JPH05331096A - Production of bismuth acetate - Google Patents
Production of bismuth acetateInfo
- Publication number
- JPH05331096A JPH05331096A JP15891992A JP15891992A JPH05331096A JP H05331096 A JPH05331096 A JP H05331096A JP 15891992 A JP15891992 A JP 15891992A JP 15891992 A JP15891992 A JP 15891992A JP H05331096 A JPH05331096 A JP H05331096A
- Authority
- JP
- Japan
- Prior art keywords
- bismuth
- bismuth oxide
- acetate
- acetic acid
- acetic anhydride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ビスマスの酸化物の含
有量が低い酢酸ビスマスの簡易な製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a simple method for producing bismuth acetate having a low bismuth oxide content.
【0002】[0002]
【従来技術】酢酸ビスマスの製法の従来例としては
(次)炭酸ビスマスを氷酢酸と還流しながら煮沸した液
を冷却して得る方法、および金属ビスマスを98%酢酸
と共に沸騰するまで熱した液を冷却して得る方法等が報
告されている(無機化学全書(丸善))。2. Description of the Related Art As a conventional example of a method for producing bismuth acetate, a method in which (subsequent) bismuth carbonate is boiled while refluxing with glacial acetic acid to obtain a solution, and a method in which metal bismuth is heated to a boiling point with 98% acetic acid are used. A method of obtaining by cooling has been reported (Inorganic Chemistry Encyclopedia (Maruzen)).
【0003】[0003]
【発明が解決しようとする課題】しかし、前記の従来法
で製造した酢酸ビスマスには、ビスマスの酸化物が含ま
れることがあり、純度の高い酢酸ビスマスを得難いとい
った問題があった。However, the bismuth acetate produced by the above-mentioned conventional method sometimes contains an oxide of bismuth, which makes it difficult to obtain high-purity bismuth acetate.
【0004】[0004]
【課題を解決するための手段】本発明による酢酸ビスマ
スの製造方法は、酸化ビスマスを氷酢酸および無水酢酸
と共に煮沸溶解し、得られた溶液から酢酸ビスマスを晶
析させる点に特徴がある。The method for producing bismuth acetate according to the present invention is characterized in that bismuth oxide is boiled and dissolved with glacial acetic acid and acetic anhydride, and bismuth acetate is crystallized from the obtained solution.
【0005】また、本発明は上記の酢酸ビスマスの製造
方法において、酸化ビスマスがα型酸化ビスマスであ
り、氷酢酸の添加量が酸化ビスマスと酢酸との反応当量
の10〜20倍量であり、無水酢酸の添加モル数が酸化
ビスマスのモル数の4.5〜10.5倍である点に特徴
がある。In addition, in the method for producing bismuth acetate according to the present invention, the bismuth oxide is α-type bismuth oxide, and the amount of glacial acetic acid added is 10 to 20 times the reaction equivalent of bismuth oxide and acetic acid. It is characterized in that the number of moles of acetic anhydride added is 4.5 to 10.5 times the number of moles of bismuth oxide.
【0006】[0006]
【作用】本発明において酸化ビスマスを氷酢酸および無
水酢酸に溶解することによりビスマスの酸化物の含有量
が低い酢酸ビスマスが製造出来るのは、酸化ビスマスと
氷酢酸のみを反応させたのでは一担生成した酢酸ビスマ
スが加水分解してしまう可能性が高いのを、無水酢酸を
入れることにより加水分解が起き難いようにする為と思
われる。In the present invention, the fact that bismuth acetate having a low bismuth oxide content can be produced by dissolving bismuth oxide in glacial acetic acid and acetic anhydride is partly due to the reaction of bismuth oxide and glacial acetic acid. It is considered that the generated bismuth acetate is likely to be hydrolyzed so that the hydrolysis is difficult to occur by adding acetic anhydride.
【0007】本発明での酸化ビスマスは、α型の酸化ビ
スマスが酢酸に溶解しやすいので、α型の酸化ビスマス
を使用するのが良い。As the bismuth oxide of the present invention, α-type bismuth oxide is easily dissolved in acetic acid, so that α-type bismuth oxide is preferably used.
【0008】氷酢酸の添加量が酸化ビスマスと酢酸との
反応等量の10倍未満では酸化ビスマスを完全に溶解で
きず、酢酸ビスマスに酸化ビスマス未溶解物が混入して
しまい、20倍を超える添加量では経済的でないので、
氷酢酸の添加量は酸化ビスマスと酢酸との反応等量の1
0〜20倍である必要がある。If the amount of glacial acetic acid added is less than 10 times the reaction equivalent amount of bismuth oxide and acetic acid, bismuth oxide cannot be completely dissolved, and bismuth acetate undissolved substances are mixed, resulting in more than 20 times. Because the added amount is not economical,
The amount of glacial acetic acid added is 1 equivalent to the reaction amount of bismuth oxide and acetic acid.
