JPH0532737Y2 - - Google Patents

Info

Publication number
JPH0532737Y2
JPH0532737Y2 JP1984167452U JP16745284U JPH0532737Y2 JP H0532737 Y2 JPH0532737 Y2 JP H0532737Y2 JP 1984167452 U JP1984167452 U JP 1984167452U JP 16745284 U JP16745284 U JP 16745284U JP H0532737 Y2 JPH0532737 Y2 JP H0532737Y2
Authority
JP
Japan
Prior art keywords
rainfall
rain
rainwater
overturning
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1984167452U
Other languages
Japanese (ja)
Other versions
JPS6184525U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984167452U priority Critical patent/JPH0532737Y2/ja
Publication of JPS6184525U publication Critical patent/JPS6184525U/ja
Application granted granted Critical
Publication of JPH0532737Y2 publication Critical patent/JPH0532737Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、降雨のpH、導電率、雨水温度等を
測定する降雨測定装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a rainfall measuring device that measures the pH, conductivity, rainwater temperature, etc. of rainfall.

[従来の技術] 近年、硫黄酸化物、窒素酸化物等による環境汚
染に起因してしばしばpHの低い酸性雨が降り、
山林の植物、畑の作物、河川の動植物等に被害を
及ぼしている。
[Prior Art] In recent years, acid rain with low pH often falls due to environmental pollution caused by sulfur oxides, nitrogen oxides, etc.
It is causing damage to plants in mountain forests, crops in fields, and flora and fauna in rivers.

このような酸性雨を観測するには、降雨を採取
してそのPH、導電率、雨水温度等を想定すること
が重要であるが、降雨は大気中の各種のガスと平
衡しているので、降雨を採取した後直ちに測定し
ないと正しい値が得られない。したがつて、降雨
のPH、導電率、雨水温度等の測定には、降雨の採
取及び分析を連続して自動的に行なう降雨測定装
置を用いることが好ましい。
To observe such acid rain, it is important to collect rainfall and estimate its PH, conductivity, rainwater temperature, etc., but since rainfall is in equilibrium with various gases in the atmosphere, Correct values cannot be obtained unless measurements are taken immediately after rainfall is collected. Therefore, to measure the PH, conductivity, temperature, etc. of rainwater, it is preferable to use a rainfall measuring device that automatically and continuously collects and analyzes rainfall.

また、大気中の硫黄酸化物ガス、窒化酸化物ガ
スが溶解した酸性雨は、降雨の降り始めのわずか
の雨量あるいは長時間にわたるわずかの雨量にお
いて顕著であることが知られている。
It is also known that acid rain, in which sulfur oxide gas and nitride oxide gas in the atmosphere are dissolved, is noticeable in a small amount of rain at the beginning of rain or in a small amount of rain over a long period of time.

したがつて、その測定結果は、降り始めから
0.5mm毎あるいは1mm毎というように、一定雨量
毎に区切つてその間の平均値として求める必要が
ある。
Therefore, the measurement results are from the beginning of the rain.
It is necessary to calculate the average value between fixed rainfall amounts, such as every 0.5 mm or 1 mm.

従来、降雨のPH、導電率、雨水温度等の測定に
用いる降雨測定装置として、第3図に示すものが
使用されている。すなわち、第3図に示す装置に
おいて、1は上端に所定口径の円状降雨採取開口
部1aを有する漏斗状採雨器、2はこの採雨器1
下端の降雨流出開口部1bに連通された降雨流通
路、3は降雨流通路2下流側に連結された測定部
である。この測定部3は、フローセル4に導電率
電極5、PH電極6及び感温抵抗体7がそれぞれ配
設されてなるものであり、その内部に降雨が流通
することにより降雨のPH、導電率、雨水温度が測
定されるようになつている。また、8a,8b及
び8cはそれぞれ導電率電極5、PH電極6及び感
温風抵抗体7に連結され、これらからの信号を増
幅するアンプ、9はアンプ8a,8b,8cに連
結され、降雨のPH、導電率、雨水温度を記録する
記録計である。
Conventionally, a rainfall measuring device shown in FIG. 3 has been used to measure the PH, conductivity, temperature of rainwater, etc. of rainfall. That is, in the apparatus shown in FIG. 3, 1 is a funnel-shaped rain collector having a circular rain collecting opening 1a of a predetermined diameter at the upper end, and 2 is this rain collector 1.
A rainwater flow path 3 communicates with the rainwater flow opening 1b at the lower end, and a measuring section 3 is connected to the downstream side of the rainwater flow path 2. This measuring section 3 is formed by disposing a conductivity electrode 5, a PH electrode 6, and a temperature-sensitive resistor 7 in a flow cell 4, and when the rain flows inside the measuring section 3, the PH, conductivity, and Rainwater temperature is now being measured. Further, 8a, 8b and 8c are respectively connected to the conductivity electrode 5, PH electrode 6 and temperature-sensitive wind resistor 7, and amplifiers for amplifying signals from these, and 9 is connected to amplifiers 8a, 8b, 8c, This is a recorder that records the pH, conductivity, and temperature of rainwater.

