JPH0533008B2 - - Google Patents

Info

Publication number
JPH0533008B2
JPH0533008B2 JP61107191A JP10719186A JPH0533008B2 JP H0533008 B2 JPH0533008 B2 JP H0533008B2 JP 61107191 A JP61107191 A JP 61107191A JP 10719186 A JP10719186 A JP 10719186A JP H0533008 B2 JPH0533008 B2 JP H0533008B2
Authority
JP
Japan
Prior art keywords
nutrient solution
supply
flow rate
mixing
dilution water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61107191A
Other languages
Japanese (ja)
Other versions
JPS62262925A (en
Inventor
Gunji Kawashima
Takanori Yamamoto
Senzo Shinohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takagi Sangyo KK
Original Assignee
Takagi Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takagi Sangyo KK filed Critical Takagi Sangyo KK
Priority to JP61107191A priority Critical patent/JPS62262925A/en
Publication of JPS62262925A publication Critical patent/JPS62262925A/en
Publication of JPH0533008B2 publication Critical patent/JPH0533008B2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02P60/216

Landscapes

  • Hydroponics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、養液栽培などに用いる植物の栽培
養液制御装置に係り、特に、植物養液の供給量の
最適化に関する。
The present invention relates to a plant cultivation nutrient solution control device used in hydroponic cultivation and the like, and particularly relates to optimization of the supply amount of plant nutrient solution.

【従来の技術】[Conventional technology]

植物の栽培には、土壌を用いて行う従来からの
土耕栽培に対して、繊維状物質などの人工的な培
養媒体に植物を植付けて、育成上必要な肥料など
の養分を水に溶かした養液を供給した栽培を行う
培地耕がある。 このような培地耕は、土耕栽培に比較して衛生
的で、栽培植物ごとに育成上の最適条件を設定で
き、また、その栽培管理が行い易いなどの優れた
特徴を有しているが、養液の供給時刻、供給量な
どの管理が極めて重要である。 第4図は、植物の一般的な養液栽培方法の概要
を示す。この養液栽培方法は、養液混合希釈化装
置2に農業用水などの希釈水Wrとともに、養液
Wmの基礎としての肥料などを溶かした高濃度養
液(以下原液Mという)を原液タンク4から供給
し、この原液Mと希釈水Wrとを混合して原液M
の濃度を希釈化することにより、植物の栽培に適
した肥料濃度に設定された養液Wmを得る。 そして、この養液Wmは、圧送ポンプや濾過器
などからなる養液供給装置6および供給管路8を
経て栽培地10に送られる。栽培地10では、供
給管路8に取り付けた複数の分岐管12を、植物
14を植え付けたベツド16の近傍に配設し、各
分岐管12に対して植物単位ごとに供給ノズルと
してのドリツプノズル18を設ける。したがつ
て、供給管路8を通して圧送された養液Wmは、
分岐管12を経てドリツプノズル18から植物1
4の近傍に滴下して供給される。
In contrast to conventional soil cultivation, which uses soil to cultivate plants, plants are planted in an artificial culture medium such as fibrous materials, and nutrients such as fertilizers necessary for growth are dissolved in water. There is a culture medium cultivation method in which cultivation is carried out by supplying a nutrient solution. Compared to soil cultivation, this type of culture medium cultivation has excellent characteristics such as being more hygienic, allowing the optimal growth conditions to be set for each cultivated plant, and being easier to manage cultivation. It is extremely important to manage the supply time, supply amount, etc. of the nutrient solution. FIG. 4 shows an overview of a general hydroponic method for growing plants. In this hydroponic cultivation method, a nutrient solution is added to the nutrient solution mixing and diluting device 2 along with dilution water Wr such as agricultural water.
A highly concentrated nutrient solution (hereinafter referred to as undiluted solution M) containing dissolved fertilizer, etc. as the basis of Wm is supplied from the undiluted solution tank 4, and this undiluted solution M is mixed with dilution water Wr.
By diluting the concentration of , a nutrient solution Wm with a fertilizer concentration suitable for plant cultivation is obtained. Then, this nutrient solution Wm is sent to the cultivation area 10 via a nutrient solution supply device 6 consisting of a pressure pump, a filter, etc., and a supply pipe line 8. In the cultivation area 10, a plurality of branch pipes 12 attached to the supply pipe line 8 are arranged in the vicinity of the bed 16 in which the plants 14 are planted, and a drip nozzle 18 as a supply nozzle is connected to each branch pipe 12 for each plant. will be established. Therefore, the nutrient solution Wm pumped through the supply pipe 8 is
From the drip nozzle 18 to the plant 1 via the branch pipe 12
It is dripped and supplied in the vicinity of 4.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

