JPH05331529A - Induction hardening jig - Google Patents

Induction hardening jig

Info

Publication number
JPH05331529A
JPH05331529A JP4165570A JP16557092A JPH05331529A JP H05331529 A JPH05331529 A JP H05331529A JP 4165570 A JP4165570 A JP 4165570A JP 16557092 A JP16557092 A JP 16557092A JP H05331529 A JPH05331529 A JP H05331529A
Authority
JP
Japan
Prior art keywords
crystallized glass
steel material
layer
copper pipe
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4165570A
Other languages
Japanese (ja)
Inventor
Hitoshi Okuyama
山 等 奥
Kiyoshi Yajima
島 喜 代 志 矢
Tsutomu Ichikawa
川 努 市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP4165570A priority Critical patent/JPH05331529A/en
Publication of JPH05331529A publication Critical patent/JPH05331529A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PURPOSE:To decrease the thickness of an insulating coated layer and to improve high frequency induction heating efficiency by coating the surface of a hollow copper pipe for induction hardening to a steel material with a ceramic insulating layer composed of a crystallized glass. CONSTITUTION:For example, on the surface of the bar-like steel material P, the high frequency current is supplied while shifting a round shape part 11 composed of the hollow copper pipe 10 to the arrow mark direction, and after heating the surface of the steel material P by the inclusion current, the steel material is rapidly cooled with water and quenched. As the round shape copper pipe 10 itself is heated at high temp., cooling medium is passed through the hollow part and also, in order to prevent the breakage of the copper pipe caused by the contact with the steel material P, the crystallized glass is uniformly stuck on this surface, by a migration electro-deposition method and burnt at 800-1000 deg.C to form the insulating coated layer with the thin crystallized glass having uniform thickness. As this crystallized glass insulating coated layer is the ceramic layer, this layer has high heat resistance without erosion even at high temp., and as this layer can be formed to the extremely small thickness, the interval with the steel material P to be treated can be made to be extremely narrow and the excellent induction heating power efficiency is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鋼などの高周波焼き入れ
治具に関し、その絶縁被覆の耐久性を飛躍的に向上させ
ると共に、焼き入れ治具の絶縁破壊に伴う製品の損傷を
完全に防止することができ、更に絶縁被覆を極めて薄く
することができ、これによって誘導加熱効率を顕著に向
上させることができるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction hardening jig for steel or the like, which dramatically improves the durability of its insulating coating and completely prevents product damage due to dielectric breakdown of the hardening jig. In addition, the insulating coating can be made extremely thin, which can significantly improve the induction heating efficiency.

【0002】[0002]