上述した装置により降雨の分析を行なう場合、
採雨器1内にその上端開口部1aから降雨を採取
すると共に、この採取した降雨を下端開口部1b
から降雨流通路2を通して測定部3に導入する。
When analyzing rainfall using the above-mentioned device,
Rainfall is collected from the upper end opening 1a in the rain collector 1, and the collected rain is collected from the lower end opening 1b.
From there, the rainwater is introduced into the measuring section 3 through the rainfall flow path 2.

[考案が解決しようとする課題] しかし、上述した従来の装置においては、採雨
器1で採取した降雨をそのまま連続的に測定部3
に導入しているため、下記イ〜ハに示すような問
題点があつた。
[Problem to be solved by the invention] However, in the conventional device described above, the rainfall collected by the rain sampler 1 is continuously transmitted directly to the measuring unit 3.
Since the system was introduced into the system, the following problems arose.

イ 前述したように測定結果は一定雨量毎の平均
値として求める必要があるが、この装置では測
定値は連続的に記録され、雨量毎に区切られて
いないので、各雨量毎の測定値の識別ができ
ず、したがつて一定雨量毎の測定結果の平均値
が直接求められない。
B. As mentioned above, the measurement results must be obtained as an average value for each fixed amount of rainfall, but with this device, the measured values are recorded continuously and are not separated by rainfall amount, so it is possible to identify the measured values for each rainfall amount. Therefore, the average value of the measurement results for each fixed amount of rainfall cannot be directly determined.

ロ 降雨は採雨器から連続的に流出して測定部に
導入されるため、雨量を測定することができ
ず、したがつて雨量の測定には別に雨量計を必
要とする。
(b) Rainfall cannot be measured because it is continuously flowed out of the rain sampler and introduced into the measurement unit, and therefore a separate rain gauge is required to measure rainfall.

ハ 一定雨量毎の測定結果の平均値を求める場
合、雨量計の測定記録から一定雨量の降雨が得
られた時間を調べ、この時間における測定結果
の平均値を算出しなければならず、面倒である
上、正確な値を得ることが困難である。
C. When calculating the average value of the measurement results for each fixed amount of rainfall, it is necessary to check the time when a fixed amount of rainfall was obtained from the measurement record of the rain gauge and calculate the average value of the measurement results for this time, which is cumbersome. Moreover, it is difficult to obtain accurate values.

そこで、降雨を一定雨量毎に区切つて測定部
に導入するために、採雨器と測定部との間の降
雨流路に計量部を介装することを考え、計量部
としてどのような機構のものがよいかについて
も、種々検討を行つた。
Therefore, in order to divide the rainfall by a certain amount of rainfall and introduce it into the measuring section, we considered installing a measuring section in the rainfall flow path between the rain sampler and the measuring section, and what kind of mechanism should be used as the measuring section. Various considerations were also made as to whether it was a good idea.

まず、レベル電極等により、容器内に一定量
の試料が導入されたことを検出する計量器を用
いることが考えられた。これによれば、レベル
電極からの信号に基づき、電磁弁を開閉し、採
雨器から計量器への雨水の注入、及び計量器か
ら測定部への計量された雨水の導入が可能にな
ると思われた。
First, it was considered to use a measuring device that uses a level electrode or the like to detect that a certain amount of sample has been introduced into a container. According to this, it will be possible to open and close the solenoid valve based on the signal from the level electrode, injecting rainwater from the rain sampler to the meter, and introducing measured rainwater from the meter to the measuring section. I was disappointed.

しかしながら、この方法は、下記ニ〜ホに示す
問題点があり、実用化が困難であつた。
However, this method has the following problems, making it difficult to put it into practical use.

