JPH0533176A - Electrode body and application thereof - Google Patents
Electrode body and application thereofInfo
- Publication number
- JPH0533176A JPH0533176A JP3276099A JP27609991A JPH0533176A JP H0533176 A JPH0533176 A JP H0533176A JP 3276099 A JP3276099 A JP 3276099A JP 27609991 A JP27609991 A JP 27609991A JP H0533176 A JPH0533176 A JP H0533176A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- electrode body
- plates
- water
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、水などの電気分解に
使用する電極体とその用途に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode body used for electrolysis of water and the like and its use.
【0002】[0002]
【従来の技術】近年、地球環境に優しいかどうかが物事
の適否を判断する重要なファクターになりつつある。2. Description of the Related Art In recent years, whether or not the environment is friendly has become an important factor for judging the suitability of things.
【0003】エネルギーについて見ても、地球環境に優
しいメタノールや水素などの「クリーンエネルギー」が
見直されつつあり、現在、いかにしてこれらクリーンエ
ネルギーを大量且つ廉価に製造するかが問題になってい
る。In terms of energy as well, "clean energy" such as methanol and hydrogen, which are friendly to the global environment, is being reviewed, and at present, how to produce such clean energy in large quantities and at low cost is a problem. .
【0004】このうち、水素については、天然ガスや石
炭などの化石燃料を加工処理する方法と、水を電気分解
する方法が知られている。前者の方法は、大量の水素を
製造できるという利点がある半面、製造装置が大掛りに
なり易く、しかも、得られる水素の純度が低い上に、製
造に際して二酸化炭素が大量に副生して地球環境を汚染
し易いという問題がある。後者の方法は簡便な製造装置
で高純度の製品が得られるという利点がある半面、比較
的大きな電力を消費するので、製品コストが上昇し易い
という問題がある。しかし、現在、原子力発電や太陽熱
発電などの廉価でクリーンな発電手段の開発が鋭意進め
られており、将来は水の電気分解による水素の製造が主
流になると予想される。Of these, for hydrogen, a method of processing fossil fuels such as natural gas and coal and a method of electrolyzing water are known. The former method has the advantage that a large amount of hydrogen can be produced, but on the other hand, the production equipment tends to be large-scale, and the purity of the obtained hydrogen is low, and a large amount of carbon dioxide is produced as a by-product during the production, which results in the earth. There is a problem that it easily pollutes the environment. The latter method has the advantage that a high-purity product can be obtained with a simple manufacturing apparatus, but it consumes relatively large amount of power, and thus has a problem that the product cost is likely to increase. However, at present, the development of inexpensive and clean power generation means such as nuclear power generation and solar thermal power generation is earnestly underway, and it is expected that hydrogen production by electrolysis of water will become the mainstream in the future.
【0005】そこで、水の電気分解システムについて考
えて見ると、典型的な従来の電解槽は、通常、被電解物
質としての水を供給する給水口と、電気分解により発生
する水素ガスと酸素ガスとを分離して採集するためのガ
ス採集口を設けた反応槽内に一定間隙を置いて、例え
ば、ニッケルやニッケル鍍鉄板などの不錆性電導材料に
よる一対の電極を対向せしめるとともに、電気分解によ
り発生する水素ガスと酸素ガスとの混合を防止するため
に、それら一対の電極間に石綿布などによる隔膜を取付
けて構成されていた。従って、従来の電解槽は、電極間
の間隙を比較的大きくせざるを得ず、このため電力効率
と床面利用効率の改善に限界があった。加えて、電気分
解中に電極上に気泡が発生したり、隔膜自体が電気抵抗
として働くことも、電力効率を下げる一因になってい
た。なお、電極同士を近付ければ電力効率が高くなるこ
とは知られていたけれども、電極を近付けると電極上に
発生する気泡が電極間の電気抵抗を上昇させるので、却
って逆効果になることが多かった。Considering the electrolysis system of water, therefore, a typical conventional electrolytic cell normally has a water supply port for supplying water as a substance to be electrolyzed and hydrogen gas and oxygen gas generated by electrolysis. With a certain gap in the reaction tank provided with a gas collection port for separating and collecting and, for example, a pair of electrodes made of a non-corrosive conductive material such as nickel or a nickel-plated iron plate are opposed to each other, and electrolysis is performed. In order to prevent the mixture of hydrogen gas and oxygen gas generated by, a diaphragm made of asbestos cloth is attached between the pair of electrodes. Therefore, in the conventional electrolytic cell, the gap between the electrodes has to be relatively large, and thus there is a limit in improving the power efficiency and the floor surface utilization efficiency. In addition, bubbles are generated on the electrodes during electrolysis, and the diaphragm itself acts as an electric resistance, which is one of the causes of lowering the power efficiency. Although it has been known that the power efficiency increases when the electrodes are brought close to each other, when the electrodes are brought close to each other, bubbles generated on the electrodes increase the electric resistance between the electrodes, which is rather a reverse effect in many cases. It was
【0006】[0006]
【発明により解決すべき課題】斯かる状況に鑑み、この
発明の目的とするところは、電力効率が高く、床面利用
効率を高くできる電極体を提供することにある。In view of the above situation, an object of the present invention is to provide an electrode body having high power efficiency and high floor utilization efficiency.