【従来の技術】高周波焼き入れ治具の形状は円形、L形
等焼き入れする製品の形状に応じて様々である(実開昭
59−193854号公報、実開昭60−94802号
公報)が、基本的には冷却液を循環させるために銅管
(直径5〜6mm、肉厚1、0mm)を石綿で巻き、こ
の石綿をワニスなどで固めて被覆して乾燥したものであ
る。その典型的な形状構造を図1、図2を参照しつつ説
明する。図1に示す高周波焼き入れ治具は鋼管等の円筒
体の表面を高周波焼き入れするための治具であって、銅
管10をループ状に曲げて、その円形部11に石綿を巻
き、これをワニスで固めて絶縁被覆層12を形成してい
る。銅管10に電圧20〜200vの高周波電流を流
し、焼き入れする鋼管Pを円形部に挿入して、一定の速
度で焼き入れ治具を鋼管に対して相対的にその長手方向
に移動させ(実開昭58−36596号公報参照)て、
その表面を850〜900℃に加熱し、水をかけて水冷
し焼き入れするものである。銅管10には大電流を流す
ので銅管自体が発熱して絶縁被覆層12のバインダー物
質である樹脂が分解し、被覆されている石綿などの密着
性が失われると共に、樹脂の分解の過程で、石綿そのも
のも、もろくなるため鋼管P(製品)が被覆層12に接
触すると簡単にその部分の被覆層が損傷してその部分の
銅管が露出する。銅管が露出すると、銅管10と鋼管P
との間でスパークし鋼管Pの表面を著しく損傷する。こ
れを可及的に防止するために、銅管に冷却液を循環させ
てこれを冷却している。しかしそれでも高温に加熱され
ることは避けられず、従って絶縁被覆層12の劣化は急
速に進行する。他方、誘導加熱の効率は銅管10の表面
と鋼管Pの表面との間隙の2乗に反比例するので、誘導
加熱の効率の低下を可及的に防止するために絶縁被覆層
の厚さは上記の石綿にワニスを含浸したものでは数mm
程度に抑えられている。従って、絶縁被覆層のわずかな
損傷でもその絶縁が破壊され、製品を損傷させるので、
この種の従来の高周波焼き入れ治具の実際の使用可能回
数は最大限わずか数回である。これに代わり得るものと
しては絶縁抵抗が高く、極めて薄い絶縁被膜で高い絶縁
抵抗を示し、しかも極めて高温の状態でもその絶縁特
性、物理的強度が低下せず、更にその絶縁の信頼度が高
いものでなければならない。このようなものは現段階で
は適当なものがないため、従来の石綿をワニスなどで固
めたものが短時間使用に於いては最も絶縁性の信頼度が
高く、実用性に優れたものとされている。ところでセラ
ミック絶縁被覆が絶縁抵抗、耐熱性、耐磨耗性に優れて
いることは理論的には良く知られたことである。しかし
アルミナなどの通常のセラミック絶縁物は融点が高いた
め、銅などを基材とする高周波焼き入れ治具の絶縁被覆
として用いることは殆ど不可能である。そこでアルミナ
などに比べ絶縁性に於いて多少劣るものの銅などの基材
の融点以下で絶縁被覆が可能なものとしてホーロー被覆
することが考えられる。しかしながら通常のホーローの
場合、基材となる銅などの融点以下の850〜900℃
で焼成し、被覆層を形成できるものの、この焼成温度で
再溶解するため、鋼などの様に高温度での焼入れを必要
とするものに用いる場合には出来る限り、被加熱物から
離隔した状態で使用するか、又は出来る限り焼成温度の
高いホーローを用いる必要がある。しかしながら前者の
場合に於いては被加熱物からの距離が大きくなる分、エ
ネルギーの利用効率が悪くなる欠点があり又一方後者の
場合、焼成温度の高い耐熱性の高いホーローを被覆しよ
うとすると基材とホーローの密着性が低下し、剥離し易
くなると共に焼成時に基材が変形し易くなるという問題
がある。
2. Description of the Related Art Induction hardening jigs have various shapes such as a circular shape and an L shape according to the shape of the product to be hardened (Japanese Utility Model Publication No. 59-193854, Japanese Utility Model Publication No. 60-94802). Basically, a copper tube (diameter 5 to 6 mm, wall thickness 1, 0 mm) is wrapped with asbestos to circulate a cooling liquid, and this asbestos is hardened with a varnish or the like and covered and dried. The typical shape structure will be described with reference to FIGS. 1 and 2. The induction hardening jig shown in FIG. 1 is a jig for induction hardening the surface of a cylindrical body such as a steel pipe. The copper pipe 10 is bent into a loop shape, and asbestos is wound around the circular portion 11. Is hardened with varnish to form the insulating coating layer 12. A high-frequency current with a voltage of 20 to 200 v is applied to the copper pipe 10, the steel pipe P to be quenched is inserted into the circular portion, and the quenching jig is moved in the longitudinal direction relative to the steel pipe at a constant speed ( (See Japanese Utility Model Laid-Open No. 58-36596),
The surface is heated to 850 to 900 ° C., water is applied thereto, and the mixture is water-cooled and quenched. Since a large current is passed through the copper tube 10, the copper tube itself generates heat to decompose the resin that is the binder material of the insulating coating layer 12 and lose the adhesion of the coated asbestos and the process of resin decomposition. Since the asbestos itself becomes brittle, when the steel pipe P (product) comes into contact with the coating layer 12, the coating layer in that portion is easily damaged and the copper pipe in that portion is exposed. When the copper pipe is exposed, the copper pipe 10 and the steel pipe P
And the surface of the steel pipe P is significantly damaged. In order to prevent this as much as possible, a cooling liquid is circulated through the copper pipe to cool it. However, it is still unavoidable that the insulating coating layer 12 is heated to a high temperature, so that the deterioration of the insulating coating layer 12 rapidly progresses. On the other hand, since the efficiency of induction heating is inversely proportional to the square of the gap between the surface of the copper pipe 10 and the surface of the steel pipe P, the thickness of the insulating coating layer is set to prevent the efficiency of induction heating from decreasing as much as possible. A few mm for the above asbestos impregnated with varnish
It is suppressed to the extent. Therefore, even a slight damage to the insulation coating layer will destroy the insulation and damage the product.
The maximum number of times that this type of conventional induction hardening jig can be used is actually only a few times. As a substitute for this, the insulation resistance is high, the insulation resistance is extremely thin, and the insulation characteristics and physical strength do not deteriorate even at extremely high temperatures, and the insulation is highly reliable. Must. Since there is no suitable one at this stage, conventional asbestos is hardened with varnish, etc., and is considered to have the highest insulation reliability and practicality after a short period of use. ing. By the way, it is well known theoretically that the ceramic insulating coating has excellent insulation resistance, heat resistance and abrasion resistance. However, since a normal ceramic insulator such as alumina has a high melting point, it is almost impossible to use it as an insulating coating for an induction hardening jig having copper as a base material. Therefore, it is conceivable to perform enamel coating as a material having an insulation property that is slightly inferior to that of alumina or the like, but that can be insulation-coated below the melting point of a base material such as copper. However, in the case of a normal enamel, the melting point of the base material such as copper is 850 to 900 ° C.
Although it is possible to form a coating layer by firing at, but because it remelts at this firing temperature, when used for things that require quenching at high temperatures such as steel, it should be as far as possible from the object to be heated Or it is necessary to use a enamel whose firing temperature is as high as possible. However, in the former case, the distance from the object to be heated becomes large, so that there is a drawback in that the energy utilization efficiency is deteriorated. On the other hand, in the latter case, when coating a enamel with high heat resistance and high heat resistance, There is a problem that the adhesiveness between the material and the enamel is reduced, peeling is likely to occur, and the base material is easily deformed during firing.