ニ 計量器から測定部に雨水を導入する間、雨水
のサンプリングができなくなるため、連続して
サンプリングを行なうためには、計量器を複数
並行して設ける等の必要が生じ、装置が複数に
なる。
D. Sampling of rainwater becomes impossible while rainwater is introduced from the measuring instrument to the measuring section, so in order to perform continuous sampling, it becomes necessary to install multiple measuring instruments in parallel, resulting in multiple devices. .

ホ 雨水が径の細い電磁弁を通つて測定部に導入
されるため、採取した雨水が測定部に導入され
るのに時間がかかり、測定値の精度が低下す
る。
E) Since rainwater is introduced into the measuring section through a small-diameter electromagnetic valve, it takes time for the collected rainwater to be introduced into the measuring section, reducing the accuracy of the measured values.

また、この他にも、一般的に水質分析計等で利
用される種々の計量方法について検討を行なつた
が、いずれも降雨という断続的な現象には適用で
きなかった。
In addition, various measurement methods commonly used in water quality analyzers were investigated, but none of them could be applied to the intermittent phenomenon of rainfall.

本考案は、上記事情に鑑みてなされたもので、
降雨の強さに関係なく簡単な機構で降雨を連続的
にかつ一定雨量毎に区切つて、PH、導電率、雨水
温度等の測定部に導入することができ、特に酸性
雨の観測に有効に使用することができる降雨測定
装置を提供する。
This invention was made in view of the above circumstances,
Regardless of the intensity of the rain, the rain can be continuously divided into fixed rainfall amounts using a simple mechanism and introduced into the measurement section for PH, conductivity, rainwater temperature, etc., and is especially effective for observing acid rain. To provide a rainfall measuring device that can be used.

[課題を解決するための手段及び作用] 本考案は、上記目的を達成するため、下端部に
降雨流出口が形成された採雨器と、上記採雨器の
下方に配設され、二個の貯水槽の一方に上記採雨
器から所定雨量の降雨が注入されると転倒して両
貯水槽から雨水が交互に排出される転倒ますと、
転倒ますの転倒動作により排出された雨水が導入
される少なくとも導電率、PH及び雨水温度の測定
を行う雨水分析用の測定部と、転倒ますの転倒動
作により開閉するスイツチとを具備し、上記転倒
ますに所定雨量の降雨を貯留すると共に、転倒ま
すの転倒動作により排出された雨水を測定部に導
入して雨水の分析を行なうようにした降雨測定装
置を提供する。
[Means and effects for solving the problem] In order to achieve the above-mentioned object, the present invention includes a rain collector having a rainwater outlet formed at the lower end, and two rain collectors arranged below the rain collector. When a predetermined amount of rainfall is injected from the rain collector into one of the water tanks, it will tip over and rainwater will be drained alternately from both tanks.
It is equipped with a measuring section for rainwater analysis that measures at least the conductivity, PH, and rainwater temperature into which rainwater discharged by the overturning operation of the overturning cell is introduced, and a switch that opens and closes according to the overturning operation of the overturning cell. To provide a rainfall measuring device which stores a predetermined amount of rainfall and analyzes the rainwater by introducing the rainwater discharged by the overturning operation of a toppling basket into a measuring part.

すなわち、前述したように酸性雨は降雨の降り
始めのわずかの雨量あるいは長時間にわたるわず
かの雨量において顕著に認められる。したがつ
て、降雨の強さには1時間に0.5mm程度のわずか
な雨や1時間に30mm以上の豪雨などの種々のパタ
ーンがあるが、酸性雨の測定においては、降雨の
強さにかかわらず、降り始めのわずかの降雨ある
いは長時間にわたるわずかな降雨を測定する必要
がある。
That is, as mentioned above, acid rain is noticeable in a small amount of rain at the beginning of rain or in a small amount of rain over a long period of time. Therefore, there are various patterns of rainfall intensity, such as a slight rain of about 0.5 mm per hour to heavy rain of 30 mm or more per hour, but when measuring acid rain, regardless of the rainfall intensity, First, it is necessary to measure a small amount of rain at the beginning of a fall or a small amount of rain over a long period of time.

