室65と第2圧力室
66を形成し、その第1圧力室65を第2負荷圧検出ポ
ート46に連通し、第2圧力室66を第3ポート43に
連通し、前記スプール64をばね69で一方向に付勢し
て前記チェック弁部23のスプール60を遮断位置に押
しつけ保持して減圧弁部24とし、この減圧弁部24と
前記チェック弁部23で圧力補償弁25とし、 油圧ポンプ20の吐出路21に前記一対の圧力補償弁2
5と一対の方向制御弁22を設けて油圧ポンプ20の吐
出圧油を左右走行用油圧モータ88−1,88−2に供
給し、前記油圧ポンプ20を駆動するエンジンEで補助
油圧ポンプ1を駆動し、その吐出路5をブレード方向制
御弁2でブレードシリンダ3に接続し、 前記補助油圧ポンプ1の吐出路5をチェック弁9を介し
て前記一対の方向制御弁22のポンプポート44に接続
したことを特徴とする圧油供給装置。
1. A pump port 44 opened to a spool hole 31 in a valve block 30, a first and second load pressure detection port 4
5, 46, first and second actuator ports 34, 3
5, the first and second tank ports 47 and 48 are formed respectively, and the main spool 49 for communicating and blocking each port is fitted into the spool hole 31 to form the directional control valve 22. The valve block 30 has a check valve hole. An oil passage 56 that communicates the first port 39 and the check valve hole 37 opened in 37 with the pump port 44 is formed, and the first port 39 and the oil passage 56 are communicated with and cut off from the check valve hole 37, and The spool 60, which is stopped at the shutoff position, is inserted to form the check valve portion 23, and the valve block 30 has a second opening that opens into the pressure reducing valve hole 38.
-The third port 42, 43 is formed, and the pressure reducing valve hole 38 is formed.
The first pressure chamber 65 and the second pressure chamber 66 are formed by inserting the spool 64 into the first pressure chamber 65, the first pressure chamber 65 is communicated with the second load pressure detection port 46, and the second pressure chamber 66 is connected to the third port 43. And the spool 64 of the check valve portion 23 is pressed and held in the shut-off position to form a pressure reducing valve portion 24. The pressure reducing valve portion 24 and the check valve portion 24 are connected to each other. 23 as a pressure compensating valve 25, and the pair of pressure compensating valves 2 in the discharge passage 21 of the hydraulic pump 20.
5 and a pair of directional control valves 22 are provided to supply the discharge pressure oil of the hydraulic pump 20 to the left and right traveling hydraulic motors 88-1 and 88-2, and the auxiliary hydraulic pump 1 is driven by the engine E that drives the hydraulic pump 20. Driven, the discharge passage 5 is connected to the blade cylinder 3 by the blade directional control valve 2, and the discharge passage 5 of the auxiliary hydraulic pump 1 is connected to the pump port 44 of the pair of directional control valves 22 via the check valve 9. A pressure oil supply device characterized in that
JP5161468A 1993-06-30 1993-06-30 Pressure oil supply device Pending JPH0777203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5161468A JPH0777203A (en) 1993-06-30 1993-06-30 Pressure oil supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5161468A JPH0777203A (en) 1993-06-30 1993-06-30 Pressure oil supply device

Publications (1)

Publication Number Publication Date
JPH0777203A true JPH0777203A (en) 1995-03-20

Family

ID=15735675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5161468A Pending JPH0777203A (en) 1993-06-30 1993-06-30 Pressure oil supply device

Country Status (1)

Country Link
JP (1) JPH0777203A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001020902A (en) * 1999-07-09 2001-01-23 Yanagisawa Seiki Mfg Co Ltd Hydraulic booster

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001020902A (en) * 1999-07-09 2001-01-23 Yanagisawa Seiki Mfg Co Ltd Hydraulic booster

Similar Documents

Publication Publication Date Title
JPH082269A (en) Travel control circuit for hydraulic drive type traveling device
JP2557000B2 (en) Control valve device
JPS6214718B2 (en)
JP3531758B2 (en) Directional control valve device with pressure compensating valve
JPH0777203A (en) Pressure oil supply device
JP3119317B2 (en) Pressure oil supply device
JP3534324B2 (en) Pressure compensating valve
JP2012522188A (en) Hydraulic valve device
JP2603495B2 (en) Hydraulic directional control valve device
JP2002276607A (en) Hydraulic control device
JP3116564B2 (en) Pressure oil supply device
JP3454313B2 (en) Pressure oil supply device
JP3240286B2 (en) Hydraulic system
JPH05332311A (en) Pressure oil supply device
JP2577676Y2 (en) Pressure oil supply device
JPH07174102A (en) Unloading device
JPH05332312A (en) Pressure oil supply device
JP3119316B2 (en) Pressure oil supply device
JP2556999B2 (en) Hydraulic circuit
JPH05332306A (en) Pressure oil supply device
JPH05332308A (en) Pressure oil supply device
JPH05332305A (en) Pressure oil supply device
JPH05332314A (en) Pressure oil supply device
JPH0129282Y2 (en)
JPH10132135A (en) Hydraulic valve device