このような養液栽培方法において、養液Wmの
制御は、植物14に対して最適な供給時刻および
供給量を設定することが必要であり、その供給時
刻および供給量は、植物14ごとに異なる上、そ
の生育状態や、日射などの気象条件によつても大
きく異なつているので、その都度、生育データや
気象データを参照しながら、供給時刻および供給
量を設定することが必要である。 従来、養液Wmの供給制御は、たとえば、供給
管路にバルブを設けて、一定の時間間隔でバルブ
を開いて養液Wmを栽培地に送る方法が用いられ
てきた。この方法は、日射量などの変化で植物が
要求する養液Wmの量が変化しても、その供給量
が一定であり、しかも、その供給量は供給不足に
よる植物の枯死などを防止するために最大供給量
(晴天時の供給量)を設定している。このため、
曇天や雨天時には、最適供給量より養液Wmの供
給量が多く、その分だけ無駄になるとともに、最
適水分量を超えるために、植物に悪影響を及ぼし
かねないものであつた。 また、希釈水Wrの不足や圧送ポンプなどの故
障による養液Wmの供給不足が発生するおそれが
あり、そのために管理者は、養液Wmの供給状況
を監視しなければならない手数があつた。 そこで、この発明は、気象条件に合わせて養液
の供給量を制御し、その最適化を実現した植物の
栽培養液制御装置の提供を目的とする。
In such a hydroponic cultivation method, it is necessary to control the nutrient solution Wm by setting the optimal supply time and supply amount for the plants 14, and the supply time and supply amount differ for each plant 14. Moreover, since they vary greatly depending on the growth state and weather conditions such as solar radiation, it is necessary to set the supply time and amount while referring to growth data and weather data each time. Conventionally, the supply control of the nutrient solution Wm has been carried out by, for example, providing a valve in the supply pipe and opening the valve at regular time intervals to send the nutrient solution Wm to the cultivation area. In this method, even if the amount of nutrient solution Wm required by plants changes due to changes in the amount of sunlight, etc., the amount of nutrient solution Wm supplied remains constant, and the amount of nutrient solution is designed to prevent plants from dying due to insufficient supply. The maximum supply amount (supply amount during clear weather) is set. For this reason,
On cloudy or rainy days, the amount of nutrient solution Wm supplied is greater than the optimum supply amount, which is wasted, and the amount of water exceeds the optimum amount, which may have an adverse effect on plants. In addition, there is a risk that the supply of the nutrient solution Wm will be insufficient due to a shortage of dilution water Wr or a malfunction of the pressure pump, etc., which requires the administrator to monitor the supply status of the nutrient solution Wm. Therefore, an object of the present invention is to provide a plant cultivation nutrient solution control device that controls and optimizes the amount of nutrient solution supplied in accordance with weather conditions.

【問題点を解決するための手段】[Means to solve the problem]

この発明の植物の栽培養液制御装置は、希釈水
(Wr)が供給される希釈水供給路(供給管路2
2)と培地(栽培地10)に養液(Wm)を供給
すべき養液供給路(供給路34)との間に介挿さ
れて前記希釈水供給路から希釈水を受け、この希
釈水で第1又は第2の原液(Ma,Mb)又は双
方の原液を希釈して養液を形成し、その養液を前
記希釈水の水圧に応じて培地側に供給する養液混
合希釈手段(養液混合希釈器26、混合希釈化タ
ンク27)と、この養液混合希釈手段に供給すべ
き前記第1の原液を溜める第1の原液タンク28
Aと、前記養液混合希釈手段に供給すべき前記第
2の原液を溜める第2の原液タンク28Bと、前
記第1の原液タンクと前記養液混合希釈手段との
間の原液供給路に設置されて前記第1の原液を前
記養液混合希釈手段に供給する第1の定量吐出器
30Aと、前記第2の原液タンクと前記養液混合
希釈手段との間の原液供給路に設置されて前記第
2の原液を前記養液混合希釈手段に供給する第2
の定量吐出器30Bと、前記希釈水供給路に設置
されて前記希釈水の流量を検出する流量センサ2
4と、前記養液供給路に設置されて前記培地側に
前記養液混合希釈手段の前記養液を圧送する圧送
手段(圧送ポンプ36)と、この圧送手段の圧送
出力側の前記養液供給路における前記養液の圧力
を検知する圧力センサ40と、前記培地に対する
日射を検知する日射センサ42と、前記流量セン
サからの流量データと、予め栽培条件によつて設
定される濃度データとから前記養液混合希釈手段
に供給すべき前記第1又は第2の原液の供給量を
演算し、その演算結果に応じて前記第1又は第2
の定量吐出器を動作させ、前記供給量の前記第1
又は第2の原液又は双方の原液を前記養液混合希
釈手段に供給させる養液調合制御部32と、栽培
すべき植物の栽培条件で設定される養液供給デー
タを前記日射センサからの日射データで補正する
気象条件補正演算部241が設置されるととも
に、この気象条件補正演算部によつて得られた補
正供給量と前記流量センサからの流量データとを
比較し、前記培地側に供給すべき前記養液の供給
時間を算出する比較演算演算部242が設置さ
れ、この比較演算部で得られた供給時間によつて
前記圧送手段を駆動するとともに、前記流量デー
タと前記圧力センサからの圧力データとから前記
培地に対する前記養液の供給異常を検知する供給
異常検知部47が設置された養液供給制御部(養
液供給制御装置20)とを備えたことを特徴とす
るものである。
The plant cultivation nutrient solution control device of the present invention has a dilution water supply line (supply pipe line 2) to which dilution water (Wr) is supplied.
2) and a nutrient solution supply path (supply path 34) that is to supply nutrient solution (Wm) to the culture medium (cultivation area 10), receives dilution water from the dilution water supply path, and receives dilution water from the dilution water supply path. A nutrient solution mixing and diluting means ( A nutrient solution mixing diluter 26, a mixing and diluting tank 27), and a first stock solution tank 28 for storing the first stock solution to be supplied to the nutrient solution mixing and diluting means.
A, a second stock solution tank 28B that stores the second stock solution to be supplied to the nutrient solution mixing and diluting means, and installed in a stock solution supply path between the first stock solution tank and the nutrient solution mixing and diluting means. installed in a stock solution supply path between a first quantitative discharger 30A that supplies the first stock solution to the nutrient solution mixing and diluting means, and the second stock solution tank and the nutrient solution mixing and diluting means. a second supplying the second stock solution to the nutrient solution mixing and diluting means;
a fixed-quantity dispenser 30B, and a flow rate sensor 2 installed in the dilution water supply path to detect the flow rate of the dilution water.
4, a pressure feeding means (pressure pump 36) which is installed in the nutrient solution supply path and pumps the nutrient solution of the nutrient solution mixing and diluting means to the culture medium side; A pressure sensor 40 detects the pressure of the nutrient solution in the channel, a solar radiation sensor 42 detects the solar radiation on the medium, flow rate data from the flow rate sensor, and concentration data set in advance according to the cultivation conditions. The supply amount of the first or second stock solution to be supplied to the nutrient solution mixing and diluting means is calculated, and the amount of the first or second stock solution is calculated according to the calculation result.
The metering dispenser is operated, and the first amount of the supplied amount is
or a nutrient solution mixing control unit 32 that supplies a second stock solution or both stock solutions to the nutrient solution mixing and diluting means, and a nutrient solution supply data set according to the cultivation conditions of the plants to be cultivated to the solar radiation data from the solar radiation sensor. A weather condition correction calculation unit 241 is installed, and the corrected supply amount obtained by this weather condition correction calculation unit is compared with the flow rate data from the flow rate sensor, and the flow rate data to be supplied to the medium side is compared. A comparison calculation unit 242 is installed to calculate the supply time of the nutrient solution, and drives the pressure feeding means based on the supply time obtained by the comparison calculation unit, and also uses the flow rate data and pressure data from the pressure sensor. The present invention is characterized by comprising a nutrient solution supply control section (a nutrient solution supply control device 20) in which a supply abnormality detection section 47 for detecting an abnormality in the supply of the nutrient solution to the culture medium is installed.