【0003】[0003]

【発明が解決しようとする課題】本発明は、セラミック
被覆層の高い絶縁性、耐熱性、耐摩耗性を利用すること
が誘導加熱治具の耐久性、信頼性、誘導加熱の効率を飛
躍的に向上させる上で極めて有効であることに着目した
もので、これを実用化する上での上記の問題点、すなわ
ち銅管などの基材の融点近くの高温度で使用出来る耐熱
性を有する絶縁被覆層を形成する上での問題点を解決し
実用に耐えられる程度に高品質のセラミック被覆層を形
成してなる高周波焼き入れ治具の提供をその課題とする
ものである。
DISCLOSURE OF THE INVENTION According to the present invention, the high insulation, heat resistance and wear resistance of a ceramic coating layer are used to dramatically improve the durability, reliability and induction heating efficiency of an induction heating jig. It was noted that it is extremely effective in improving this, and the above-mentioned problems in putting this to practical use, that is, insulation with heat resistance that can be used at high temperatures near the melting point of base materials such as copper pipes. It is an object of the present invention to provide an induction hardening jig in which a problem in forming a coating layer is solved and a high quality ceramic coating layer is formed to such an extent that it can be put to practical use.

【0004】[0004]

【課題を解決のための手段】上記課題解決のために講じ
た手段は、所定の形状に成形加工された中空状の基材の
表面に溶融温度が800〜1000℃の結晶化ガラス被
覆層を形成(ホーローコーティング)したことである。
[Means for Solving the Problems] Means for solving the above problems are as follows. A crystallized glass coating layer having a melting temperature of 800 to 1000 ° C. is formed on the surface of a hollow base material formed into a predetermined shape. That is, it was formed (enameled coating).

【0005】[0005]

