WO2015152428A1 - Induction heating device, premelt pot, main pot, and molten metal plating equipment - Google Patents

Induction heating device, premelt pot, main pot, and molten metal plating equipment Download PDF

Info

Publication number
WO2015152428A1
WO2015152428A1 PCT/JP2015/060898 JP2015060898W WO2015152428A1 WO 2015152428 A1 WO2015152428 A1 WO 2015152428A1 JP 2015060898 W JP2015060898 W JP 2015060898W WO 2015152428 A1 WO2015152428 A1 WO 2015152428A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
induction heating
pot
refractory material
heating device
Prior art date
Application number
PCT/JP2015/060898
Other languages
French (fr)
Japanese (ja)
Inventor
晴幸 今村
弘郷 山根
昌良 野平
優 澤部
Original Assignee
Jfe鋼板株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe鋼板株式会社 filed Critical Jfe鋼板株式会社
Publication of WO2015152428A1 publication Critical patent/WO2015152428A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/14Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/06Induction heating, i.e. in which the material being heated, or its container or elements embodied therein, form the secondary of a transformer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system
    • F27D2099/0015Induction heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to an induction heating apparatus, a premelt pot, a main pot, and a molten metal plating facility for molten metal, and in particular, an induction heating apparatus, a premelt pot, and a main pot having a long life even for a molten zinc-aluminum alloy bath. And a molten metal plating facility.
  • FIG. 1 shows a schematic diagram of a general molten metal plating facility.
  • the molten metal plating facility 100 includes a main pot 11 that stores molten metal M, and a premelt pot 12 that supplies the molten metal M to the main pot 11.
  • a premelt pot 12 that supplies the molten metal M to the main pot 11.
  • an iron core 14, a coil 15 wound around the iron core 14, and a molten metal M circulating around the coil 15 circulate.
  • a refractory material 17 in which a peripheral circuit 16 for molten metal is formed and a bushing 18 for protecting the refractory material 17 disposed between the coil 15 and the refractory material 17 are provided.
  • One typical example of the molten metal M is molten zinc.
  • the induction heating apparatus provided in the main pot 11 is not illustrated.
  • the hot dip galvanized steel sheet is manufactured as follows. That is, first, the steel sheet S that has undergone each of the steps of cold rolling, surface cleaning in the pretreatment step, heating in a non-oxidizing or reducing atmosphere, annealing, and cooling is immersed in the molten zinc in the main pot 11. . Next, after the direction is changed by the sink roll 19, the steel plate S is pulled up from the main pot 11, and excess molten zinc adhering to the surface of the steel plate S is removed by an adhesion amount control device (not shown) such as gas wiping and plating. Adjust the amount of adhesion.
  • the desired hot-dip galvanized steel sheet can be obtained by cooling the steel sheet S and applying a predetermined post-treatment.
  • the raw metal I is heated by the induction heating device 13 to generate molten zinc, and the generated molten zinc is transferred from the pre-melt pot 12 to the main pot 11. It is configured to replenish as necessary.
  • hot dip zinc-aluminum alloy-plated steel sheets which are galvanized with 55% aluminum and 1.6% silicon by weight, are excellent in corrosion resistance, acid resistance, heat resistance, etc. Widely used in building materials and industrial machinery.
  • the induction heating device 13 When the raw material metal I is melted by the dielectric heating device 13 and the molten zinc-aluminum alloy bath is accommodated in the main pot 11 and the premelt pot 12, and the steel sheet S is subjected to the molten zinc-aluminum alloy plating treatment, Compared with the case where cracking occurs early in the refractory material 17 of the induction heating device 13 provided in the pre-melt pot 12 and / or the main pot 11 and the hot dip galvanizing treatment not containing aluminum is performed, the induction heating device 13 The problem is that the lifetime is significantly shortened.
  • Patent Document 1 describes a technique for extending the life and strength of an induction heating device by configuring the refractory material of the induction heating device with cordierite quality.
  • Patent Document 2 the portion of the induction heating device that comes into contact with the molten metal of the refractory material is coated with Si 3 N 4 ceramics, so that the molten metal erodes the refractory material and induction heating is performed. A technique for improving the life of the apparatus is described.
  • Patent Document 3 describes a technique for reducing the erosion of molten metal and improving the durability of the refractory material by arranging a metal plate between the refractory material and the iron skin in the induction heating device. Yes.
  • an object of the present invention is to provide an induction heating apparatus, a premelt pot, a main pot, and a molten metal plating facility that have a long life even for a molten zinc-aluminum alloy bath.
  • the inventors have received a result that measures against the conventional refractory material 17 are not effective in improving the life of the induction heating device, and thus the occurrence of cracks in the refractory material 17 is essentially the material, coating, etc. of the refractory material 17.
  • the cause of cracks in the refractory material 17 was intensively studied. As a result, it was found that the temperature gradient in the thickness direction of the refractory material 17 was different between the case of the molten zinc bath and the case of the molten zinc-aluminum alloy bath.
  • the temperature of the molten zinc is about 450 ° C.
  • the temperature of the molten metal is about 600 ° C. to 650 ° C. That is, the temperature of the portion of the refractory material 17 in contact with the molten metal is greatly different between the molten zinc bath and the molten zinc-aluminum alloy bath.
  • a bushing 18 for protecting the refractory material 17 is provided between the coil 15 and the refractory material 17 of the induction heating device 13, and the bushing surface on the coil 15 side is cooled to about 40 ° C.
  • the temperature gradient in the thickness direction in the refractory material 17 is larger in the case of the molten zinc-aluminum alloy bath because the temperature of the portion of the refractory material 17 in contact with the molten metal is higher.
  • the inventors speculated that the large temperature gradient in the thickness direction in the refractory material 17 caused a large thermal stress in the refractory material 17 and caused cracks in the refractory material 17 early.
  • the gist of the present invention is as follows. (1) A main pot containing a molten metal containing at least zinc and a premelt pot for supplying the molten metal to the main pot, and the object to be plated is immersed in the molten metal in the main pot An induction heating device provided in the pre-melt pot or the main pot in a molten metal plating facility for galvanizing an object to be plated, the iron core, a coil wound around the iron core, and the periphery of the coil A refractory material having a molten metal circulation circuit through which the molten metal circulates, and a bushing disposed between the coil and the refractory material.
  • an insulation heating apparatus is characterized in that a heat insulating material is disposed between the refractory material and the bushing.
  • a pre-melt pot comprising the induction heating device according to any one of (1) to (3).
  • a main pot comprising the induction heating device according to any one of (1) to (3).
  • a molten metal plating facility comprising the premelt pot according to (4) and / or the main pot according to (5).
  • the heat insulating material is disposed between the refractory material and the bushing in the induction heating device, it is possible to reduce the stress generated in the refractory material and suppress the generation of cracks, and to increase the life of the induction heating device. Can be improved.
  • FIG. 1 is a schematic view of a general molten metal plating facility. It is sectional drawing of the induction heating apparatus which concerns on this invention. It is a figure which shows the temperature gradient of the thickness direction in the refractory material in an invention example and a prior art example. It is a figure which shows the stress distribution in the refractory material in an invention example and a prior art example.
  • FIG. 2 shows a cross-sectional view of the induction heating apparatus according to the present invention.
  • the induction heating apparatus 1 shown in this figure includes a main pot that contains molten metal containing at least zinc as shown in FIG. 1, and a premelt pot that supplies the molten metal to the main pot.