【作用】[Effect]

この栽培養液制御装置によれば、植物14に応
じて養液Wmの供給時刻tおよび供給量Wmqを
設定するとともに、日射量Sに応じて養液Wmの
供給量Wmqを制御するので、植物14および日
射量Sに対応して養液Wmの供給量Wmqが最適
化される。そして、栽培地10に供給される養液
圧力Pwmおよび養液Wmの供給量Wmqを検出し
てその異常を検知しているので、栽培地10に対
する養液Wmの供給不足が未然に防止される。 ところで、気象条件補正演算部は、単位日射量
当りの供給量設定値Xmqと測定した日射量Sと
により、日射量Sに応じた供給量Wmqを算出す
る手段である。ここで、供給量設定値Xmqは、
固定値ではなく、植物の育成程度及び多目供給少
な目供給により設定される。また、比較演算部
は、気象条件補正演算部からの供給量Wmrを基
にして流量センサからの流量信号Vwrにより比
較演算して供給時間Tsを算出する。 そして、これら気象条件補正演算部及び比較演
算部の比較演算により、ある時期に考えた単位日
射量当りの供給量設定値Xmqと日射量Sとによ
り供給量Wmqが算出され、これを基にして流量
センサからの流量信号Vmrにより、ポンプ供給
時間Tsが算出でき、その時間にポンプを駆動す
るのである。
According to this cultivation nutrient solution control device, the supply time t and supply amount Wmq of the nutrient solution Wm are set according to the plant 14, and the supply amount Wmq of the nutrient solution Wm is controlled according to the amount of solar radiation S. 14 and the amount of solar radiation S, the supply amount Wmq of the nutrient solution Wm is optimized. Since abnormalities are detected by detecting the nutrient solution pressure Pwm and the supply amount Wmq of the nutrient solution Wm supplied to the cultivation area 10, insufficient supply of the nutrient solution Wm to the cultivation area 10 can be prevented. . By the way, the weather condition correction calculation unit is means for calculating the supply amount Wmq according to the solar radiation amount S based on the supply amount setting value Xmq per unit solar radiation amount and the measured solar radiation amount S. Here, the supply amount setting value Xmq is
It is not a fixed value, but is set based on the degree of plant growth and high/low supply. Further, the comparison calculation unit calculates the supply time Ts by performing a comparison calculation based on the supply amount Wmr from the weather condition correction calculation unit and the flow rate signal Vwr from the flow rate sensor. Then, through the comparison calculations of the weather condition correction calculation section and the comparison calculation section, the supply amount Wmq is calculated from the supply amount setting value Xmq per unit solar radiation considered at a certain time and the solar radiation amount S, and based on this, The pump supply time Ts can be calculated from the flow rate signal Vmr from the flow rate sensor, and the pump is driven during that time.