It must be 0 to 20 times.
【0009】酢酸ビスマスの加水分解に大きく影響する
反応発生水に着目し、生成する酢酸ビスマスのBi品位
(重量%)と、無水酢酸添加モル数対酸化ビスマスと酢
酸との反応で発生する水のモル数値との関係を図1に示
した。図1で酢酸ビスマスのBi品位の理論値は54.
1%であり、酢酸ビスマスのBi品位が高い程ビスマス
の酸化物が多く混入していることを示す。Focusing on the water generated by the reaction which greatly affects the hydrolysis of bismuth acetate, the Bi quality (wt%) of the bismuth acetate produced and the number of moles of acetic anhydride added versus the water generated by the reaction of bismuth oxide and acetic acid. The relationship with the molar value is shown in FIG. In FIG. 1, the theoretical value of Bi quality of bismuth acetate is 54.
1%, and the higher the Bi grade of bismuth acetate, the more the bismuth oxide is mixed.
【0010】図1において、無水酢酸添加量/発生水量
(モル数)が1.5〜3.5では酢酸ビスマスのBi品
位が低く、混入しているビスマスの酸化物量が低い酢酸
ビスマスが製造できることを示している。In FIG. 1, when the amount of acetic anhydride added / amount of generated water (number of moles) is 1.5 to 3.5, Bi quality of bismuth acetate is low, and bismuth acetate with a small oxide amount of bismuth mixed therein can be produced. Is shown.
【0011】すなわち、無水酢酸添加量/発生水量(モ
ル比)が1.5(無水酢酸添加量/α型酸化ビスマス
(モル比)=4.5に相当する)未満では一担生成した
酢酸ビスマスが加水分解を起してビスマスの酸化物が生
成しやすく、無水酢酸添加量/発生水量(モル比)が
3.5(無水酢酸添加量/α型酸化ビスマス(モル比)
=10.5に相当する)を超える値では、もともと酸化
ビスマスと反応し難い無水酢酸の添加量が多くなるの
で、酢酸ビスマスが氷酢酸と無水酢酸との混合溶液に溶
解しがたくなって酸化ビスマスが残存しやすくなるの
で、無水酢酸の添加モル数が酸化ビスマスのモル数の
4.5〜10.5倍である必要がある。That is, when the amount of acetic anhydride added / amount of generated water (molar ratio) is less than 1.5 (corresponding to the amount of acetic anhydride added / α-type bismuth oxide (molar ratio) = 4.5), the bismuth acetate produced is partly produced. Is easily hydrolyzed to form bismuth oxide, and the amount of acetic anhydride added / amount of generated water (molar ratio) is 3.5 (acetic anhydride added / alpha-type bismuth oxide (molar ratio)
(Corresponding to 10.5), the amount of acetic anhydride, which is originally difficult to react with bismuth oxide, increases, so that bismuth acetate becomes difficult to dissolve in a mixed solution of glacial acetic acid and acetic anhydride, and oxidation is difficult. Since bismuth tends to remain, the number of moles of acetic anhydride added needs to be 4.5 to 10.5 times the number of moles of bismuth oxide.
【0012】[0012]
実施例1 α型酸化ビスマス50gを容量500mlの平底フラス
コに入れた後に、当量の12.9倍の氷酢酸(試薬1
級)500g及び無水酢酸(試薬1級)46gを添加
し、平底フラスコに球入冷却管をセットした後にこれを
ホットスターラーを用いて煮沸攪拌を1時間行なった。
この時フラスコ内は完全に透明になった。この後、加温
をストップし、室温まで放置冷却を行ない晶析を行なっ
た。十分冷却、晶析を行なった後に吸引ろ過により固液
分離を行ない乾燥して、酢酸ビスマスの結晶75.2g
を得た。この結晶をX線回折で測定した所、酢酸ビスマ
スのピーク以外のピークは認められなかった。この結晶
のBi品位を分析した所、理論量の54.1%に対し5
5.6%であった。Example 1 50 g of α-type bismuth oxide was placed in a flat-bottomed flask having a volume of 500 ml, and then 12.9 times the equivalent amount of glacial acetic acid (reagent 1
Grade) and acetic anhydride (reagent grade 1) 46 g were added, and a condenser tube containing a ball was set in a flat-bottomed flask, followed by boiling and stirring for 1 hour using a hot stirrer.
At this time, the inside of the flask became completely transparent. After that, the heating was stopped, and the mixture was left standing to cool to room temperature for crystallization. After sufficiently cooling and crystallization, solid-liquid separation is performed by suction filtration and drying to give 75.2 g of bismuth acetate crystals.