  • a pre-melt pot or a main pot in a molten metal plating facility in which a plated body is immersed in a molten metal in a main pot to perform metal plating on the object to be plated, and is wound around the iron core 14 and the iron core 14
  • the coil 15 is disposed between the coil 15 and the refractory material 17, the refractory material 17 that is formed around the coil 15 that has been rotated, and has a molten metal peripheral circuit 16 that circulates around the coil 15.
  • a bushing 18 is provided, and the raw metal is induction-heated to form a molten metal M.
  • the temperature of molten zinc is about 450 ° C.
  • the temperature of molten zinc-aluminum alloy is about 600 ° C. to 650 ° C. Therefore, in the conventional induction heating apparatus, in the case of a molten zinc-aluminum alloy bath, the temperature difference between the bushing 18 side of the refractory material 17 and the peripheral side 16 side of the molten metal, that is, in the thickness direction of the refractory material 17.
  • the temperature gradient is larger than in the case of a molten zinc bath.
  • a bushing 18 is provided between the coil 15 and the refractory material 17 in the conventional induction heating apparatus.
  • the heat conductivity of copper is as high as 398 W / m ⁇ ° C., so that the heat transmitted from the molten metal M through which the refractory material 17 circulates in the peripheral circuit 16 for molten metal, It is quickly transmitted to the copper bushing 18.
  • the temperature of the refractory material 17 on the bushing 18 side is greatly reduced, and a large temperature gradient is generated in the thickness direction of the refractory material 17.
  • the induction heating apparatus 1 since the heat insulating material 20 is disposed between the refractory material 17 and the bushing 18, the refractory material 17 is melted through the peripheral circuit 16 for molten metal. It becomes difficult to transfer the heat transferred from the metal M to the copper bushing 18. As a result, the temperature drop on the bushing 18 side surface of the refractory material 17 becomes smaller than that of the conventional apparatus, and the temperature gradient in the thickness direction of the refractory material 17 is greatly reduced. Thereby, the thermal stress which generate
  • the “heat insulating material” is a member that blocks heat transfer between the refractory material 17 and the bushing 18 in the induction heating apparatus 1 and has a heat conduction of 1.0 W / m ⁇ ° C. or less. It shall refer to a member having a rate.
  • such a heat insulating material 20 is not ask
  • the cloth-like heat insulating material 20 can be wound around the entire surface of the bushing 18.
  • the material of the heat insulating material 20 is not particularly limited as long as it has a thermal conductivity in the above range and has sufficient heat resistance against heat from the molten metal M.
  • a heat insulating material made of ceramic fiber or rock wool can be used.
  • the thickness of the heat insulating material 20 is the stress which generate
  • the occurrence of cracks can be suppressed by suppressing the occurrence of cracks.
  • the refractory material 17 is called precast or castable, and the material of the refractory material 17 is not particularly limited, and an alumina-based material, a silica-based material, a magnesia-based material, or the like can be used. Further, a film that prevents the aluminum contained in the molten metal M from eroding the refractory material 17 may be formed on the surface of the refractory material 17 on the side of the peripheral circuit 16 for molten metal.
  • the bushing 18 cools the surface of the bushing 18 to about 40 ° C. when the induction heating apparatus 1 is operated.
  • the material of the bushing 18 it is preferable to use a material having high thermal conductivity, and copper, brass, aluminum, or the like can be used. Of these, copper is preferably used because of its extremely high thermal conductivity.
  • a leak detection copper plate (not shown) for detecting a leak of the molten metal M is disposed between the refractory material 17 and the bushing 18 to detect the molten metal M leaking from a crack generated in the refractory material 17. It is preferable to configure so as to. Further, the bushing 18 itself may have a function as a leak detection plate.
  • the heat insulating material is arranged between the refractory material and the bushing in the induction heating device, it is possible to reduce the stress generated in the refractory material and suppress the early occurrence of cracks and improve the life of the induction heating device. Can be made.
  • the induction heating apparatus 1 shown in FIG. 2 was configured.
  • the refractory material 17 is made of an alumina-based refractory, and its thermal conductivity is 4.8 W / m ⁇ ° C.
  • the heat insulating material 20 consists of ceramic type
  • the thicknesses of the refractory material 17, the heat insulating material 20, and the bushing 18 were 60 mm, 6 mm, and 6 mm, respectively.
  • the refractory material 17 and the heat insulating material 20 were connected by a castable refractory material having a thickness of 6 mm.
  • An air layer of 20 mm was provided between the coil 15 and the bushing 18.
  • FIG. 3 shows the temperature gradient in the refractory material 17 in the invention example and the comparative example.
  • FIG. 3 (a) shows the invention example
  • FIG. 3 (b) shows the comparative example.
  • This temperature gradient is obtained by calculating from the thermal conductivity and thickness of each material.
  • the temperature difference between the surface temperature (bath temperature) of the refractory material 17 on the molten metal peripheral circuit 16 side and the interface between the refractory material 17 and the castable refractory material is 399 ° C. .
  • the temperature difference between the surface temperature (bath temperature) of the refractory material 17 on the molten metal peripheral circuit 16 side and the interface between the refractory material 17 and the castable refractory material is 118 ° C. That is, it can be seen that the temperature gradient in the refractory material 17 is significantly reduced by arranging the heat insulating material 20 between the refractory material 17 and the bushing 18.
  • FIG. 4 is a diagram showing the stress distribution in the refractory material in the invention example and the comparative example.
  • FIG. 4 (a) is for the invention example
  • FIG. 4 (b) is for the comparative example.
  • the stress distribution shown in this figure is obtained by calculating with temperature gradient, thermal conductivity and time.
  • FIG. 4 shows the relative value when the thermal stress of the portion where the maximum thermal stress of FIG. First, referring to FIG. 4B, it can be seen that in the comparative example, a very large thermal stress is locally generated at the corner on the molten metal peripheral circuit 16 side.
  • a thermal stress having a relative value of about 55 is generated over the entire refractory material 17, but a very large thermal stress is locally generated as in the comparative example. There is no.
  • the maximum thermal stress generated in the refractory material 17 is greatly reduced, and there is no place where a very large thermal stress is locally generated. Can be expected to prevent the early occurrence of cracks due to thermal stress.
  • the heat insulating material is disposed between the refractory material and the bushing in the induction heating device, it is possible to reduce the stress generated in the refractory material and suppress the generation of cracks, and to increase the life of the induction heating device. Since it can be improved, it is useful in the steel industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coating With Molten Metal (AREA)
  • Furnace Details (AREA)

Abstract

The present invention provides: an induction heating device, a premelt pot, and molten metal plating equipment that have a long life span even with respect to a molten zinc-aluminium alloy bath. Provided is an induction heating device (1) disposed in a premelt pot or main pot of molten metal plating equipment comprising a main pot which accommodates a molten metal including at least zinc and a premelt pot which supplies the molten metal (M) to the main pot and being used for subjecting an object to be plated to metal plating by immersing the object to be plated in the molten metal in the main pot, said induction heating device (1) being provided with an iron core (14), a coil (15) which is wound around the iron core (14), a refractory material (17) which surrounds the coil (15) and in which an orbit path (16) for molten metal through which the molten metal (M) flows is formed, and a bushing (18) which is disposed between the coil (15) and the refractory material (17), being used to obtain a molten metal by subjecting a starting metal to induction heating, and being characterized in that a heat insulation material (20) is disposed between the refractory material (17) and the bushing (18).