【0007】この発明のさらに目的とするところは、電
力効率の高い、コンパクトな電解槽を提供することにあ
る。A further object of the present invention is to provide a compact electrolytic cell having high power efficiency.
【0008】[0008]
【課題を解決するための手段】本発明者が鋭意研究した
ところ、水などの被電解物質が透過し得る多数の微視的
透孔を有する薄膜を、発生する気泡の脱離を容易ならし
める多数の巨視的透孔を穿設した一対の電極板で挟着し
てなる電極体は、通常、約80%以上、望ましくは、約
82%以上と電力効率が著しく高い上に、一対の電極板
を一体形成したので、床面の利用効率が著しく改善され
ることを見出した。Means for Solving the Problems As a result of intensive studies by the present inventor, a thin film having a large number of microscopic holes through which a substance to be electrolyzed, such as water, can permeate is easily removed from generated bubbles. The electrode body sandwiched between a pair of electrode plates having a large number of macroscopic holes is usually about 80% or more, desirably about 82% or more, and the power efficiency is extremely high. It has been found that since the plate is integrally formed, the utilization efficiency of the floor surface is significantly improved.
【0009】すなわち、この発明は、被電解物質が透過
し得る多数の微視的透孔を有する薄膜を、多数の巨視的
透孔を穿設した一対の電極板で挟着してなる電極体の構
造に関するものである。That is, according to the present invention, an electrode body is formed by sandwiching a thin film having a large number of microscopic holes through which a substance to be electrolyzed can be sandwiched between a pair of electrode plates having a large number of macroscopic holes. Is related to the structure of.
【0010】さらに、この発明は、被電解物質が透過し
得る多数の微視的透孔を有する薄膜を、多数の巨視的透
孔を穿設した一対の電極板で挟着してなる電極体を含ん
でなる電解槽の構造を要旨とするものである。Further, according to the present invention, an electrode body is formed by sandwiching a thin film having a large number of microscopic holes through which a substance to be electrolyzed can be sandwiched between a pair of electrode plates having a large number of macroscopic holes. The gist is the structure of an electrolytic cell containing
【0011】[0011]
【発明の作用】この発明では、一対の電極板を実質的に
薄膜の厚さのみを隔てて対向させているので、通電中の
電極板間の電気抵抗が低くなる。According to the present invention, since the pair of electrode plates are opposed to each other substantially only by the thickness of the thin film, the electric resistance between the electrode plates during energization becomes low.
【0012】しかも、一対の電極板には多数の巨視的透
孔を穿設したので、発生した気泡は電極板から容易に離
脱する。Moreover, since a large number of macroscopic through holes are formed in the pair of electrode plates, the generated bubbles can be easily separated from the electrode plates.
【0013】次に、この発明を図示実施例に基づいて説
明する。Next, the present invention will be described based on the illustrated embodiments.
【0014】図1に示すのは、この発明による一実施例
の縦断側面図である。FIG. 1 is a vertical side view of an embodiment according to the present invention.