本考案においては、降雨の採取に転倒ますを用
いたことにより、降雨強度に関係なく、0.5mmあ
るいは1mmといつた一定雨量毎のPH,導電率等の
測定を行なうことができる。例えば、2時間で
0.5mm程度のわずかな降雨でも、雨量が0.5mmにな
つた時に転倒ますの動作で試料雨水が一気に測定
部に流入するので、PH,導電率等を正確に測定す
ることができる。また、以後0.5mm毎にサンプリ
ングを中断することなく連続的に測定することが
できる。一方、1時間で30mmというような豪雨で
も、転倒ますの動作で降雨は0.5mm毎に区切られ
て測定部に流入するので、重要な降り始めの0.5
mmの降雨を測定することができ、また降雨が長時
間続いても障害なく連続して0.5mm毎の測定を続
けることができる。
In this invention, by using an overturned container to collect rainfall, it is possible to measure PH, conductivity, etc. for each fixed rainfall amount of 0.5 mm or 1 mm, regardless of the rainfall intensity. For example, in 2 hours
Even with a slight rainfall of about 0.5 mm, when the rainfall reaches 0.5 mm, the sample rainwater flows into the measurement part at once by the operation of the tipping bucket, allowing accurate measurement of pH, conductivity, etc. Furthermore, subsequent measurements can be taken continuously every 0.5 mm without interrupting sampling. On the other hand, even in heavy rain of 30 mm in one hour, the rain falls into the measuring section in 0.5 mm intervals due to the operation of the overturning bucket, so the important 0.5 mm at the beginning of the rain falls.
It is possible to measure rainfall of 0.5mm, and even if the rain continues for a long time, measurements can be taken continuously at 0.5mm intervals without any problems.

次に、本考案の一実施例につき図面を参照して
詳しく説明する。
Next, one embodiment of the present invention will be described in detail with reference to the drawings.

[実施例] 第1図は本考案の一実施例に係る降雨自動測定
装置を示す。なお、第1図において第3図と同一
構成の部分には同一参照符号を付してその説明を
省略する。
[Embodiment] FIG. 1 shows an automatic rainfall measuring device according to an embodiment of the present invention. In FIG. 1, parts having the same configuration as those in FIG. 3 are designated by the same reference numerals, and their explanations will be omitted.

本装置においては、漏斗状採雨器1下端の降雨
流出口1bの下方に所定雨量の降雨が貯留される
と転倒して内部に貯留された雨水が外部に排出さ
れる転倒ます10が配設されている。この転倒ま
す10は、第2図の平面図に示すように、方形の
底板A、二等辺三角形の側壁B,B及び方形の仕
切板Cから構成されており、これにより2個の貯
水槽10a及び10bが形成されているもので、
その下部中央を支承軸11に左右方向揺動可能に
支承されることにより、支承軸11を中心として
左右に転倒、傾斜することが可能になつているも
のである。そして、第1図に示すように、一方の
貯水槽10aが上方を向いた状態においてこの貯
水槽10aにその上方の採雨器1から降雨が注入
されると、貯水槽10aに所定量の降雨が貯留し
た段階でその重さによつて転倒ます10が貯水槽
10a方向に転倒、傾斜し、これにより貯水槽1
0a内の降雨がその流出部10c下方に配置され
た受水口12に注入されるとともに、他方の貯水
槽10bが上方を向き、この貯水槽10bに採雨
器1から降雨が注入される。その後、貯水槽10
bに所定量の降雨が貯留した段階でその重さによ
つて転倒ます10が貯水槽10b方向に転倒、傾
斜し、これにより貯水槽10b内の採雨がその流
出部10d下方に配置された受水口13に注入さ
れるとともに、転倒ます10は第1図に示す状態
に復帰し、以後同様の動作が繰り返される。
In this device, an overturning basin 10 is disposed below the rainwater outlet 1b at the lower end of the funnel-shaped rain collector 1, which overturns when a predetermined amount of rainfall is stored, and the rainwater stored inside is discharged to the outside. has been done. As shown in the plan view of FIG. 2, this overturning basin 10 is composed of a rectangular bottom plate A, isosceles triangular side walls B, B, and a rectangular partition plate C. and 10b are formed,
The center of its lower part is supported by a support shaft 11 so as to be swingable in the left and right directions, thereby making it possible to overturn and tilt left and right about the support shaft 11. As shown in FIG. 1, when one water tank 10a is facing upward and rain is injected into this water tank 10a from the rain collector 1 above it, a predetermined amount of rain falls into the water tank 10a. 10 falls over and tilts toward the water tank 10a, and as a result, the water tank 1 falls down due to its weight.
Rainfall within 0a is injected into a water inlet 12 disposed below the outflow portion 10c, and the other water tank 10b faces upward, and rainwater is injected from the rain collector 1 into this water tank 10b. After that, water tank 10
When a predetermined amount of rainfall is stored in b, the weight of the rainwater causes it to fall over and tilt toward the water tank 10b, so that the collected rain in the water tank 10b is placed below the outflow part 10d. As the water is poured into the water inlet 13, the overturning basin 10 returns to the state shown in FIG. 1, and the same operation is repeated thereafter.