Description

誘導加熱装置、プリメルトポット、メインポットおよび溶融金属めっき設備Induction heating device, pre-melt pot, main pot and molten metal plating equipment
 本発明は、溶融金属の誘導加熱装置、プリメルトポット、メインポットおよび溶融金属めっき設備に関し、特に、溶融亜鉛−アルミニウム合金浴に対しても長寿命を有する誘導加熱装置、プリメルトポット、メインポットおよび溶融金属めっき設備に関するものである。 The present invention relates to an induction heating apparatus, a premelt pot, a main pot, and a molten metal plating facility for molten metal, and in particular, an induction heating apparatus, a premelt pot, and a main pot having a long life even for a molten zinc-aluminum alloy bath. And a molten metal plating facility.
 従来、鋼板、鋼管や鋼構造物等の鋼材を溶融亜鉛浴に所定時間浸漬し、引き上げ後に冷却して亜鉛めっき皮膜を形成させることにより鋼材の耐食性を高める技術が広く知られている。この技術は、簡便かつ種々の形状および大きさの被めっき体を同一製造ラインで処理できるため、広く利用されている。 Conventionally, a technique for enhancing the corrosion resistance of a steel material by immersing a steel material such as a steel plate, a steel pipe, or a steel structure in a molten zinc bath for a predetermined time, and cooling it after being pulled up to form a galvanized film is widely known. This technique is widely used because it can easily and easily process objects to be plated having various shapes and sizes on the same production line.
 図1は、一般的な溶融金属めっき設備の概略図を示している。この溶融金属めっき設備100は、溶融した金属Mを収容するメインポット11と、該メインポット11に溶融金属Mを供給するプリメルトポット12とを備える。このプリメルトポット12およびメインポット11に設けられた誘導加熱装置13は、鉄心14と、該鉄心14に巻き回されたコイル15と、該コイル15の周りを周回する、溶融金属Mが流通する溶融金属用周回路16が形成された耐火材17と、コイル15と耐火材17との間に配された、耐火材17保護用のブッシング18とを備えている。溶融金属Mの典型的な例の1つとして、溶融亜鉛を挙げることができる。なお、図1において、メインポット11に設けられた誘導加熱装置は図示していない。 FIG. 1 shows a schematic diagram of a general molten metal plating facility. The molten metal plating facility 100 includes a main pot 11 that stores molten metal M, and a premelt pot 12 that supplies the molten metal M to the main pot 11. In the induction heating device 13 provided in the pre-melt pot 12 and the main pot 11, an iron core 14, a coil 15 wound around the iron core 14, and a molten metal M circulating around the coil 15 circulate. A refractory material 17 in which a peripheral circuit 16 for molten metal is formed and a bushing 18 for protecting the refractory material 17 disposed between the coil 15 and the refractory material 17 are provided. One typical example of the molten metal M is molten zinc. In addition, in FIG. 1, the induction heating apparatus provided in the main pot 11 is not illustrated.
 この図に示した設備において、溶融亜鉛めっき鋼板は以下のように製造される。すなわち、まず、冷延、前処理工程での表面洗浄、非酸化性あるいは還元性雰囲気中での加熱、焼鈍、冷却の各々の工程を経た鋼板Sをメインポット11内の溶融亜鉛中に浸漬する。次いで、シンクロール19で方向転換した後、鋼板Sをメインポット11から引き上げ、鋼板Sの表面に付着した過剰の溶融亜鉛をガスワイピング等の付着量制御装置(図示せず)で除去してめっき付着量を調整する。続いて、鋼板Sを冷却し、所定の後処理を施すことにより、所望の溶融亜鉛めっき鋼板を得ることができる。その際、鋼板Sに付着して減少する溶融亜鉛を補うために、原料金属Iを誘導加熱装置13によって加熱して溶融亜鉛を生成し、生成した溶融亜鉛をプリメルトポット12からメインポット11へ、必要に応じて適宜補充するように構成されている。 In the equipment shown in this figure, the hot dip galvanized steel sheet is manufactured as follows. That is, first, the steel sheet S that has undergone each of the steps of cold rolling, surface cleaning in the pretreatment step, heating in a non-oxidizing or reducing atmosphere, annealing, and cooling is immersed in the molten zinc in the main pot 11. . Next, after the direction is changed by the sink roll 19, the steel plate S is pulled up from the main pot 11, and excess molten zinc adhering to the surface of the steel plate S is removed by an adhesion amount control device (not shown) such as gas wiping and plating. Adjust the amount of adhesion. Subsequently, the desired hot-dip galvanized steel sheet can be obtained by cooling the steel sheet S and applying a predetermined post-treatment. At that time, in order to compensate for the molten zinc that adheres to the steel sheet S and decreases, the raw metal I is heated by the induction heating device 13 to generate molten zinc, and the generated molten zinc is transferred from the pre-melt pot 12 to the main pot 11. It is configured to replenish as necessary.
 ところで、上記した溶融亜鉛めっき鋼板を製造する際に、耐食性を向上させるために、主成分である亜鉛以外にアルミニウムを添加することが多い。特に、鋼板に55質量%のアルミニウムおよび1.6質量%のシリコンを含む亜鉛めっきを施した、溶融亜鉛−アルミニウム合金めっき鋼板(ガルバリウム鋼板)は、耐食性、耐酸性、耐熱性等に優れており、建築材料や産業機械等に広く利用されている。 By the way, when manufacturing the above hot-dip galvanized steel sheet, aluminum is often added in addition to zinc as a main component in order to improve corrosion resistance. In particular, hot dip zinc-aluminum alloy-plated steel sheets (galvalume steel sheets), which are galvanized with 55% aluminum and 1.6% silicon by weight, are excellent in corrosion resistance, acid resistance, heat resistance, etc. Widely used in building materials and industrial machinery.
 しかしながら、誘電加熱装置13により原料金属Iを溶融してメインポット11およびプリメルトポット12内に溶融亜鉛−アルミニウム合金浴を収容し、鋼板Sに対して溶融亜鉛−アルミニウム合金めっき処理を行うと、プリメルトポット12および/またはメインポット11に設けられた誘導加熱装置13の耐火材17にクラックが早期に発生し、アルミニウムを含まない溶融亜鉛めっき処理を行う場合に比べて、誘導加熱装置13の寿命が著しく短くなることが問題となっていた。 However, when the raw material metal I is melted by the dielectric heating device 13 and the molten zinc-aluminum alloy bath is accommodated in the main pot 11 and the premelt pot 12, and the steel sheet S is subjected to the molten zinc-aluminum alloy plating treatment, Compared with the case where cracking occurs early in the refractory material 17 of the induction heating device 13 provided in the pre-melt pot 12 and / or the main pot 11 and the hot dip galvanizing treatment not containing aluminum is performed, the induction heating device 13 The problem is that the lifetime is significantly shortened.
 そこで、これまで、溶融亜鉛−アルミニウム合金めっき処理を行う場合であっても、誘導加熱装置の寿命を向上させる様々な技術が提案されてきた。例えば、特許文献1には、誘導加熱装置の耐火材をコージライト質で構成することにより、誘導加熱装置の長寿命化および高強度化を図る技術について記載されている。 Therefore, various techniques for improving the life of the induction heating apparatus have been proposed so far, even when the hot dip zinc-aluminum alloy plating process is performed. For example, Patent Document 1 describes a technique for extending the life and strength of an induction heating device by configuring the refractory material of the induction heating device with cordierite quality.
 また、特許文献2には、誘導加熱装置における耐火材の溶融金属と接触する部分をSi系セラミックスで被覆することにより、溶融金属が耐火材を浸食するのを抑制して、誘導加熱装置の寿命を向上させる技術について記載されている。 Further, in Patent Document 2, the portion of the induction heating device that comes into contact with the molten metal of the refractory material is coated with Si 3 N 4 ceramics, so that the molten metal erodes the refractory material and induction heating is performed. A technique for improving the life of the apparatus is described.
 さらに、特許文献3には、誘導加熱装置における耐火材と鉄皮との間に金属板を配置することにより、溶融金属の浸食を軽減して耐火材の耐久性を向上する技術について記載されている。 Furthermore, Patent Document 3 describes a technique for reducing the erosion of molten metal and improving the durability of the refractory material by arranging a metal plate between the refractory material and the iron skin in the induction heating device. Yes.
特開平07−41922号公報JP 07-41922 A 特開平10−141869号公報JP-A-10-141869 特開平2002−194517号公報Japanese Patent Laid-Open No. 2002-194517
 しかしながら、特許文献1~3に記載された技術を以てしても、誘導加熱装置の寿命は依然として短いことが問題となっていた。
 そこで、本発明の目的は、溶融亜鉛−アルミニウム合金浴に対しても長寿命を有する誘導加熱装置、プリメルトポット、メインポットおよび溶融金属めっき設備を提供することにある。
However, even with the techniques described in Patent Documents 1 to 3, there is a problem that the life of the induction heating device is still short.
Accordingly, an object of the present invention is to provide an induction heating apparatus, a premelt pot, a main pot, and a molten metal plating facility that have a long life even for a molten zinc-aluminum alloy bath.