【作 用】泳動電着法などによって銅管等の基材の表面
に電着させた結晶化ガラスを800〜1000℃で焼成
すると、結晶化ガラスからなる電着層は溶融して軟化流
動すると同時に結晶化が進行して、粘度が急速に上昇
し、再溶融しにくい均一で滑らかな表面状態を有する結
晶化ガラス層(ホーローコーティング)が形成される。
この焼成後の結晶化ガラス層は結晶化により通常のホー
ローのように焼成温度で再溶融することがなく耐熱性に
優れるため高周波焼入れ治具の様に絶えず冷却しながら
使用する場合に於いては結晶化ガラスの融点近くまでの
使用が可能となる。したがって鋼などの様に高い焼入れ
温度を必要とする様な場合にも、被加熱物に近接した状
態で使用することが出来るため高い誘導加熱効率が得ら
れる。
[Operation] When crystallized glass that is electrodeposited on the surface of a substrate such as a copper tube by the electrophoretic deposition method is baked at 800 to 1000 ° C, the electrodeposition layer made of crystallized glass melts and softens and flows. At the same time, crystallization progresses, the viscosity increases rapidly, and a crystallized glass layer (enameled coating) having a uniform and smooth surface state that is difficult to remelt is formed.
Since the crystallized glass layer after firing does not remelt at the firing temperature like a normal enamel due to crystallization and has excellent heat resistance, it is necessary to use it while continuously cooling like an induction hardening jig. It can be used up to near the melting point of crystallized glass. Therefore, even in the case where high quenching temperature is required such as steel, it can be used in a state close to the object to be heated, so that high induction heating efficiency can be obtained.

【0006】[0006]

【実 施 例】イソプロピルアルコールに結晶化ガラス
(SiO2、MgO等を含有する多成分系結晶化ガラ
ス)の微粒子を重量比0.5%添加し、分散したスラリ
ーに所定形状の銅管1と電極板2を浸し、銅管1にマイ
ナス電極を接続し、電極板2にプラス電極を接続する。
この状態で500v、0.01Aの電流を流して結晶化
ガラスを銅管1の表面に均一に付着させる(図3参
照)。これを950℃で20分間焼成して連続したガラ
ス被覆層を銅管表面に形成する。結晶化ガラスは溶融す
ると同時に急激に粘度上昇し、均一で滑らかな厚さの結
晶化ガラス被覆層が形成される。結晶化ガラス層の厚さ
は電着条件を調節することによって40〜500μmの
厚さになるようにする。なおこの場合に於いて結晶化ガ
ラスの溶融温度が800℃以下では、再溶融温度が80
0℃強で比較的低いので、実用性に乏しい。又一方10
00℃以上では銅管の溶融点1085℃に近くなって焼
成時に銅管が変形したり被覆層が剥離したりする恐れが
あるので、これ以上溶融温度の高い結晶化ガラスを採用
しても実用上のメリットはない。又結晶化ガラス被覆層
の厚さが40μm以下では、十分な絶縁の信頼度が得ら
れず、また500μm以上に厚くすると返って誘導加熱
効率が低下するだけである。本発明の結晶化ガラス絶縁
被覆層(ホーローコーティング層)を形成した高周波焼
き入れ治具の耐久試験結果は次の通りである。 例1;スプロケット用高周波焼き入れ治具、 治具の全体形状;上記実施例と同じ、 結晶化ガラスの溶融温度;950℃、 高周波加熱温度;850〜900℃、 高周波加熱時間;1、9秒、 冷却時間 ;1、5秒、 着脱時間 ;20秒、 従来品、 本発明品、 絶縁被覆層の厚さ; 1600μm、 180μm、 耐久性 ; 4〜5回、 10、000回以上。 例2;長物レール用高周波焼き入れ治具、 治具の全体形状;L形形状(具体的形状については図4
参照)、 結晶化ガラスの溶融温度;950℃、 高周波加熱温度;850〜900℃、 高周波加熱時間;1、2cm/分の速度で移動、 長物レールの長さ;2m 従来品、 本発明品、 絶縁被覆層の厚さ; 1800μm、 200μm、 耐久性 ; 2〜3回、 5、000回以上。
[Example] 0.5% by weight of fine particles of crystallized glass (multi-component crystallized glass containing SiO 2 , MgO, etc.) was added to isopropyl alcohol, and the dispersed slurry was used to form a copper tube 1 having a predetermined shape. The electrode plate 2 is immersed, the negative electrode is connected to the copper tube 1, and the positive electrode is connected to the electrode plate 2.
In this state, a current of 500 V and 0.01 A is applied to uniformly attach the crystallized glass to the surface of the copper tube 1 (see FIG. 3). This is baked at 950 ° C. for 20 minutes to form a continuous glass coating layer on the surface of the copper tube. At the same time as the crystallized glass melts, the viscosity of the crystallized glass rapidly increases and a crystallized glass coating layer having a uniform and smooth thickness is formed. The thickness of the crystallized glass layer is adjusted to 40 to 500 μm by adjusting the electrodeposition conditions. In this case, when the melting temperature of the crystallized glass is 800 ° C or lower, the remelting temperature is 80
Since it is relatively low at a little over 0 ° C, it is not practical. On the other hand, 10
At temperatures above 00 ° C, the melting point of the copper tube is close to 1085 ° C, which may cause deformation of the copper tube or peeling of the coating layer during firing. Therefore, even if crystallized glass with a higher melting temperature is used, it is practical. There is no advantage above. Further, if the thickness of the crystallized glass coating layer is 40 μm or less, sufficient insulation reliability cannot be obtained, and if it is thicker than 500 μm, the induction heating efficiency is simply reduced. The durability test results of the induction hardening jig having the crystallized glass insulating coating layer (enameled coating layer) of the present invention are as follows. Example 1: Induction hardening jig for sprocket, overall shape of jig; same as in the above example, melting temperature of crystallized glass: 950 ° C, induction heating temperature: 850-900 ° C, induction heating time: 1, 9 seconds Cooling time: 1, 5 seconds, attachment / detachment time: 20 seconds, conventional product, product of the present invention, thickness of insulating coating layer: 1600 μm, 180 μm, durability: 4 to 5 times, 10,000 times or more. Example 2: Induction hardening jig for long rails, overall shape of jig; L-shaped shape (for concrete shape, see Fig. 4
), Melting temperature of crystallized glass: 950 ° C., high frequency heating temperature: 850 to 900 ° C., high frequency heating time; moving at a speed of 1, 2 cm / min, long rail length: 2 m conventional product, present product, Thickness of insulating coating layer: 1800 μm, 200 μm, durability: 2-3 times, 5,000 times or more.