【実施例】【Example】

第1図は、この発明の植物の栽培養液制御装置
の実施例を示す。 特定濃度の養液Wmを得るための希釈水Wrに
は、たとえば、地下水、雨水などの農業用水を用
いる。この希釈水Wrは、図示していないタンク
などから供給管路22を通して連続的に供給され
るが、供給管路22の途上に、希釈水Wrの流量
wrを検出する流量検出手段として流量センサ2
4が設置され、この流量センサ24によつて希釈
水Wrの流量wrが電気的に検出される。Vwrは希
釈水Wrの流量wrを表わす流量信号を示す。 希釈水Wrは、原液Mと混合するための養液混
合養液希釈手段として設置された養液混合希釈器
26に供給される。この養液混合希釈器26に供
給するための第1および第2の原液Ma,Mbを
溜める原液貯留手段として第1および第2の原液
タンク28A,28Bが設置されており、これら
原液タンク28A,28Bの原液Ma,Mbは、
電気的に制御される原液供給手段としての第1お
よび第2の定量吐出器30A,30Bを介して養
液混合希釈器26に供給される。原液Ma,Mb
の養液混合希釈器26への供給は、たとえば、定
量吐出器30A,30Bを通して必要な量の原液
MaまたはMbが重力または特定の圧力によつて
滴下するように設定されている。 そして、流量センサ24で得られた流量信号
Vwrは、養液調合制御手段として設置された養
液調合制御部32に加えられる。この養液調合制
御部32は、刻々と変化する流量信号Vwrによ
つて得られる流量データと、必要に応じて設定さ
れた濃度Xnを表わす濃度データとから、その濃
度Xnを得るのに必要な原液量mnを算出し、その
原液量mnを供給するのに必要な原液供給駆動信
号Va,Vbを出力して各定量吐出器30A,30
Bに加える。定量吐出器30A,30Bの動作時
間が制御されて、この定量吐出器30A、30B
から希釈水Wrの流量wrに対して設定濃度Xnを
得るのに必要な量の原液Maまたは原液Mbある
いは双方が養液混合希釈器26に供給される。 供給された原液Ma,Mbは、養液混合希釈器
26の内部で希釈水Wrの水流に応じて撹拌され
て必要な濃度の養液Wmが得られ、栽培地側に養
液供給路としての供給管路34を通して供給され
る。その場合、養液Wmは、圧送手段としての圧
送ポンプ36によつて圧送されるが、圧送される
養液Wmはフイルタ38によつて濾過されるとと
もに、圧力検出手段として設置された圧送センサ
40によつて養液圧力が電気的に検出される。
Vpwは、養液Wmの圧送圧力を表わす圧力信号
である。 そして、圧送ポンプ36は、養液供給制御部と
しての養液供給制御装置20によつて開閉制御さ
れ、養液Wmの供給時刻tおよびその供給量
Wmqを気象条件に応じて制御し、養液Wmの供
給量Wmqの最適化を実現する。すなわち、気象
条件補正演算部241には、養液Wmの供給量の
設定値Xmqを加えるとともに、植物14に対す
る日射量Sを検出する日射検出手段として設置さ
れた日射センサ42から日射量Sを表わす日射量
信号Vsが加えられる。気象条件補正演算部24
1は、設定値Xmqを日射量Sに応じて補正し、
日射量Sに応じた供給量Wmqを求める。 日射量Xに対する必要な養液Yは、第2図に示
すように一次関数(Y=AX+B、但しAは直線
の傾き、Bは固定辺)で表されるので、この関係
を気象条件補正演算部241に記憶して養液Wm
の供給量Wmqの補正を行う。 比較演算部242は、この気象条件補正演算部
241からの供給量Wmqと、流量センサ24か
らの流量信号Vwrが表している流量データとを
比較・演算し、希釈水Wrで定まる養液Wmの単
位供給時間Tを補正して日射量Sに応じた単位供
給時間Tsを設定する。この場合、希釈水Wrの流
量が検出できるので、供給時間Tsを設定するこ
とによつて、日射量Sに応じた養液Wmの供給量
Wmqが一義的に決まる。 このようにして比較演算部242で算出された
供給時間Tsを表わす供給時間信号VTSは、駆動時
間制御部243に加えられ、時計部44から加え
られる時刻信号Vtにおいて、設定時刻からの供
給時間Tsにおいて、駆動時間制御部243は、
圧送ポンプ36を駆動するための駆動制御信号
VtTを出力する。この場合、時計部44は、設定
時刻Xtに応じた時刻信号Vtを出力する。そして、
駆動回路46は駆動制御信号VtTに応じた駆動出
力信号Vpを発生して圧送ポンプ36に加え、圧
送ポンプ36は、必要な供給量Wmqを圧送する
時間中駆動される。 また、圧送センサ40の圧力信号Vpw、希釈
水Wrの流量信号Vwrは、供給異常検知部47に
加えられ、養液Wmの圧送圧力または希釈水Wr
の流量から養液Wmの供給異常の有無を検知す
る。異常が生じた場合、養液Wmの供給異常信号
VXが供給異常検知部47から出力されて異常警
報器48を駆動し、その異常を告知する。異常警
報器48は、ランプなどの光学的な手段、ブザー
などの音響発生手段などで構成できる。 したがつて、このような養液制御によれば、日
射量Sに対して必要な養液Wmの供給量Wmqを
補正して設定することができ、養液Wmの供給量
Wmqの最適化を図ることができるとともに、希
釈水Wrの供給異常、圧送ポンプ36の故障、フ
イルタ38の目詰まりなどによる養液Wmの供給
不足を警告によつて知ることができる。 また、実施例の養液供給制御装置20は、マイ
クロコンピユータなどの演算処理装置で構成し、
養液Wmの供給制御を実現することができる。 次に、第3図は、この発明による養液制御装置
の一例を示す。 制御の初日時刻t0で養液制御を開始したものと
すると、その日の0時までは、日射量Sを検出す
るのみで、その日射量補正を行わず、その必要な
供給時刻t11,t12……から一定の供給量Wmqを表
わす単位供給時間Tに圧送ポンプ36を駆動し、
栽培地10に養液Wmを供給する。 そして、次の日の0時から日射補正を行い、時
刻t21ないしt23では単位供給時間Tによる養液
Wmの供給が行われ、t24,t25では日射量Sに応
じて供給時間TsがT1,T2のように短くなつてお
り、供給量Wmqの最適化が実現されている。 この場合、第3図において、A1は初日の9〜
11時の積算日射量〔単位:cal/cm2=ly又はMJ/
m2(メガジユール/m2)以下同じ。〕、A2は初日
の11〜13時の積算日射量、A3は初日の13〜15時
の積算日射量、A4は初日の15〜21時の積算日射
量、A5は初日の21〜0時の積算日射量、B0は前
日(初日)の1日の積算日射量、B1は2日目の
9〜11時の積算日射量、B2は2日目の11〜13時
の積算日射量、B3は2日目の13〜15時の積算日
射量、B4は初日の15〜21時の積算日射量、B5
2日目の21〜0時の積算日射量を表わす。各日射
量のレベルは、晴天、曇天、降雨時を表し、積算
時間を異ならせており、日射量Sが1日の時刻に
おいて大きく異なるので、平均的な積算日射量か
ら検出時間を設定するとともに、それに合わせて
養液Wmの供給時刻tおよび供給時間Tを設定す
るためである。 また、T1はT×曇天時供給量(%)/100、T2
はT×降雨時供給量(%)/100を示す。なお、
第3図のグラフでは、単位日射量当りの供給量
Wmqを基本に考え、日射量Sにより供給量Wmq
を算出しているが、第3図における供給量Wmq
にその時期の最大日射量を掛けた値を予め算出し
ておき、その時の測定日射量Sと最大日射量との
比較により、日射量(%)を算出している。
FIG. 1 shows an embodiment of the plant cultivation nutrient solution control device of the present invention. For example, agricultural water such as groundwater or rainwater is used as the dilution water Wr for obtaining the nutrient solution Wm of a specific concentration. This dilution water Wr is continuously supplied from a tank (not shown) through the supply pipe 22, but at some point along the supply pipe 22, there is a
Flow rate sensor 2 is used as a flow rate detection means to detect wr.
4 is installed, and the flow rate wr of the dilution water Wr is electrically detected by this flow rate sensor 24. Vwr indicates a flow rate signal representing the flow rate wr of dilution water Wr. The dilution water Wr is supplied to a nutrient solution mixing diluter 26 installed as a nutrient solution mixing and nutrient solution diluting means for mixing with the stock solution M. First and second stock solution tanks 28A and 28B are installed as stock solution storage means for storing first and second stock solutions Ma and Mb to be supplied to the nutrient solution mixing diluter 26, and these stock solution tanks 28A, The stock solutions Ma and Mb of 28B are