 発明者らは、上記課題を解決する方途について鋭意検討した。従来、耐火材17にクラックが発生する原因は、溶融亜鉛−アルミニウム合金に含まれるアルミニウムが耐火材17に浸食するためであると考えられてきた。そのため、特許文献1~3に記載されているように、耐火材17の材料の選定や耐火材17の溶融亜鉛−アルミニウム合金が接する側の表面の皮膜等が検討されてきた。しかし、上述のように、溶融亜鉛−アルミニウム合金浴の場合に、耐火材17におけるクラックの早期発生を抑制できず、誘導加熱装置の寿命は依然として短いのである。発明者らは、従来の耐火材17に対する対策が誘導加熱装置の寿命向上に有効ではないという結果を受けて、耐火材17におけるクラックの発生は、耐火材17の材料や皮膜等とは本質的に別の原因によるものではないかと考え、耐火材17にクラックが発生する要因を鋭意検討した。その結果、溶融亜鉛浴の場合と、溶融亜鉛−アルミニウム合金浴の場合とでは、耐火材17の厚み方向の温度勾配が異なることに気づいた。
 すなわち、溶融亜鉛浴の場合、溶融亜鉛の温度は450℃程度であるのに対して、溶融亜鉛−アルミニウム合金浴の場合には、溶融金属の温度は600℃~650℃程度である。つまり、耐火材17の溶融金属と接する部分の温度が、溶融亜鉛浴と溶融亜鉛−アルミニウム合金浴とでは大きく異なっている。一方、誘導加熱装置13のコイル15と耐火材17との間には、耐火材17保護用のブッシング18が設けられており、コイル15側のブッシング表面は40℃程度まで冷却されている。つまり、耐火材17の溶融金属と接する部分の温度が高い分、溶融亜鉛−アルミニウム合金浴の場合の方が、耐火材17内の厚み方向の温度勾配が大きい。
 発明者らは、この耐火材17内の厚み方向の大きな温度勾配が、耐火材17内に大きな熱応力を発生させ、耐火材17内にクラックを早期に発生させる原因であると推察した。そこで、溶融亜鉛−アルミニウム合金浴の場合に、耐火材17内に生じる熱応力を低減してクラックの早期発生を抑制し、誘導加熱装置13の寿命を向上させる方途について鋭意検討した結果、耐火材17とブッシング18との間に断熱材を配することが極めて有効であることを見出し、本発明を完成させるに到った。
The inventors diligently studied how to solve the above problems. Conventionally, it has been considered that the cause of cracks in the refractory material 17 is that aluminum contained in the molten zinc-aluminum alloy is eroded by the refractory material 17. Therefore, as described in Patent Documents 1 to 3, the selection of the material of the refractory material 17 and the coating on the surface of the refractory material 17 on the side in contact with the molten zinc-aluminum alloy have been studied. However, as described above, in the case of a molten zinc-aluminum alloy bath, the early generation of cracks in the refractory material 17 cannot be suppressed, and the life of the induction heating device is still short. The inventors have received a result that measures against the conventional refractory material 17 are not effective in improving the life of the induction heating device, and thus the occurrence of cracks in the refractory material 17 is essentially the material, coating, etc. of the refractory material 17. The cause of cracks in the refractory material 17 was intensively studied. As a result, it was found that the temperature gradient in the thickness direction of the refractory material 17 was different between the case of the molten zinc bath and the case of the molten zinc-aluminum alloy bath.
That is, in the case of the molten zinc bath, the temperature of the molten zinc is about 450 ° C., whereas in the case of the molten zinc-aluminum alloy bath, the temperature of the molten metal is about 600 ° C. to 650 ° C. That is, the temperature of the portion of the refractory material 17 in contact with the molten metal is greatly different between the molten zinc bath and the molten zinc-aluminum alloy bath. On the other hand, a bushing 18 for protecting the refractory material 17 is provided between the coil 15 and the refractory material 17 of the induction heating device 13, and the bushing surface on the coil 15 side is cooled to about 40 ° C. That is, the temperature gradient in the thickness direction in the refractory material 17 is larger in the case of the molten zinc-aluminum alloy bath because the temperature of the portion of the refractory material 17 in contact with the molten metal is higher.
The inventors speculated that the large temperature gradient in the thickness direction in the refractory material 17 caused a large thermal stress in the refractory material 17 and caused cracks in the refractory material 17 early. Thus, in the case of a molten zinc-aluminum alloy bath, as a result of earnestly examining how to reduce the thermal stress generated in the refractory material 17 to suppress the early generation of cracks and improve the life of the induction heating device 13, the refractory material It has been found that it is extremely effective to dispose a heat insulating material between 17 and the bushing 18, and the present invention has been completed.
 すなわち、本発明の要旨構成は以下の通りである。
(1)溶融した少なくとも亜鉛を含む金属を収容するメインポットと、該メインポットに前記溶融金属を供給するプリメルトポットとを備え、被めっき体を前記メインポット内の溶融金属に浸漬して前記被めっき体に亜鉛めっきを施す溶融金属めっき設備における、前記プリメルトポットまたは前記メインポットに設けられた誘導加熱装置であって、鉄心と、該鉄心に巻き回されたコイルと、該コイルの周りを周回する、前記溶融金属が流通する溶融金属用周回路が形成された耐火材と、前記コイルと前記耐火材との間に配されたブッシングとを備え、原料金属を誘導加熱して前記溶融金属とする誘導加熱装置において、前記耐火材と前記ブッシングとの間に断熱材を配したことを特徴とする誘導加熱装置。
That is, the gist of the present invention is as follows.
(1) A main pot containing a molten metal containing at least zinc and a premelt pot for supplying the molten metal to the main pot, and the object to be plated is immersed in the molten metal in the main pot An induction heating device provided in the pre-melt pot or the main pot in a molten metal plating facility for galvanizing an object to be plated, the iron core, a coil wound around the iron core, and the periphery of the coil A refractory material having a molten metal circulation circuit through which the molten metal circulates, and a bushing disposed between the coil and the refractory material. In the induction heating apparatus made of metal, an insulation heating apparatus is characterized in that a heat insulating material is disposed between the refractory material and the bushing.
(2)前記断熱材の熱伝導率が1.0W/m・℃以下である、前記(1)に記載の誘導加熱装置。 (2) The induction heating device according to (1), wherein the heat conductivity of the heat insulating material is 1.0 W / m · ° C. or less.
(3)前記溶融金属がアルミニウムを含む、前記(1)または(2)に記載の誘導加熱装置。 (3) The induction heating device according to (1) or (2), wherein the molten metal includes aluminum.
(4)前記(1)~(3)のいずれか一項に記載の誘導加熱装置を備えるプリメルトポット。 (4) A pre-melt pot comprising the induction heating device according to any one of (1) to (3).
(5)前記(1)~(3)のいずれか一項に記載の誘導加熱装置を備えるメインポット。 (5) A main pot comprising the induction heating device according to any one of (1) to (3).
(6)前記(4)に記載のプリメルトポットおよび/または前記(5)に記載のメインポットを備える溶融金属めっき設備。 (6) A molten metal plating facility comprising the premelt pot according to (4) and / or the main pot according to (5).
 本発明によれば、誘導加熱装置における耐火材とブッシングとの間に断熱材を配したため、耐火材内に生じる応力を低減させてクラックの発生を抑制することができ、誘導加熱装置の寿命を向上させることができる。 According to the present invention, since the heat insulating material is disposed between the refractory material and the bushing in the induction heating device, it is possible to reduce the stress generated in the refractory material and suppress the generation of cracks, and to increase the life of the induction heating device. Can be improved.
一般的な溶融金属めっき設備の概略図である。1 is a schematic view of a general molten metal plating facility. 本発明に係る誘導加熱装置の断面図である。It is sectional drawing of the induction heating apparatus which concerns on this invention. 発明例および従来例における耐火材内の厚み方向の温度勾配を示す図である。It is a figure which shows the temperature gradient of the thickness direction in the refractory material in an invention example and a prior art example. 発明例および従来例における耐火材内の応力分布を示す図である。It is a figure which shows the stress distribution in the refractory material in an invention example and a prior art example.