Got When this crystal was measured by X-ray diffraction, no peak other than the peak of bismuth acetate was observed. The Bi quality of this crystal was analyzed and found to be 5 against 54.1% of the theoretical amount.
It was 5.6%.
【0013】得られた酢酸ビスマスのBi品位(重量
%)と計算した無水酢酸添加量/発生水量(モル比)と
の関係を図1に示した。The relationship between the Bi quality (% by weight) of the obtained bismuth acetate and the calculated amount of acetic anhydride added / amount of generated water (molar ratio) is shown in FIG.
【0014】本実施例で使用したα型酸化ビスマスは、
硝酸ビスマス(試薬1級)と重炭酸ナトリウム(試薬1
級)を反応させる事により次炭酸ビスマスを製造し、次
いでこの次炭酸ビスマスを400℃にて焙焼する事によ
り製造したものである。The α-type bismuth oxide used in this example is
Bismuth nitrate (first-grade reagent) and sodium bicarbonate (first reagent)
Bismuth subcarbonate is produced by reacting bismuth carbonate) and then the bismuth subcarbonate is roasted at 400 ° C.
【0015】実施例2 添加した無水酢酸を32.8gとした以外は実施例1と
同じくして実施し、酢酸ビスマス結晶75.4gを得
た。この結晶をX線回折で測定した所、酢酸ビスマスの
ピーク以外のピークは認められなかった。この結晶のB
i品位を分析した所、理論量の54.1%に対し55.
8%であり、この値も実施例1と同様に図1に示した。Example 2 The same procedure as in Example 1 was carried out except that the added acetic anhydride was changed to 32.8 g to obtain 75.4 g of bismuth acetate crystals. When this crystal was measured by X-ray diffraction, no peak other than the peak of bismuth acetate was observed. B of this crystal
When the i grade was analyzed, it was 54.1% against 54.1% of the theoretical amount.
8%, and this value is also shown in FIG. 1 as in Example 1.
【0016】比較例1 添加した無水酢酸を82gとした以外は実施例1と同様
に実施した。ホットスターラーを用いて煮沸攪拌を1時
間行なった際にフラスコ内はわずかに白濁していた。こ
の後加温を1時間続けたが濁りが消えない為加温をスト
ップし、室温まで放置冷却し晶析を行なった。十分冷
却、晶析を行なった後に吸引ろ過により固液分離を行な
い乾燥して、酢酸ビスマスの結晶75.0gを得た。こ
の結晶をX線回折で測定した所、わずかに酸化ビスマス
のピークが認められた。この結晶のBi品位を分析した
所、理論量の54.1%に対し57.2%であった。こ
の値も実施例1と同様に図1に示した。Comparative Example 1 The procedure of Example 1 was repeated except that the amount of acetic anhydride added was changed to 82 g. When boiling and stirring was performed for 1 hour using a hot stirrer, the inside of the flask was slightly clouded. After that, the heating was continued for 1 hour, but since the turbidity did not disappear, the heating was stopped and the mixture was allowed to cool to room temperature for crystallization. After sufficient cooling and crystallization, solid-liquid separation was performed by suction filtration and drying to obtain 75.0 g of bismuth acetate crystals. When this crystal was measured by X-ray diffraction, a slight peak of bismuth oxide was observed. When the Bi quality of this crystal was analyzed, it was 57.2% against 54.1% of the theoretical amount. This value is also shown in FIG. 1 as in Example 1.
【0017】比較例2 無水酢酸を添加せず、煮沸攪拌時間を1.5時間とした
以外は実施例1と同様に実施した。この際、煮沸攪拌時
にはフラスコ内の溶液は透明にならなかった。得られた
酢酸ビスマス結晶は64.8gであり、この結晶をX線
回折で測定した所、酢酸ビスマスのピークの他に酸化ビ
スマスらしきピークが見られたが同定はできなかった。
結晶中のBi品位を分析した所、理論量の54.1%に
対し、73.3%と非常に高い値となった。この値も実
施例1と同様に図1に示した。Comparative Example 2 The procedure of Example 1 was repeated, except that acetic anhydride was not added and the boiling and stirring time was 1.5 hours. At this time, the solution in the flask did not become transparent during boiling and stirring. The amount of the obtained bismuth acetate crystal was 64.8 g. When this crystal was measured by X-ray diffraction, a bismuth oxide-like peak was found in addition to the bismuth acetate peak, but it could not be identified.
When the quality of Bi in the crystal was analyzed, it was 73.3%, which was a very high value compared to 54.1% of the theoretical amount. This value is also shown in FIG. 1 as in Example 1.
【0018】[0018]
【発明の効果】本発明により簡易な製法により、純粋な
酢酸ビスマスを製造することができる。According to the present invention, pure bismuth acetate can be produced by a simple production method.