The nutrient solution is supplied to the nutrient solution mixing diluter 26 via first and second quantitative dischargers 30A and 30B, which serve as electrically controlled stock solution supply means. Stock solution Ma, Mb
For example, the necessary amount of the stock solution is supplied to the nutrient solution mixing diluter 26 through the metering dispensers 30A and 30B.
Ma or Mb is set to drip by gravity or a certain pressure. Then, the flow rate signal obtained by the flow rate sensor 24
Vwr is applied to a nutrient solution blending control section 32 installed as a nutrient solution blending control means. This nutrient solution preparation control unit 32 uses the flow rate data obtained from the ever-changing flow rate signal Vwr and the concentration data representing the concentration Xn set as necessary to obtain the concentration Xn. The stock solution amount mn is calculated, and the stock solution supply drive signals Va and Vb necessary to supply the stock solution amount mn are outputted to each metering dispenser 30A, 30.
Add to B. The operation time of the fixed quantity dispensers 30A, 30B is controlled, and the fixed quantity dispensers 30A, 30B
From the nutrient solution mixing diluter 26, an amount of the stock solution Ma or stock solution Mb, or both, necessary to obtain the set concentration Xn for the flow rate wr of the dilution water Wr is supplied to the nutrient solution mixing diluter 26. The supplied stock solutions Ma and Mb are stirred in the nutrient solution mixing diluter 26 according to the flow of the dilution water Wr to obtain the nutrient solution Wm of the required concentration, which is then used as a nutrient solution supply path on the cultivation field side. It is supplied through supply line 34. In that case, the nutrient solution Wm is pumped by a pressure pump 36 as a pressure feeding means, but the nutrient solution Wm is filtered by a filter 38 and a pressure sensor 40 installed as a pressure detection means. The nutrient solution pressure is detected electrically.
Vpw is a pressure signal representing the pressure for pumping the nutrient solution Wm. The pressure pump 36 is controlled to open and close by the nutrient solution supply control device 20 serving as a nutrient solution supply control section, and is controlled at the supply time t of the nutrient solution Wm and its supply amount.
Control Wmq according to weather conditions to optimize the supply amount Wmq of nutrient solution Wm. That is, the weather condition correction calculation unit 241 adds the set value Xmq of the supply amount of the nutrient solution Wm, and also calculates the amount of solar radiation S from the solar radiation sensor 42 installed as a solar radiation detection means for detecting the amount of solar radiation S to the plants 14. A solar radiation signal Vs is added. Weather condition correction calculation unit 24
1 corrects the set value Xmq according to the amount of solar radiation S,
Find the supply amount Wmq according to the amount of solar radiation S. The required nutrient solution Y for the amount of solar radiation The nutrient solution Wm is stored in section 241.
Correct the supply amount Wmq. The comparison calculation unit 242 compares and calculates the supply amount Wmq from the weather condition correction calculation unit 241 and the flow rate data represented by the flow rate signal Vwr from the flow rate sensor 24, and calculates the amount of the nutrient solution Wm determined by the dilution water Wr. The unit supply time Ts is corrected to set the unit supply time Ts according to the amount of solar radiation S. In this case, since the flow rate of the dilution water Wr can be detected, the supply amount of the nutrient solution Wm according to the amount of solar radiation S can be determined by setting the supply time Ts.
Wmq is uniquely determined. The supply time signal VTS representing the supply time Ts calculated by the comparison calculation unit 242 in this way is applied to the drive time control unit 243, and in the time signal Vt applied from the clock unit 44, the supply time signal VTS representing the supply time Ts calculated by the comparison calculation unit 242 is applied to the drive time control unit 243. At Ts, the driving time control unit 243:
Drive control signal for driving the pressure pump 36
Output Vt T. In this case, the clock section 44 outputs a time signal Vt according to the set time Xt. and,