 以下、図面を参照して本発明を詳しく説明する。図2は、本発明に係る誘導加熱装置の断面図を示している。なお、図1と同じ構成には同じ符号が付されている。この図に示した誘導加熱装置1は、図1に示したような、溶融した少なくとも亜鉛を含む金属を収容するメインポットと、該メインポットに溶融金属を供給するプリメルトポットとを備え、被めっき体をメインポット内の溶融金属に浸漬して被めっき体に金属めっきを施す溶融金属めっき設備における、プリメルトポットまたはメインポットに設けられたものであり、鉄心14と、該鉄心14に巻き回されたコイル15と、該コイル15の周りを周回する、溶融金属Mが流通する溶融金属用周回路16が形成された耐火材17と、コイル15と耐火材17との間に配されたブッシング18とを備え、原料金属を誘導加熱して溶融金属Mとする。ここで、耐火材17とブッシング18との間に断熱材20を配することが肝要である。 Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 2 shows a cross-sectional view of the induction heating apparatus according to the present invention. In addition, the same code | symbol is attached | subjected to the same structure as FIG. The induction heating apparatus 1 shown in this figure includes a main pot that contains molten metal containing at least zinc as shown in FIG. 1, and a premelt pot that supplies the molten metal to the main pot. It is provided in a pre-melt pot or a main pot in a molten metal plating facility in which a plated body is immersed in a molten metal in a main pot to perform metal plating on the object to be plated, and is wound around the iron core 14 and the iron core 14 The coil 15 is disposed between the coil 15 and the refractory material 17, the refractory material 17 that is formed around the coil 15 that has been rotated, and has a molten metal peripheral circuit 16 that circulates around the coil 15. A bushing 18 is provided, and the raw metal is induction-heated to form a molten metal M. Here, it is important to arrange the heat insulating material 20 between the refractory material 17 and the bushing 18.
 上述のように、溶融亜鉛の温度は450℃程度であるのに対して、溶融亜鉛−アルミニウム合金の温度は600℃~650℃程度である。そのため、従来の誘導加熱装置においては、溶融亜鉛−アルミニウム合金浴の場合、耐火材17のブッシング18側と溶融金属用周回路16側との間の温度差、すなわち、耐火材17の厚み方向の温度勾配が、溶融亜鉛浴の場合に比べて大きい。 As described above, the temperature of molten zinc is about 450 ° C., whereas the temperature of molten zinc-aluminum alloy is about 600 ° C. to 650 ° C. Therefore, in the conventional induction heating apparatus, in the case of a molten zinc-aluminum alloy bath, the temperature difference between the bushing 18 side of the refractory material 17 and the peripheral side 16 side of the molten metal, that is, in the thickness direction of the refractory material 17. The temperature gradient is larger than in the case of a molten zinc bath.
 このような溶融亜鉛−アルミニウム合金浴に対して、従来の誘導加熱装置においては、コイル15と耐火材17との間にブッシング18が設けられている。このブッシング18が、例えば銅製の場合、銅の熱伝導率は398W/m・℃と非常に大きいため、耐火材17が溶融金属用周回路16を流通する溶融金属Mから伝達された熱が、銅製ブッシング18に速やかに伝達される。その結果、耐火材17のブッシング18側の温度が大きく低下し、耐火材17の厚み方向に大きな温度勾配が生じる。 For such a molten zinc-aluminum alloy bath, a bushing 18 is provided between the coil 15 and the refractory material 17 in the conventional induction heating apparatus. When the bushing 18 is made of, for example, copper, the heat conductivity of copper is as high as 398 W / m · ° C., so that the heat transmitted from the molten metal M through which the refractory material 17 circulates in the peripheral circuit 16 for molten metal, It is quickly transmitted to the copper bushing 18. As a result, the temperature of the refractory material 17 on the bushing 18 side is greatly reduced, and a large temperature gradient is generated in the thickness direction of the refractory material 17.
 これに対して、本発明に係る誘導加熱装置1においては、耐火材17とブッシング18との間に断熱材20が配されているため、耐火材17が溶融金属用周回路16を流通する溶融金属Mから伝達された熱を、銅製ブッシング18に伝達しづらくなる。その結果、従来の装置に比べて、耐火材17のブッシング18側表面の温度低下が小さくなり、ひいては耐火材17の厚み方向の温度勾配が大きく低減されることとなる。これにより、耐火材17内に発生する熱応力が低減され、耐火材17内にクラックが早期に発生するのを防止して、誘導加熱装置の寿命を向上させることができるのである。 On the other hand, in the induction heating apparatus 1 according to the present invention, since the heat insulating material 20 is disposed between the refractory material 17 and the bushing 18, the refractory material 17 is melted through the peripheral circuit 16 for molten metal. It becomes difficult to transfer the heat transferred from the metal M to the copper bushing 18. As a result, the temperature drop on the bushing 18 side surface of the refractory material 17 becomes smaller than that of the conventional apparatus, and the temperature gradient in the thickness direction of the refractory material 17 is greatly reduced. Thereby, the thermal stress which generate | occur | produces in the refractory material 17 is reduced, it can prevent that a crack generate | occur | produces in the refractory material 17 at an early stage, and can improve the lifetime of an induction heating apparatus.
 なお、本発明において、「断熱材」とは、誘導加熱装置1における耐火材17とブッシング18との間の熱の伝達を遮断する部材であって、1.0W/m・℃以下の熱伝導率を有する部材を指すものとする。この範囲の熱伝導率を有する断熱材20を耐火材17とブッシング18との間に配することにより、上記した、耐火材17内に発生する熱応力の低減効果を達成して誘導加熱装置の寿命向上を図ることができる。 In the present invention, the “heat insulating material” is a member that blocks heat transfer between the refractory material 17 and the bushing 18 in the induction heating apparatus 1 and has a heat conduction of 1.0 W / m · ° C. or less. It shall refer to a member having a rate. By disposing the heat insulating material 20 having a thermal conductivity in this range between the refractory material 17 and the bushing 18, the above-described effect of reducing the thermal stress generated in the refractory material 17 is achieved, and the induction heating device The life can be improved.
 このような断熱材20の形状は問わないが、ブッシング18の表面全てを覆うように配置する。例えば、布状の断熱材20をブッシング18の表面全体に巻き付けることができる。 Although the shape of such a heat insulating material 20 is not ask | required, it arrange | positions so that the whole surface of the bushing 18 may be covered. For example, the cloth-like heat insulating material 20 can be wound around the entire surface of the bushing 18.
 断熱材20の素材は、上記範囲の熱伝導率を有し、溶融金属Mからの熱に対する十分な耐熱性を有していれば特に限定されない。例えば、セラミックファイバーやロックウールからなる断熱材を使用することができる。 The material of the heat insulating material 20 is not particularly limited as long as it has a thermal conductivity in the above range and has sufficient heat resistance against heat from the molten metal M. For example, a heat insulating material made of ceramic fiber or rock wool can be used.
 また、断熱材20の厚みは、耐火材17とブッシング18との間の熱の伝達を良好に遮断して耐火材17内の厚み方向の温度勾配を低減し、耐火材17内に発生する応力を低減してクラックの早期発生を抑制することができればよく、特に限定されない。 Moreover, the thickness of the heat insulating material 20 is the stress which generate | occur | produces in the refractory material 17 by interrupting | blocking the heat transfer between the refractory material 17 and the bushing 18, and reducing the temperature gradient of the thickness direction in the refractory material 17. There is no particular limitation as long as the occurrence of cracks can be suppressed by suppressing the occurrence of cracks.
 耐火材17は、プレキャスト、キャスタブルと称されるものであり、耐火材17の材料は特に限定されず、アルミナ系材料やシリカ系材料、マグネシア系材料等を用いることができる。また、耐火材17の溶融金属用周回路16側の表面に、溶融金属Mに含まれるアルミニウムが耐火材17に浸食するのを防ぐ皮膜を形成してもよい。 The refractory material 17 is called precast or castable, and the material of the refractory material 17 is not particularly limited, and an alumina-based material, a silica-based material, a magnesia-based material, or the like can be used. Further, a film that prevents the aluminum contained in the molten metal M from eroding the refractory material 17 may be formed on the surface of the refractory material 17 on the side of the peripheral circuit 16 for molten metal.
 ブッシング18は、誘導加熱装置1の作動時にブッシング18の表面を40℃程度に冷却する。ブッシング18の材料としては、熱伝導率の高い材料を用いることが好ましく、銅や真鍮、アルミニウム等を使用することができる。中でも熱伝導率が極めて高いことから、銅を用いることが好ましい。 The bushing 18 cools the surface of the bushing 18 to about 40 ° C. when the induction heating apparatus 1 is operated. As the material of the bushing 18, it is preferable to use a material having high thermal conductivity, and copper, brass, aluminum, or the like can be used. Of these, copper is preferably used because of its extremely high thermal conductivity.