【0015】図中、1は水などの被電解物質2を収容
し、電気分解するための反応槽である。反応槽1の上部
壁には、電気分解により発生する水素ガスを反応槽1外
に取出すための水素ガス取出口3と酸素ガスを反応槽1
外に取出すための酸素ガス取出口4とともに、陽極端子
5と陰極端子6とが設けられている。これら陽極端子5
と陰極端子6は、必要に応じて、開閉器、電圧制御回
路、電流制御回路などを介して、それぞれ直流電源の陽
極と陰極に接続される。反応槽1の側壁には、反応槽1
内に水などの被電解物質を供給するための給水口7が設
けられている。被電解物質2には、必要に応じて、電導
度を上げるために苛性カリや苛性ソーダなどの苛性アル
カリを添加したり、発生する気泡の離脱をより一層促進
するために中性界面活性剤やシリコンオイルなどの湿潤
剤を添加してもよい。In the figure, reference numeral 1 is a reaction tank for containing a substance 2 to be electrolyzed, such as water, for electrolysis. On the upper wall of the reaction tank 1, a hydrogen gas outlet 3 for taking out hydrogen gas generated by electrolysis to the outside of the reaction tank 1 and oxygen gas are provided in the reaction tank 1.
An anode terminal 5 and a cathode terminal 6 are provided along with an oxygen gas outlet 4 for taking out to the outside. These anode terminals 5
The cathode terminal 6 and the cathode terminal 6 are connected to the anode and the cathode of the DC power source, respectively, via a switch, a voltage control circuit, a current control circuit, etc., if necessary. On the side wall of the reaction tank 1, the reaction tank 1
A water supply port 7 for supplying a substance to be electrolyzed such as water is provided therein. If necessary, caustic alkali such as caustic potash or caustic soda is added to the substance to be electrolyzed 2, or a neutral surfactant or silicone oil is further added to further promote the removal of generated bubbles. You may add humectants, such as.
【0016】8は電極体であって、通常、反応槽1の略
中央部に鉛直に取付けられる。電極体8は一対の電極板
9、9により薄膜10を両側から挟着して構成され、薄
膜10の周緑部は反応槽1の内壁に沿って固定され、反
応槽1内を区画している。Reference numeral 8 is an electrode body, which is normally mounted vertically in the substantially central portion of the reaction tank 1. The electrode body 8 is configured by sandwiching the thin film 10 from both sides by a pair of electrode plates 9, 9, and the peripheral green part of the thin film 10 is fixed along the inner wall of the reaction tank 1 to partition the inside of the reaction tank 1. There is.
【0017】一対の電極板9、9は、通常、板状に形成
したニッケル、ニッケル鍍鉄、ニッケル鋼、コバルト鍍
鉄、ステンレス、銀、白金、炭素などの不錆性電導材料
の幅広面に、電気分解により発生する気泡が容易に脱離
するよう多数の巨視的透孔を穿設して構成される。電極
板9、9の材質は金属に限定されるものではなく、合成
樹脂やガラスなどのように自体非電導性であっても、イ
オン交換能を付与するときには、電極板9、9として使
用することができる。The pair of electrode plates 9 and 9 are usually formed on a wide surface of a non-corrosive conductive material such as nickel, nickel plating, nickel steel, cobalt plating, stainless steel, silver, platinum and carbon formed in a plate shape. A large number of macroscopic through holes are formed so that bubbles generated by electrolysis can be easily detached. The material of the electrode plates 9 and 9 is not limited to metal, and even if the electrode plates 9 and 9 are non-conductive themselves such as synthetic resin and glass, they are used as the electrode plates 9 and 9 when imparting ion exchange capability. be able to.
【0018】薄膜10は、電気分解に使用して化学的且
つ物理的に安定な、例えば、テフロン、サラン、ポリビ
ニル、ポリ塩化ビニル、ポリスチレン、ナイロン、尿素
ホルムアルデヒド樹脂、フェノールホルムアルデヒド樹
脂、メラミンホルムアルデヒド樹脂、アルキド樹脂、有
機珪素樹脂などの合成樹脂、セルロース、プルランエス
テル、プルランエーテル、紙、布などの多糖類、ゴム、
ガラス、セラミックなどの非電導性材料をフィルム若し
くはシート状に形成し、電気分解に際して、被電解物質
2は透過し得るけれども、発生する気体は実質的に透過
し得ない多数の微視的透孔を設けて構成される。The thin film 10 is chemically and physically stable when used in electrolysis. For example, Teflon, saran, polyvinyl, polyvinyl chloride, polystyrene, nylon, urea formaldehyde resin, phenol formaldehyde resin, melamine formaldehyde resin, Synthetic resins such as alkyd resin and organic silicon resin, cellulose, pullulan ester, pullulan ether, polysaccharides such as paper and cloth, rubber,
A non-conductive material such as glass or ceramic is formed into a film or sheet shape, and during electrolysis, the substance to be electrolyzed 2 can permeate, but a large number of microscopic holes through which the generated gas cannot substantially permeate. Is provided and configured.