The drive circuit 46 generates a drive output signal Vp according to the drive control signal Vt T and applies it to the pressure pump 36, and the pressure pump 36 is driven during the period of time to pump the required supply amount Wmq. In addition, the pressure signal Vpw of the pressure feed sensor 40 and the flow rate signal Vwr of the dilution water Wr are applied to the supply abnormality detection unit 47, and
Detects whether there is an abnormality in the supply of nutrient solution Wm from the flow rate. If an abnormality occurs, the nutrient solution Wm supply abnormality signal
VX is output from the supply abnormality detection section 47 and drives the abnormality alarm 48 to notify the abnormality. The abnormality alarm 48 can be configured with optical means such as a lamp, sound generating means such as a buzzer, and the like. Therefore, according to such nutrient solution control, it is possible to correct and set the necessary supply amount Wmq of the nutrient solution Wm with respect to the amount of solar radiation S, and the supply amount Wm of the nutrient solution Wm
In addition to being able to optimize Wmq, it is also possible to know through a warning that there is a shortage in the supply of the nutrient solution Wm due to an abnormality in the supply of dilution water Wr, a failure in the pressure pump 36, a clogging of the filter 38, or the like. Further, the nutrient solution supply control device 20 of the embodiment is configured with an arithmetic processing device such as a microcomputer,
Supply control of the nutrient solution Wm can be realized. Next, FIG. 3 shows an example of a nutrient solution control device according to the present invention. Assuming that the nutrient solution control is started at time t 0 on the first day of control, until 0:00 on that day, only the solar radiation amount S is detected and the solar radiation amount correction is not performed, and the necessary supply time t 11 , t 12 Drive the pressure pump 36 for a unit supply time T representing a constant supply amount Wmq from ......
Supply the nutrient solution Wm to the cultivation area 10. Then, solar radiation correction is performed from 0:00 on the next day, and from time t 21 to t 23 , the nutrient solution is adjusted according to the unit supply time T.
Wm is supplied, and at t 24 and t 25 , the supply time Ts becomes shorter as T 1 and T 2 according to the amount of solar radiation S, and the supply amount Wmq is optimized. In this case, in Figure 3, A 1 is from 9 on the first day
Accumulated solar radiation at 11 o'clock [unit: cal/cm 2 = ly or MJ/
The same applies below m 2 (megajoule/m 2 ). ], A 2 is the cumulative solar radiation from 11 to 13:00 on the first day, A 3 is the cumulative solar radiation from 13:00 to 15:00 on the first day, A 4 is the cumulative solar radiation from 15:00 to 21:00 on the first day, A 5 is the cumulative solar radiation from 11:00 to 21:00 on the first day. B 0 is the cumulative solar radiation of the previous day (first day), B 1 is the cumulative solar radiation from 9 to 11 on the second day, B 2 is the cumulative solar radiation from 9 to 11 on the second day, B 2 is the cumulative solar radiation from 11 to 13 on the second day. B3 is the cumulative solar radiation from 13:00 to 15:00 on the second day, B4 is the cumulative solar radiation from 15:00 to 21:00 on the first day, B5 is the cumulative solar radiation from 21:00 to 0:00 on the second day. represents. Each solar radiation level represents clear skies, cloudy skies, and rainy days, and the cumulative time is different. Since the solar radiation S varies greatly at different times of the day, the detection time is set based on the average cumulative solar radiation. This is to set the supply time t and supply time T of the nutrient solution Wm accordingly. In addition, T 1 is T × cloudy day supply amount (%) / 100, T 2
represents T×supply amount during rain (%)/100. In addition,
In the graph of Figure 3, the supply amount per unit solar radiation is
Based on Wmq, the supply amount Wmq is determined by the amount of solar radiation S.
is calculated, but the supply amount Wmq in Figure 3
The value obtained by multiplying the amount of solar radiation by the maximum amount of solar radiation at that time is calculated in advance, and the amount of solar radiation (%) is calculated by comparing the measured amount of solar radiation S at that time with the maximum amount of solar radiation.