 また、耐火材17とブッシング18との間に、溶融金属Mのリークを検出するリーク検知用銅板(図示せず)を配して、耐火材17に発生したクラックからリークした溶融金属Mを検出するように構成することが好ましい。また、ブッシング18自体にリーク検知用板としての機能を持たせてもよい。
 上記ではプリメルトポット12に本発明の誘導加熱装置を設けた場合を例として説明したが、本発明の誘導加熱装置をメインポット11に設けた場合も同様である。
Further, a leak detection copper plate (not shown) for detecting a leak of the molten metal M is disposed between the refractory material 17 and the bushing 18 to detect the molten metal M leaking from a crack generated in the refractory material 17. It is preferable to configure so as to. Further, the bushing 18 itself may have a function as a leak detection plate.
In the above description, the case where the preheating pot 12 is provided with the induction heating device of the present invention has been described as an example, but the same applies to the case where the main heating pot 11 is provided with the induction heating device of the present invention.
 このように、誘導加熱装置における耐火材とブッシングとの間に断熱材を配したため、耐火材内に生じる応力を低減させてクラックの早期発生を抑制することができ、誘導加熱装置の寿命を向上させることができる。 As described above, since the heat insulating material is arranged between the refractory material and the bushing in the induction heating device, it is possible to reduce the stress generated in the refractory material and suppress the early occurrence of cracks and improve the life of the induction heating device. Can be made.
(発明例)
 以下、本発明の実施例について説明する。
 図2に示した誘導加熱装置1を構成した。ここで、耐火材17はアルミナ系耐火物からなり、その熱伝導率は4.8W/m・℃である。また、断熱材20は、セラミックス系シート材からなり、その熱伝導率は0.09W/m・℃である。耐火材17、断熱材20およびブッシング18の厚さは、それぞれ60mm、6mmおよび6mmであり、耐火材17と断熱材20とは6mm厚のキャスタブル耐火材で接続した。また、コイル15とブッシング18との間には、空気層を20mm設けた。
(Invention example)
Examples of the present invention will be described below.
The induction heating apparatus 1 shown in FIG. 2 was configured. Here, the refractory material 17 is made of an alumina-based refractory, and its thermal conductivity is 4.8 W / m · ° C. Moreover, the heat insulating material 20 consists of ceramic type | system | group sheet materials, and the heat conductivity is 0.09 W / m * degreeC. The thicknesses of the refractory material 17, the heat insulating material 20, and the bushing 18 were 60 mm, 6 mm, and 6 mm, respectively. The refractory material 17 and the heat insulating material 20 were connected by a castable refractory material having a thickness of 6 mm. An air layer of 20 mm was provided between the coil 15 and the bushing 18.
(比較例)
 発明例と同様に誘導加熱装置を構成した。ただし、耐火材17とブッシング18との間に断熱材20を配しなかった。また、耐火材17と断熱材20とは12mm厚のキャスタブル耐火材で接続した。これ以外の構成は、発明例と全て同じである。
(Comparative example)
An induction heating apparatus was configured in the same manner as the invention example. However, the heat insulating material 20 was not disposed between the refractory material 17 and the bushing 18. Moreover, the refractory material 17 and the heat insulating material 20 were connected by a castable refractory material having a thickness of 12 mm. The other configuration is the same as that of the invention example.
<耐火材内の温度勾配>
 図3は、発明例および比較例における耐火材17内の温度勾配を示しており、図3(a)は発明例、図3(b)は比較例についてのものである。この温度勾配は、各材料の熱伝導率や厚さから計算して得られたものである。
 まず、図3(b)を参照すると、耐火材17の溶融金属用周回路16側の表面温度(浴温)と、耐火材17とキャスタブル耐火材との界面との温度差は399℃である。
 これに対して、発明例については、耐火材17の溶融金属用周回路16側の表面温度(浴温)と、耐火材17とキャスタブル耐火材との界面との温度差は118℃である。すなわち、耐火材17とブッシング18との間に断熱材20を配したことによって、耐火材17における温度勾配が著しく低減されていることが分かる。
<Temperature gradient in refractory material>
FIG. 3 shows the temperature gradient in the refractory material 17 in the invention example and the comparative example. FIG. 3 (a) shows the invention example, and FIG. 3 (b) shows the comparative example. This temperature gradient is obtained by calculating from the thermal conductivity and thickness of each material.
First, referring to FIG. 3B, the temperature difference between the surface temperature (bath temperature) of the refractory material 17 on the molten metal peripheral circuit 16 side and the interface between the refractory material 17 and the castable refractory material is 399 ° C. .
On the other hand, in the inventive example, the temperature difference between the surface temperature (bath temperature) of the refractory material 17 on the molten metal peripheral circuit 16 side and the interface between the refractory material 17 and the castable refractory material is 118 ° C. That is, it can be seen that the temperature gradient in the refractory material 17 is significantly reduced by arranging the heat insulating material 20 between the refractory material 17 and the bushing 18.
<耐火材内の応力分布>
 図4は、発明例および比較例における、耐火材内の応力分布を示す図であり、図4(a)は発明例、図4(b)は比較例に対するものである。この図に示した応力分布は、温度勾配、熱伝導率および時間で計算して得られたものである。図4は、図4(b)の最大熱応力がかかる部位の熱応力を100とした場合の相対値で示した。
 まず、図4(b)を参照すると、比較例の場合、非常に大きな熱応力が溶融金属用周回路16側の角部にて局所的に発生しているのがわかる。
 これに対して、発明例においては、耐火材17全体に亘って、相対値55程度の熱応力が発生しているが、比較例のように、非常に大きな熱応力が局所的に発生することはない。
 このように、発明例においては、耐火材17に発生する最大熱応力が大きく低減されており、また、局所的に非常に大きな熱応力が発生している箇所も存在しないことから、発明例においては、熱応力起因のクラックの早期発生を防止できることが期待できる。
<Stress distribution in refractory material>
FIG. 4 is a diagram showing the stress distribution in the refractory material in the invention example and the comparative example. FIG. 4 (a) is for the invention example, and FIG. 4 (b) is for the comparative example. The stress distribution shown in this figure is obtained by calculating with temperature gradient, thermal conductivity and time. FIG. 4 shows the relative value when the thermal stress of the portion where the maximum thermal stress of FIG.
First, referring to FIG. 4B, it can be seen that in the comparative example, a very large thermal stress is locally generated at the corner on the molten metal peripheral circuit 16 side.
On the other hand, in the example of the invention, a thermal stress having a relative value of about 55 is generated over the entire refractory material 17, but a very large thermal stress is locally generated as in the comparative example. There is no.
As described above, in the invention example, the maximum thermal stress generated in the refractory material 17 is greatly reduced, and there is no place where a very large thermal stress is locally generated. Can be expected to prevent the early occurrence of cracks due to thermal stress.
 本発明によれば、誘導加熱装置における耐火材とブッシングとの間に断熱材を配したため、耐火材内に生じる応力を低減させてクラックの発生を抑制することができ、誘導加熱装置の寿命を向上させることができるため、鉄鋼業において有用である。 According to the present invention, since the heat insulating material is disposed between the refractory material and the bushing in the induction heating device, it is possible to reduce the stress generated in the refractory material and suppress the generation of cracks, and to increase the life of the induction heating device. Since it can be improved, it is useful in the steel industry.
1,13 誘導加熱装置
11 メインポット
12 プリメルトポット
14 鉄心
15 コイル
16 溶融金属用周回路16
17 耐火材
18 ブッシング
19 シンクロール
20 断熱材
100 溶融金属めっき設備
I 金属原料
M 溶融金属
S 被めっき体
1,13 Induction heating device 11 Main pot 12 Pre-melt pot 14 Iron core 15 Coil 16 Circumferential circuit 16 for molten metal
17 Refractory material 18 Bushing 19 Sink roll 20 Heat insulation material 100 Molten metal plating equipment I Metal raw material M Molten metal S To-be-plated body