【0019】以上の様子を図2に示す。The above situation is shown in FIG.
【0020】図2に示すように、一対の電極板9、9に
は、電気分解により発生する気泡が容易に脱離するよう
多数の巨視的透孔11が穿設される。この巨視的透孔1
1の形状に特に制限はなく、例えば、正方形、長方形、
菱形、円形、楕円形、星形、短冊形など適宜形状にすれ
ばよい。巨視的透孔11の口径は、電気分解に際して電
極間の電流分布を実質的に乱すことなく、発生する気泡
が容易に脱離でき、且つ、電極体8そのものが所期の機
械強度を維持できる程度とすればよい。電極板9、9の
大きさに依るけれども、通常、約0.01乃至10セン
チメートル、望ましくは、約0.05乃至5センチメー
トルとする。巨視的透孔11の開口部周縁を丸めて、反
応槽1内に電極体8を鉛直に取付けたときに、その開口
部周縁が水平面に対して上向きの角度を為すようにする
ときには、発生する気泡が、その浮力により電極板9、
9から離脱するのを助長するので好都合である。電極体
8を円筒形に形成するときには、金網状の電極板が便利
である。電極板9、9は、図1に示すように、リード線
12、12を介して陽極端子5又は陰極端子6に接続さ
れる。As shown in FIG. 2, a large number of macroscopic through holes 11 are bored in the pair of electrode plates 9 and 9 so that bubbles generated by electrolysis can be easily released. This macroscopic through hole 1
There is no particular limitation on the shape of 1, for example, a square, a rectangle,
A suitable shape such as a rhombus, a circle, an ellipse, a star, or a strip may be used. The diameter of the macroscopic through hole 11 allows the generated bubbles to be easily desorbed without substantially disturbing the current distribution between the electrodes during electrolysis, and the electrode body 8 itself can maintain the desired mechanical strength. It should be about. Depending on the size of the electrode plates 9, 9, it is usually about 0.01 to 10 cm, preferably about 0.05 to 5 cm. This occurs when the peripheral edge of the opening of the macroscopic through hole 11 is rounded and the electrode body 8 is vertically mounted in the reaction tank 1 so that the peripheral edge of the opening forms an upward angle with respect to the horizontal plane. Due to the buoyancy of the bubbles, the electrode plate 9,
It is convenient because it helps to get out of 9. When forming the electrode body 8 in a cylindrical shape, a wire mesh electrode plate is convenient. As shown in FIG. 1, the electrode plates 9 and 9 are connected to the anode terminal 5 or the cathode terminal 6 via lead wires 12 and 12.
【0021】薄膜10は、実使用したり製造する上で差
し支えない範囲で極力薄くするのが望ましく、通常、約
25ミクロン未満、望ましくは、約1乃至10ミクロン
とする。微視的透孔の口径は、被電解物質の種類や電流
密度などに依るけれども、例えば、被電解物質が水であ
る場合には、通常、約10ミクロン未満とする。It is desirable that the thin film 10 be as thin as possible within a range that can be practically used or manufactured, and it is usually less than about 25 microns, preferably about 1 to 10 microns. The diameter of the microscopic holes depends on the type of the substance to be electrolyzed and the current density, but when the substance to be electrolyzed is water, it is usually less than about 10 microns.