【0007】[0007]

【効 果】本発明の課題は新規である。従って、この新
規な課題を解決して、セラミック絶縁被覆の耐熱性、耐
摩耗性、高絶縁性を高周波焼き入れ治具に実用化できる
ようにしたこと自体が本発明特有の優れた効果である。
そして、セラミック絶縁被覆は耐摩耗性が極めて高いの
で高周波焼き入れ治具が焼き入れする製品に接触して
も、簡単にはその絶縁破壊を生じることがなく、その信
頼度が高く、高周波加熱を極めて安全に行うことができ
る。又、セラミック絶縁被覆層の厚さの精度が極めて高
い(予定値に対する製作誤差、±10μm)ので、治具
表面を被加熱体(焼き入れする製品)の表面に接触しな
い程度に可及的に接近させるように設計、製作すること
ができ、このために誘導加熱効率を著しく向上させるこ
とができる。更に溶融温度1000℃以下の結晶化ガラ
スを用いるので焼成時に於ける基材の変形や被覆層の剥
離を防止することが出来ると共に、この結晶化ガラスの
再溶融温度は1000℃強になるので、高周波加熱時に
被覆層の表面が1000℃近くに加熱されても再溶融の
恐れがないからこれによって1000℃の加熱温度で高
周波加熱を繰り返し行うことが可能になる。耐久性が極
めて優れているので、治具の交換頻度が従来品に比べて
ほぼゼロに等しく、従って治具の交換作業、交換時間が
殆どゼロに等しいので、作業能率、効率が向上し、又治
具のためのランニングコストを著しく下げることができ
る。
[Effect] The object of the present invention is novel. Therefore, it is an excellent effect peculiar to the present invention that the heat resistance, wear resistance, and high insulation of the ceramic insulating coating can be put to practical use in an induction hardening jig by solving this novel problem. .
Since the ceramic insulation coating has extremely high wear resistance, even if the induction hardening jig comes into contact with the product to be hardened, its insulation breakdown does not occur easily, its reliability is high, and high frequency heating It can be done very safely. Moreover, the accuracy of the thickness of the ceramic insulation coating layer is extremely high (manufacturing error with respect to the planned value, ± 10 μm), so that the surface of the jig does not come into contact with the surface of the object to be heated (the product to be quenched). They can be designed and manufactured to be close to each other, which can significantly improve the efficiency of induction heating. Further, since the crystallized glass having a melting temperature of 1000 ° C. or less is used, it is possible to prevent the deformation of the base material and the peeling of the coating layer at the time of firing, and the remelting temperature of the crystallized glass becomes a little over 1000 ° C. Even if the surface of the coating layer is heated to near 1000 ° C. during high frequency heating, there is no risk of remelting, which makes it possible to repeatedly perform high frequency heating at a heating temperature of 1000 ° C. Since the durability is extremely excellent, the jig replacement frequency is almost equal to zero compared to the conventional product, so the jig replacement work and replacement time are almost equal to zero, improving work efficiency and efficiency. The running cost for the jig can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来技術の概略説明図である。FIG. 1 is a schematic explanatory diagram of a conventional technique.