Claims (6)

  1.  溶融した少なくとも亜鉛を含む金属を収容するメインポットと、該メインポットに前記溶融金属を供給するプリメルトポットとを備え、被めっき体を前記メインポット中の溶融金属に浸漬して前記被めっき体に金属めっきを施す溶融金属めっき設備における、前記プリメルトポットまたは前記メインポットに設けられた誘導加熱装置であって、鉄心と、該鉄心に巻き回されたコイルと、該コイルの周りを周回する、前記溶融金属が流通する溶融金属用周回路が形成された耐火材と、前記コイルと前記耐火材との間に配されたブッシングとを備え、原料金属を誘導加熱して前記溶融金属とする誘導加熱装置において、
     前記耐火材と前記ブッシングとの間に断熱材を配したことを特徴とする誘導加熱装置。
    A main pot for containing a molten metal containing at least zinc; and a premelt pot for supplying the molten metal to the main pot, and the object to be plated is immersed in the molten metal in the main pot. An induction heating device provided in the pre-melt pot or the main pot in a molten metal plating facility for performing metal plating on an iron core, a coil wound around the iron core, and a circuit around the coil And a refractory material in which a molten metal circulation circuit through which the molten metal circulates is formed, and a bushing disposed between the coil and the refractory material, and inductively heat the raw metal to obtain the molten metal. In induction heating equipment,
    An induction heating apparatus, wherein a heat insulating material is disposed between the refractory material and the bushing.
  2.  前記断熱材の熱伝導率が1.0W/m・℃以下である、請求項1に記載の誘導加熱装置。 The induction heating device according to claim 1, wherein the heat conductivity of the heat insulating material is 1.0 W / m · ° C. or less.
  3.  前記溶融金属がアルミニウムを含む、請求項1または2に記載の誘導加熱装置。 The induction heating apparatus according to claim 1 or 2, wherein the molten metal includes aluminum.
  4.  請求項1~3のいずれか一項に記載の誘導加熱装置を備えるプリメルトポット。 A pre-melt pot comprising the induction heating device according to any one of claims 1 to 3.
  5.  請求項1~3のいずれか一項に記載の誘導加熱装置を備えるメインポット。 A main pot comprising the induction heating device according to any one of claims 1 to 3.
  6.  請求項4に記載のプリメルトポットおよび/または請求項5に記載のメインポットを備える溶融金属めっき設備。 A molten metal plating facility comprising the pre-melt pot according to claim 4 and / or the main pot according to claim 5.
PCT/JP2015/060898 2014-04-02 2015-04-01 Induction heating device, premelt pot, main pot, and molten metal plating equipment WO2015152428A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-076410 2014-04-02
JP2014076410A JP6214451B2 (en) 2014-04-02 2014-04-02 Induction heating device, pre-melt pot, main pot and molten metal plating equipment