【0022】なお、図1では、一つの反応槽に一つの電
極体を取付ける例を示したが、この発明はこのような態
様のみに限定されるものではなく、例えば、図3に示す
ように電極体を円筒状に形成したり、或は、一つの反応
槽に二つ以上の電極体を取付け、それら電極体を直列及
び/又は並列に接続して使用できることは言うまでもな
い。Although FIG. 1 shows an example in which one electrode body is attached to one reaction tank, the present invention is not limited to such an embodiment. For example, as shown in FIG. It goes without saying that the electrode body may be formed in a cylindrical shape, or two or more electrode bodies may be attached to one reaction tank and the electrode bodies may be connected in series and / or in parallel.
【0023】次に、図1に示す電解槽の操作を実験例に
基づいて説明する。Next, the operation of the electrolytic cell shown in FIG. 1 will be described based on experimental examples.
【0024】図1に示す電解槽を使用して水を電気分解
することにより、高純度の水素ガスを調製した。Highly pure hydrogen gas was prepared by electrolyzing water using the electrolytic cell shown in FIG.
【0025】適当間隔を置いて口径約1ミリメートルの
巨視的透孔11を多数穿設した一対の白金製電極板9、
9(長さ10センチメートル、幅4センチメートル、厚
さ1ミリメートル)と、厚さ約10ミクロンのテフロン
製薄膜10(微視的透孔の口径約5ミクロン)により電
極体8を構成し、反応槽1の略中央に鉛直に固定した。
巨視的透孔11の各開口部周緑は、発生するガスが離脱
し易いように丸めた。陽極端子5及び陰極端子6は、精
密電力計を介して制御直流電源装置のそれぞれプラス出
力端子とマイナス出力端子に接続した。A pair of platinum electrode plates 9 provided with a large number of macroscopic through holes 11 having a diameter of about 1 mm at appropriate intervals.
9 (10 cm in length, 4 cm in width, 1 mm in thickness) and a thin film 10 made of Teflon having a thickness of about 10 μm (diameter of microscopic through holes of about 5 μm) constitute the electrode body 8. It was fixed vertically in the approximate center of the reaction tank 1.
The surrounding green of each opening of the macroscopic through hole 11 was rounded so that the generated gas could be easily released. The anode terminal 5 and the cathode terminal 6 were connected to the positive output terminal and the negative output terminal of the control DC power supply device via a precision power meter, respectively.
【0026】反応槽1内に被電解物質2として30%苛
性カリを溶解した純水を収容し、反応槽1内の温度を約
50℃に保つとともに、約50℃に予温した純水を給水
口7より適宜補給しながら、一対の電極板9、9間に直
流2.0ボルトを印加して5時間電気分解を行った。電
気分解中は、一定時間毎に発生した水素ガス量と消費電
力を常法により測定するとともに、電極体8周囲の様子
を肉眼観察した。Pure water in which 30% caustic potash was dissolved as the substance to be electrolyzed 2 was stored in the reaction tank 1, the temperature in the reaction tank 1 was maintained at about 50 ° C., and pure water preheated to about 50 ° C. was supplied. While appropriately replenishing through the mouth 7, 2.0 V DC was applied between the pair of electrode plates 9 to electrolyze for 5 hours. During the electrolysis, the amount of hydrogen gas generated and the power consumption were measured at regular intervals, and the surroundings of the electrode body 8 were visually observed.
【0027】別途、巨視的透孔11を穿設しない電極体
8を用いたこと以外は全く同様にして水を電気分解し、
対照系とした。Separately, water was electrolyzed in the same manner except that the electrode body 8 having no macroscopic through hole 11 was used.
It was used as a control system.
【0028】その結果、この発明の電解槽を用いて水を
電気分解するときの電力効率は著しく高く、約84%に
も達することが判明した。しかも、この高電力効率は電
気分解の全期間を通じて略一定であり、発生した気泡は
速に電極板9、9から離脱していた。As a result, it was found that the power efficiency when electrolyzing water using the electrolytic cell of the present invention was extremely high, reaching about 84%. Moreover, this high power efficiency was substantially constant throughout the electrolysis, and the generated bubbles were quickly separated from the electrode plates 9, 9.