【図2】図1のA−A断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】泳動電着法による結晶化ガラスの電着装置の概
略図である。
FIG. 3 is a schematic view of an electrodeposition apparatus for crystallized glass by the electrophoretic deposition method.

【図4】L形レールの高周波焼き入れ治具の使用状態の
斜視図である。
FIG. 4 is a perspective view showing a usage state of an induction hardening jig for an L-shaped rail.

【符号の説明】[Explanation of symbols]

1、10・・・銅管 2・・・電極板 11・・・円形部 12・・・絶縁被覆層 P・・・ 鋼管 1, 10 ... Copper tube 2 ... Electrode plate 11 ... Circular part 12 ... Insulation coating layer P ... Steel tube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】所定の形状に成形された中空状の基材の表
面に溶融温度が800〜1000℃の結晶化ガラスを被
覆してなる高周波焼き入れ治具。
1. An induction hardening jig in which the surface of a hollow base material formed into a predetermined shape is coated with crystallized glass having a melting temperature of 800 to 1000 ° C.
JP4165570A 1992-06-02 1992-06-02 Induction hardening jig Pending JPH05331529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4165570A JPH05331529A (en) 1992-06-02 1992-06-02 Induction hardening jig

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4165570A JPH05331529A (en) 1992-06-02 1992-06-02 Induction hardening jig

Publications (1)

Publication Number Publication Date
JPH05331529A true JPH05331529A (en) 1993-12-14

Family

ID=15814878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4165570A Pending JPH05331529A (en) 1992-06-02 1992-06-02 Induction hardening jig

Country Status (1)

Country Link
JP (1) JPH05331529A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003046230A1 (en) * 2001-11-27 2003-06-05 Kikuchi Co., Ltd. Press molding and its high frequency quenching method and its high frequency quenching system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003046230A1 (en) * 2001-11-27 2003-06-05 Kikuchi Co., Ltd. Press molding and its high frequency quenching method and its high frequency quenching system
US7070228B2 (en) 2001-11-27 2006-07-04 Kikuchi Co., Ltd. Press molding and its high frequency quenching method and its high frequency quenching system

Similar Documents

Publication Publication Date Title
KR950000397B1 (en) Multi-wire induction heating
KR100518729B1 (en) Manufacturing method and structure of porous electrode line for electric discharge machining
JPH05331529A (en) Induction hardening jig
US2381246A (en) Induction heating coil
JP2019169437A (en) Process for producing insulated superconducting wire material
WO2015152428A1 (en) Induction heating device, premelt pot, main pot, and molten metal plating equipment
KR101748975B1 (en) Thermal treatment process of a steel sheet and device for its implementation
US4944786A (en) Apparatus for manufacturing thermal print head
JP2019169448A (en) Process for producing insulated superconducting wire material
JPS621468A (en) Method and apparatus for painting deformed bar
JPH0249848B2 (en)
SU595104A1 (en) Method of drying and thermal treatment of coatings on ferromagnetic cores
JPH0446080A (en) Formation of oxidation preventive film of carbon-containing molding
KR910002954B1 (en) Process for coating a cylinder head with molten ceramic
SU1637977A1 (en) Process for applying metal coatings
RU2071999C1 (en) Method of applying protective coatings onto carbon-material objects
JPH0648320Y2 (en) Electrodes for energizing molten metal
JPS623233B2 (en)
JP3584959B2 (en) Induction hardening apparatus and method
JPH01272783A (en) Enameled base plate and production thereof
US3476579A (en) Method and apparatus for coating metallic core with a metallic coating
JPS60177171A (en) Method for coating wire with metal
SU1725046A1 (en) Method of thermal treatment of thermal shrinkage tapes on cylindrical articles
JPS602627A (en) High-frequency hardening method of outside cylinder of constant-velocity universal joint
JPS60200910A (en) Continuous heat treatment of metallic bar