【0019】[0019]
【図1】生成する酢酸ビスマスのBi品位(重量%)
と、無水酢酸添加モル数対酸化ビスマスと酢酸との反応
で発生する水のモル数値との関係を示す図である。FIG. 1 Bi quality (wt%) of bismuth acetate produced
FIG. 5 is a diagram showing the relationship between the number of moles of acetic anhydride added and the number of moles of water generated by the reaction of bismuth oxide and acetic acid.
Claims (2)
共に煮沸溶解し、得られた溶液から酢酸ビスマスを晶析
させることを特徴とする酢酸ビスマスの製造方法。1. A method for producing bismuth acetate, characterized in that bismuth oxide is boiled and dissolved with glacial acetic acid and acetic anhydride, and bismuth acetate is crystallized from the resulting solution.
り、氷酢酸の添加量が酸化ビスマスと酢酸との反応当量
の10〜20倍量であり、無水酢酸の添加モル数が酸化
ビスマスのモル数の4.5〜10.5倍である請求項1
記載の酢酸ビスマスの製造方法。2. The bismuth oxide is α-type bismuth oxide, the amount of glacial acetic acid added is 10 to 20 times the reaction equivalent of bismuth oxide and acetic acid, and the number of moles of acetic anhydride added is the number of moles of bismuth oxide. It is 4.5 to 10.5 times of the above.
A method for producing bismuth acetate as described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15891992A JPH05331096A (en) | 1992-05-27 | 1992-05-27 | Production of bismuth acetate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15891992A JPH05331096A (en) | 1992-05-27 | 1992-05-27 | Production of bismuth acetate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05331096A true JPH05331096A (en) | 1993-12-14 |
Family
ID=15682213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15891992A Pending JPH05331096A (en) | 1992-05-27 | 1992-05-27 | Production of bismuth acetate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05331096A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103739475A (en) * | 2014-01-28 | 2014-04-23 | 湖北佳德新材料有限公司 | Method for preparing battery grade anhydrous lithium acetate |
CN104151155A (en) * | 2014-07-24 | 2014-11-19 | 天水师范学院 | Synthetic method of dysprosium acetate |
CN106518651A (en) * | 2016-11-02 | 2017-03-22 | 广东先导稀材股份有限公司 | Preparation method of bismuth acetate |
-
1992
- 1992-05-27 JP JP15891992A patent/JPH05331096A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103739475A (en) * | 2014-01-28 | 2014-04-23 | 湖北佳德新材料有限公司 | Method for preparing battery grade anhydrous lithium acetate |
CN104151155A (en) * | 2014-07-24 | 2014-11-19 | 天水师范学院 | Synthetic method of dysprosium acetate |
CN106518651A (en) * | 2016-11-02 | 2017-03-22 | 广东先导稀材股份有限公司 | Preparation method of bismuth acetate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0343212B2 (en) | ||
CN108329205A (en) | It is double(Aspirin)The preparation method of calcium carbamide compound | |
CN111087326A (en) | Method for refining guanidine nitrate | |
CN106946956A (en) | A kind of recrystallization method of acetic acid esters of sucrose 6 and its application | |
JPH05331096A (en) | Production of bismuth acetate | |
CN115725855B (en) | Method for preparing high-purity cesium salt and high-purity rubidium salt | |
CN110511156A (en) | A kind of preparation method of di-lysine-aspirin | |
SU645549A3 (en) | Method of obtaining 1,2-dioxycyclobutendion-3,4 | |
RU2617778C1 (en) | Hemihydrate dodecahydro-klose-dodecaborate melamine and its method of preparation | |
JPH01216955A (en) | Purification of 2-hydroxynaphthalene-6- carboxylic acid | |
US3607931A (en) | Method for the manufacture of the disodium salt of ethylenediaminetetraacetic acid | |
JP3585603B2 (en) | Method for producing high-purity strontium carbonate | |
US1942660A (en) | Process for the preparation of gluconic acid and its lactones | |
US2226568A (en) | Process for manufacturing iodoalkaloids | |
CN108946782A (en) | A method of preparing high-purity strontium fluoride in ethanol system | |
SU1446111A1 (en) | Method of producing barium octafluorozirconate | |
CN113527262B (en) | Refining method of delafloxacin and meglumine salt thereof | |
US2189830A (en) | Process for production of ascorbic acid | |
SU1414776A1 (en) | Method of producing copper hydroxophosphate | |
SU947051A1 (en) | Process for producing zinc bromide | |
JPH0665244A (en) | Purification of riboflavin | |
JPH06256019A (en) | Production of high-purity antimony trioxide with low-level alpha-dose | |
JP2922999B2 (en) | Process for producing high-purity 3,3 ', 4,4'-biphenyltetracarboxylic acid and its dianhydride | |
US2018354A (en) | Method of purifying and decolorizing cinchophen | |
JPH0489312A (en) | Refining method of cerium acetate |