【0029】一方、対照系は、電気分解開始当初、約8
3%と比較的高い電力効率を示したものの、約1分を経
過すると急激に低下するようになり、5時間後の電力効
率は約67%となった。電極体8周囲を肉眼観察したと
ころ、電力効率の低下とあい前後して電極板9、9表面
への顕著な気泡付着が見られた。On the other hand, the control system had about 8
Although it showed a relatively high power efficiency of 3%, it decreased sharply after about 1 minute, and the power efficiency after 5 hours was about 67%. When the surroundings of the electrode body 8 were visually observed, remarkable air bubble adhesion to the surfaces of the electrode plates 9 and 9 was observed before and after the decrease in power efficiency.
【0030】このように、対照系でさえ約82%もの高
電力効率を達成したことは、薄膜10を一対の電極板
9、9で挟着するこの発明の構成が、電力効率の改善に
極めて効果的であることを立証するものである。また、
一対の電極板9、9に巨視的透孔11を穿設したこの発
明の電極体が、終始一貫して約84%にも達する高電力
効率を達成したことは、巨視的透孔11が気泡付着によ
る電力効率の低下防止に極めて効果的であることを立証
するものである。ガスクロマトグラフィーにより、収集
した水素ガスの純度を分析したところ、何れの系も約9
9%以上と極めて高純度であった。As described above, even the control system achieved a high power efficiency of about 82%. The structure of the present invention in which the thin film 10 is sandwiched between the pair of electrode plates 9 and 9 is extremely effective in improving the power efficiency. It proves to be effective. Also,
The fact that the electrode body of the present invention in which the pair of electrode plates 9 and 9 are provided with the macroscopic through-holes 11 consistently achieves a high power efficiency of approximately 84%, is that the macroscopic through-holes 11 have bubbles. This proves that it is extremely effective in preventing a decrease in power efficiency due to adhesion. The purity of the collected hydrogen gas was analyzed by gas chromatography.
The purity was extremely high at 9% or more.
【0031】[0031]
【発明の効果】叙上のように、この発明の電極体は、被
電解物質が透過し得る多数の微視的透孔を有する薄膜
を、多数の巨視的透孔を穿設した一対の電極板で挟着し
て構成されているので、電力効率が良好で、床面利用効
率も大きくすることができる。As described above, the electrode body of the present invention comprises a pair of electrodes in which a thin film having a large number of microscopic holes through which a substance to be electrolyzed can be formed and a large number of macroscopic holes are formed. Since it is sandwiched between the plates, the power efficiency is good and the floor utilization efficiency can be increased.
【0032】さらに、この発明によるときには、高電力
効率の電解槽をコンパクトに形成でき、水を始めとする
各種被電解物質の電気分解に有利に使用できることとな
る。従って、この発明による電極体及び電解槽は、工場
規模での水素製造は言うに及ばず、例えば、実験室のよ
うに比較的小規模で高品質の水素を調製するときにも有
利に使用できる。Furthermore, according to the present invention, an electrolyzer having high power efficiency can be formed compactly, and can be advantageously used for electrolysis of various substances to be electrolyzed including water. Therefore, the electrode body and the electrolytic cell according to the present invention can be advantageously used not only for hydrogen production on a factory scale but also for preparing high-quality hydrogen on a relatively small scale such as in a laboratory. .
【図1】この発明の電極体を用いる電解槽の縦断側面図
である。FIG. 1 is a vertical sectional side view of an electrolytic cell using an electrode body of the present invention.
【図2】この発明の電極体の一部省略縦断側面図であ
る。FIG. 2 is a vertical cross-sectional side view of the electrode body of the present invention with a part thereof omitted.
【図3】この発明に於ける電極体の別の実施例を示す縦
断平面図である。FIG. 3 is a vertical plan view showing another embodiment of the electrode body according to the present invention.
1 反応槽 2 被電解物質 3 水素ガス取出口 4 酸素ガス取出口 5 陽極端子 6 陰極端子 7 給水口 8 電極体 9 電極板 10 薄膜 11 巨視的透孔 12 リード線 1 reaction tank 2 Electrolyte 3 Hydrogen gas outlet 4 Oxygen gas outlet 5 Anode terminal 6 cathode terminal 7 water inlet 8 electrode body 9 electrode plate 10 thin film 11 Macroscopic through holes 12 lead wire
Claims (5)
孔を有する薄膜を、多数の巨視的透孔を穿設した一対の
電極板で挟着してなる電極体。1. An electrode body comprising a thin film having a large number of microscopic holes through which a substance to be electrolyzed can be sandwiched between a pair of electrode plates having a large number of macroscopic holes.