Publications (1)

Publication Number Publication Date
WO2015152428A1 true WO2015152428A1 (en) 2015-10-08

Family

ID=54240730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060898 WO2015152428A1 (en) 2014-04-02 2015-04-01 Induction heating device, premelt pot, main pot, and molten metal plating equipment

Country Status (2)

Country Link
JP (1) JP6214451B2 (en)
WO (1) WO2015152428A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108604850A (en) * 2016-02-03 2018-09-28 三菱电机株式会社 Electric rotating machine
CN114058994A (en) * 2020-07-31 2022-02-18 上海梅山钢铁股份有限公司 Zinc pot chute with self-diagnosis function

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329840A (en) * 1991-04-30 1992-11-18 Ngk Insulators Ltd Molten metal filtrate-incorporating vessel
JP2002194517A (en) * 2000-12-22 2002-07-10 Taiyo Seiko Kk Hot-dip metal plating tank and induction heating device
JP2007291473A (en) * 2006-04-27 2007-11-08 Nippon Steel Corp Method for producing hot dip galvanized steel strip

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138973U (en) * 1981-02-19 1982-08-31
JPH10310856A (en) * 1997-05-08 1998-11-24 Sumitomo Metal Ind Ltd Heating device of molten metal vessel
CN103620332B (en) * 2012-03-28 2015-09-02 新日铁住金株式会社 The protecting wall structure of molten metal container and the furnace wall construction method of molten metal container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329840A (en) * 1991-04-30 1992-11-18 Ngk Insulators Ltd Molten metal filtrate-incorporating vessel
JP2002194517A (en) * 2000-12-22 2002-07-10 Taiyo Seiko Kk Hot-dip metal plating tank and induction heating device
JP2007291473A (en) * 2006-04-27 2007-11-08 Nippon Steel Corp Method for producing hot dip galvanized steel strip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108604850A (en) * 2016-02-03 2018-09-28 三菱电机株式会社 Electric rotating machine
CN114058994A (en) * 2020-07-31 2022-02-18 上海梅山钢铁股份有限公司 Zinc pot chute with self-diagnosis function
CN114058994B (en) * 2020-07-31 2024-03-01 上海梅山钢铁股份有限公司 Zinc pot chute with self-diagnosis function

Also Published As

Publication number Publication date
JP2015196892A (en) 2015-11-09
JP6214451B2 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
KR101788114B1 (en) Steel sheet for hot pressing and method for producing hot-pressed member using steel sheet for hot pressing
KR101570017B1 (en) Grain-oriented electrical steel sheet and method for manufacturing the same
BR112017007273B1 (en) cold rolled and annealed, recrystallized flat steel product and method for manufacturing a formed flat steel product
JP2011153368A (en) High-strength hot dip galvannealed steel sheet having excellent adhesion, and method for producing the same
WO2015152428A1 (en) Induction heating device, premelt pot, main pot, and molten metal plating equipment
CA2715174A1 (en) Method for coating a metal strip and equipment for implementing said method
WO2015173843A1 (en) Member for molten metal plating bath
US20190153580A1 (en) Component for a hot dip coating system and method for the production thereof
KR20190076754A (en) Method for manufacturing hot dip aluminum plated steel sheet
KR101748975B1 (en) Thermal treatment process of a steel sheet and device for its implementation
JP5354156B2 (en) Method for producing galvannealed steel sheet
KR102078700B1 (en) Pot roll in high corrosion resistance aluminum alloy steel plate manufacturing equipment and method for manufacturing the same
JP2009228073A (en) Method for manufacturing hot dip coated steel sheet
KR101372672B1 (en) Galvanized steel sheet having excellent spot weldability and method for manufacturing the same
JPH09272960A (en) Top roll for hot-dip metal plating equipment
KR100273896B1 (en) Ceramic plasma spray coating method for sink roll and stabilizing roll
KR101388332B1 (en) Zinc alloy plating steel sheet with excellent corrosion resistant and method for manufacturing the same
US11976350B2 (en) Covering member and method for manufacturing the same
CN105624595A (en) Manufacturing technique of high-temperature-oxidation-resistant brass
JP5831218B2 (en) Method for producing hot-dip galvanized steel sheet
JPH05171385A (en) Method and apparatus for continuous hot-dip galvanizing of steel strip
JPH07166315A (en) Top roll for hot dip metal coating
JP2021066919A (en) Plated steel sheet for hot press forming
KR20220159077A (en) Pot-less coating method and coated steel sheet by manufactured the same
JP2013234367A (en) Plating method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15773532

Country of ref document: EP

Kind code of ref document: A1