【発明の効果】【Effect of the invention】

以上説明したように、この発明によれば、養液
の濃度設定に応じて希釈水の流量に対して必要な
原液量が演算され、その演算結果に基づいて原液
量を制御するので、希釈水の流量の変動に即応し
て原液量を制御でき、希釈水供給路と養液供給路
との間に設置された養液混合希釈器で第1又は第
2又は双方の原液と希釈水とを混合させて養液を
連続的に調合することができ、養液の濃度を自由
に設定して所定の濃度のものが実現できるので、
養液栽培において、適正な濃度の養液を安定供給
して植物の育成を図ることができるとともに、気
象条件に応じて養液の供給量を加減できるので、
植物に対する養液の最適化を実現でき、植物の生
育を効率的に行うことができる。
As explained above, according to the present invention, the amount of stock solution required for the flow rate of dilution water is calculated according to the concentration setting of the nutrient solution, and the amount of stock solution is controlled based on the calculation result. The amount of the stock solution can be controlled immediately in response to fluctuations in the flow rate of the nutrient solution, and the nutrient solution mixing diluter installed between the dilution water supply route and the nutrient solution supply route allows the first or second stock solution or both to be mixed with the dilution water. The nutrient solution can be continuously prepared by mixing, and the concentration of the nutrient solution can be freely set to achieve a predetermined concentration.
In hydroponic cultivation, plants can be grown by stably supplying a nutrient solution with an appropriate concentration, and the amount of nutrient solution supplied can be adjusted depending on weather conditions.
Optimization of the nutrient solution for plants can be realized, and the plants can be grown efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の植物の栽培養液制御装置の
実施例を示すブロツク図、第2図は日射量に対す
る必要な養液量を示す図、第3図は日射量および
養液の供給状況を示す図、第4図は植物の一般的
な養液栽培装置の概要を示すブロツク図である。 Wr……希釈水、Wm……養液、Ma……第1の
原液、Mb……第2の原液、10……栽培地(培
地)、20……養液供給制御装置(養液供給制御
部)、22……供給管路、(希釈水供給)、24…
…流量センサ、26……養液混合希釈器(養液混
合希釈手段)、27……混合希釈化タンク(養液
混合希釈手段)、28A……第1の原液タンク、
28B……第2の原液タンク、30A……第1の
定量吐出器、30B……第2の定量吐出器、32
……養液調合制御部、34……供給管路(養液供
給路)、36……圧送ポンプ(圧送手段)、40…
…圧力センサ、42……日射センサ、47……供
給異常検知部、48……異常警報器、241……
気象条件補正演算部、242……比較演算部。
Fig. 1 is a block diagram showing an embodiment of the plant cultivation nutrient solution control device of the present invention, Fig. 2 is a diagram showing the necessary amount of nutrient solution depending on the amount of solar radiation, and Fig. 3 is a diagram showing the amount of solar radiation and the supply status of the nutrient solution. FIG. 4 is a block diagram showing an outline of a general hydroponic cultivation apparatus for plants. Wr... dilution water, Wm... nutrient solution, Ma... first stock solution, Mb... second stock solution, 10... cultivation area (medium), 20... nutrient solution supply control device (nutrient solution supply control part), 22... supply pipe line, (dilution water supply), 24...
...Flow rate sensor, 26... Nutrient solution mixing diluter (nutrient solution mixing and diluting means), 27... Mixing dilution tank (nutrient solution mixing and diluting means), 28A... First stock solution tank,
28B... Second stock solution tank, 30A... First fixed amount dispenser, 30B... Second fixed amount dispenser, 32
... Nutrient solution preparation control unit, 34 ... Supply pipe (nutrient solution supply path), 36 ... Pressure pump (pressure feeding means), 40 ...
... Pressure sensor, 42 ... Solar radiation sensor, 47 ... Supply abnormality detection unit, 48 ... Abnormality alarm, 241 ...
Weather condition correction calculation unit, 242... Comparison calculation unit.

Claims (1)

【特許請求の範囲】 1 希釈水が供給される希釈水供給路と培地に養
液を供給すべき養液供給路との間に介挿されて前
記希釈水供給路から前記希釈水を受け、この希釈
水で第1又は第2の原液又は双方の原液を希釈し
て養液を形成し、その養液を前記希釈水の水圧に
応じて培地側に供給する養液混合希釈手段と、 この養液混合希釈手段に供給すべき前記第1の
原液を溜める第1の原液タンクと、 前記養液混合希釈手段に供給すべき前記第2の
原液を溜める第2の原液タンクと、 前記第1の原液タンクと前記養液混合希釈手段
との間の原液供給路に設置されて前記第1の原液
を前記養液混合希釈手段に供給する第1の定量吐
出器と、 前記第2の原液タンクと前記養液混合希釈手段
との間の原液供給路に設置されて前記第2の原液
を前記養液混合希釈手段に供給する第2の定量吐
出器と、 前記希釈水供給路に設置されて前記希釈水の流
量を検出する流量センサと、 前記養液供給路に設置されて前記培地側に前記
養液混合希釈手段の前記養液を圧送する圧送手段
と、 この圧送手段の圧送出力側の前記養液供給路に
おける前記養液の圧力を検知する圧力サンサと、 前記培地に対する日射を検知する日射センサ
と、 前記流量センサからの流量データと、予め栽培
条件によつて設定される濃度データとから前記養
液混合希釈手段に供給すべき前記第1又は第2の
原液の供給量を演算し、その演算結果に応じて前
記第1又は第2の定量吐出器を動作させ、前記供
給量の前記第1又は第2の原液又は双方の原液を
前記養液混合希釈手段に供給させる養液調合制御
部と、 栽培すべき植物の栽培条件で設定される養液供
給データを前記日射センサからの日射データで補
正する気象条件補正演算部が設置されるととも
に、この気象条件補正演算部によつて得られた補
正供給量と前記流量センサからの流量データとを
比較し、前記培地側に供給すべき前記養液の供給
時間を算出する比較演算部が設置され、この比較
演算部で得られた供給時間によつて前記圧送手段
を駆動するとともに、前記流量データと前記圧力
センサからの圧力データとから前記培地に対する
前記養液の供給異常を検知する供給異常検知部が
設置された養液供給制御部と、 を備えたことを特徴とする植物の栽培養液制御装
置。 2 前記養液供給制御部の前記供給異常検知部が
前記培地に対する前記養液の供給異常を検知した
とき、警報器を動作させて供給異常を告知するこ
とを特徴とする特許請求の範囲第1項に記載の植
物の栽培養液制御装置。
[Scope of Claims] 1. A dilution water supply channel that is inserted between a dilution water supply channel to which dilution water is supplied and a nutrient solution supply channel that is to supply nutrient solution to the culture medium to receive the dilution water from the dilution water supply channel; A nutrient solution mixing and diluting means for diluting the first or second stock solution or both stock solutions with the dilution water to form a nutrient solution, and supplying the nutrient solution to the culture medium according to the water pressure of the dilution water; a first stock solution tank for storing the first stock solution to be supplied to the nutrient solution mixing and diluting means; a second stock solution tank for storing the second stock solution to be supplied to the nutrient solution mixing and diluting means; a first quantitative discharger installed in a stock solution supply path between the stock solution tank and the nutrient solution mixing and diluting means to supply the first stock solution to the nutrient solution mixing and diluting means; and the second stock solution tank. and the nutrient solution mixing and diluting means, a second quantitative discharge device installed in the nutrient solution mixing and diluting means to supply the second nutrient solution to the nutrient solution mixing and diluting means; a flow rate sensor for detecting the flow rate of the dilution water; a pumping means installed in the nutrient solution supply path and pumping the nutrient solution of the nutrient solution mixing and diluting means to the medium side; and a pumping output side of the nutrient solution mixing and diluting means. a pressure sensor that detects the pressure of the nutrient solution in the nutrient solution supply path; a solar radiation sensor that detects solar radiation on the culture medium; flow rate data from the flow rate sensor; and concentration data that is set in advance according to cultivation conditions. The supply amount of the first or second stock solution to be supplied to the nutrient solution mixing and diluting means is calculated from the above, and the first or second metering dispenser is operated according to the calculation result, and the supply amount is a nutrient solution mixing control unit that supplies the first or second undiluted solution or both undiluted solutions to the nutrient solution mixing and diluting means; A weather condition correction calculation unit is installed to correct the weather condition correction calculation unit using solar radiation data, and the corrected supply amount obtained by the weather condition correction calculation unit is compared with the flow rate data from the flow rate sensor, and the flow rate data for supplying the medium to the medium side is compared. A comparison calculation unit is installed to calculate the supply time of the nutrient solution, and the pressure feeding means is driven based on the supply time obtained by the comparison calculation unit, and the flow rate data and the pressure data from the pressure sensor are A nutrient solution control device for cultivating plants, comprising: a nutrient solution supply control section in which a supply abnormality detection section is installed to detect an abnormality in the supply of the nutrient solution to the culture medium. 2. Claim 1, characterized in that when the supply abnormality detection unit of the nutrient solution supply control unit detects an abnormality in the supply of the nutrient solution to the culture medium, it operates an alarm to notify of the supply abnormality. A nutrient solution control device for cultivating plants as described in 2.
JP61107191A 1986-05-10 1986-05-10 Control of plant culture nutrient solution Granted JPS62262925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61107191A JPS62262925A (en) 1986-05-10 1986-05-10 Control of plant culture nutrient solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61107191A JPS62262925A (en) 1986-05-10 1986-05-10 Control of plant culture nutrient solution