ことを特徴とする請求項1に記載の電極体。2. The electrode body of claim 1, wherein the thin film has a thickness of less than about 25 microns.
水素ガス及び酸素ガスであることを特徴とする請求項1
又は2に記載の電極体。3. The substance to be electrolyzed is water, and the bubbles generated are hydrogen gas and oxygen gas.
Or the electrode body according to 2.
孔を有する薄膜を、多数の巨視的透孔を穿設した一対の
電極板で挟着してなる電極体を含んでなる電解槽。4. An electrode body comprising a thin film having a large number of microscopic holes through which a substance to be electrolyzed can be sandwiched between a pair of electrode plates having a large number of macroscopic holes formed therein. Electrolyzer.
及び酸素ガスであることを特徴とする請求項4に記載の
電解槽。5. The electrolytic cell according to claim 4, wherein the substance to be electrolyzed is water and the bubbles are hydrogen gas and oxygen gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27609991A JP3243723B2 (en) | 1991-07-27 | 1991-07-27 | Electrode body and its use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27609991A JP3243723B2 (en) | 1991-07-27 | 1991-07-27 | Electrode body and its use |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0533176A true JPH0533176A (en) | 1993-02-09 |
JP3243723B2 JP3243723B2 (en) | 2002-01-07 |
Family
ID=17564790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27609991A Expired - Lifetime JP3243723B2 (en) | 1991-07-27 | 1991-07-27 | Electrode body and its use |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3243723B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0823400A1 (en) * | 1996-08-06 | 1998-02-11 | First Ocean Co., Ltd. | An electrode structure for electrolysis of water and a method for sterilization of water thereby |
-
1991
- 1991-07-27 JP JP27609991A patent/JP3243723B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0823400A1 (en) * | 1996-08-06 | 1998-02-11 | First Ocean Co., Ltd. | An electrode structure for electrolysis of water and a method for sterilization of water thereby |
Also Published As
Publication number | Publication date |
---|---|
JP3243723B2 (en) | 2002-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6254762B1 (en) | Process and electrolytic cell for producing hydrogen peroxide | |
US4561945A (en) | Electrolysis of alkali metal salts with hydrogen depolarized anodes | |
US4214958A (en) | Electrolysis of alkali metal halides in a three-compartment cell with a pressurized buffer compartment | |
JP3007137B2 (en) | Electrolytic ozone generation method and apparatus | |
CH672142A5 (en) | ||
JPH11124698A (en) | Electrolytic cell using gas diffusion electrode | |
FI79145C (en) | Bipolar electrolysis device with gas diffusion cathode. | |
US5879522A (en) | Electrolysis cell | |
JPH08333693A (en) | Electrolytic cell | |
US3446725A (en) | Electrolysis cell | |
WO2021045614A1 (en) | Compact electrochemical stack using corrugated electrodes | |
US3775272A (en) | Mercury diaphragm chlor-alkali cell and process for decomposing alkali metal halides | |
CN102719845A (en) | Method and device for preparing tin methane sulfonate through hydrogen-free electrolysis | |
US5879521A (en) | Gas-diffusion cathode and salt water electrolytic cell using the gas-diffusion cathode | |
EP0011621A1 (en) | Electrolytic cell especially for chloralkali electrolysis with air electrode. | |
KR101147491B1 (en) | Electrolysis apparatus | |
US4357224A (en) | Energy efficient electrolyzer for the production of hydrogen | |
JP2012007206A (en) | Electrolytic cell | |
KR102400469B1 (en) | Electrolytic cell and electrode plate for electrolytic cell | |
JP3243723B2 (en) | Electrode body and its use | |
US3907654A (en) | Electrolytic cell and process for electrolyzing sodium sulfate | |
WO2016084037A1 (en) | Apparatus, method and system for production and separation of gases | |
JPH08246178A (en) | Electrochemical recovering method of salts and device therefor | |
Fouad et al. | Mass transfer at gas evolving screen electrodes | |
NL2021260B1 (en) | Electrolysis system comprising an electrode array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081026 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081026 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091026 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101026 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111026 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111026 Year of fee payment: 10 |