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3211513A Division JPH0761225B2 (en) 1991-07-29 1991-07-29 Plant nutrient solution controller

Publications (2)

Publication Number Publication Date
JPS62262925A JPS62262925A (en) 1987-11-16
JPH0533008B2 true JPH0533008B2 (en) 1993-05-18

Family

ID=14452777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61107191A Granted JPS62262925A (en) 1986-05-10 1986-05-10 Control of plant culture nutrient solution

Country Status (1)

Country Link
JP (1) JPS62262925A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6045480B2 (en) * 2013-11-26 2016-12-14 株式会社にいみ農園 Watering method and apparatus in hydroponics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137217A (en) * 1983-12-26 1985-07-20 村井 邦彦 Automatically controlled hydroponic apparatus
JPS60172242A (en) * 1984-02-20 1985-09-05 青柳 繁夫 Hydroponic method
JPS6167420A (en) * 1984-09-10 1986-04-07 高木産業株式会社 Automatic plant cultuer method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137217A (en) * 1983-12-26 1985-07-20 村井 邦彦 Automatically controlled hydroponic apparatus
JPS60172242A (en) * 1984-02-20 1985-09-05 青柳 繁夫 Hydroponic method
JPS6167420A (en) * 1984-09-10 1986-04-07 高木産業株式会社 Automatic plant cultuer method

Also Published As

Publication number Publication date
JPS62262925A (en) 1987-11-16

Similar Documents

Publication Publication Date Title
CN111867354A (en) Irrigation system for applying an application having a microbial concentration for improving crop production
KR20080098945A (en) Automatic drainage controller for closed hydroponics and controlling method for the same
KR101416743B1 (en) nutrient solution supply system with ventury
JP2007295876A (en) Watering fertilizing controlling method and apparatus in watering fertilizing cultivation
JPH0761225B2 (en) Plant nutrient solution controller
JP6045480B2 (en) Watering method and apparatus in hydroponics
JPH0533008B2 (en)
JPS62262924A (en) Culture control of plant
KR102098853B1 (en) Nutrient supplying apparatus for controlling nutrient supply based on the nutrient concentration in culture medium
US11832562B2 (en) Method and system for providing nutrients to a plant
KR102079294B1 (en) Nutrient supply equipment of greenhouse cultivation crop
CN212344868U (en) A culture apparatus and root box for ion concentration monitoring and supply
JP4109211B2 (en) Fertilization management method and apparatus
KR20190098470A (en) Automatic control system for supplyculturemedium and cultivatorusing the same
JPS62262921A (en) Preparation of plant culture nutrient solution
JPH044849B2 (en)
JPH0354535B2 (en)
JPH10313714A (en) Diluting and supplying device of liquid manure original
US20230380337A1 (en) Nutrient solution recycling plant cultivation system
KR101446879B1 (en) nutrient solution supply system for supply water during tropical nights
CN216722540U (en) Modularization plant culture medium and fluid infusion device
JPH044850B2 (en)
RU2387127C1 (en) Method of melioration in piedmont zone and system for its realisation
JP3390285B2 (en) Irrigation equipment in plant cultivation facilities
JP2937593B2 (en) Hydroponic cultivation equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term