ここで、漏斗状採雨器1として上端開口部1a
の直径が200mmのものを用いた場合、例えば降雨
を雨量0.5mm毎に採取するには、転倒ます10と
してそれぞれの貯水槽10a,10bに15.7mm1
の降雨が貯留すると転倒するように設計されたも
のを使用する((10cm)2×3.14×0.05cm=
15.7m1)。
Here, the upper end opening 1a is used as the funnel-shaped rain collector 1.
For example, if you want to collect rainfall every 0.5 mm, the diameter of the water tank 10a and 10b should be 15.7 mm1.
Use one that is designed to tip over when rainfall accumulates ((10cm) 2 × 3.14 × 0.05cm =
15.7m1).

本装置においては、上記受水口12及び13は
それぞれ降雨流路2a及び2bを介して測定部3
に連結しており、転倒ます10の一方の貯水槽1
0aから受水口12に流入した降雨及び他方の貯
水槽10bから受水口13流入した降雨は、それ
ぞれ降雨流路2a及び2bを通つて間欠的に測定
部3に導入されるようになつている。
In this device, the water inlets 12 and 13 are connected to the measuring section 3 through the rainfall channels 2a and 2b, respectively.
It is connected to one of the water tanks 1 and 10 that will fall over.
The rainfall that has flowed into the water inlet 12 from 0a and the rainfall that has flowed into the water inlet 13 from the other water tank 10b are intermittently introduced into the measurement unit 3 through the rain channels 2a and 2b, respectively.

なお、第1図中14は採雨器1の上端開口部を
閉塞する蓋体、15はこの蓋体14に接続する感
雨器で、この感雨器15により降雨の有無を検知
し、これに応じて蓋体14が自動的に開閉される
ようになつている。また、16は採雨器1内を洗
浄する洗浄液を噴射する洗浄器である。
In Fig. 1, 14 is a lid that closes the upper opening of the rain collector 1, and 15 is a rain sensor connected to the lid 14. The rain sensor 15 detects the presence or absence of rain. The lid 14 is automatically opened and closed depending on the situation. Further, 16 is a cleaning device that sprays cleaning liquid to clean the inside of the rain collecting device 1.

さらに、17は転倒ます10が転倒する毎にこ
れと連動して開閉するスイツチで、このスイツチ
の開閉回数を計測することにより、雨量の測定を
行なうものである。
Further, numeral 17 is a switch that opens and closes in conjunction with the overturning basket 10 every time it overturns, and the amount of rainfall is measured by measuring the number of times this switch is opened and closed.

上記装置による降雨の分析においては、まず感
雨器15が降雨を検知すると蓋体14が開き、降
雨の採取が自動的に開始される。そして、上述し
たように転倒ます10の一対の貯水槽10a,1
0bによつて降雨が所定雨量毎に区切つて採取さ
れ、この降雨が測定部3に間欠的に導入されて測
定が行なわれる。
In analyzing rainfall using the above device, first, when the rain sensor 15 detects rainfall, the lid 14 is opened and rain sampling is automatically started. Then, as described above, the pair of water tanks 10a, 1 of 10 are overturned.
0b, rainfall is collected by dividing it into predetermined rainfall amounts, and this rainfall is intermittently introduced into the measuring section 3 for measurement.

したがつて、本装置においては、降雨が所定雨
量毎に測定部3に導入されるため、所定雨量毎の
PH、導電率及び雨水温度の平均値を簡単かつ正確
に測定できる。しかも、本装置においては、降雨
は採雨器1、転倒ます10、受水口12,13等
を経て測定部3に導入されるため、この間に降雨
が十分に均一化され、採取した降雨中における溶
存物質の濃度が均一となり、このため上記平均値
としてきわめて正確な値を得ることができる。
Therefore, in this device, since rainfall is introduced into the measuring section 3 every predetermined amount of rainfall,
You can easily and accurately measure the average values of PH, conductivity, and rainwater temperature. Moreover, in this device, the rainfall is introduced into the measuring unit 3 through the rain sampler 1, the overturning bowl 10, the water inlets 12, 13, etc., so that the rainfall is sufficiently homogenized during this time, and the The concentration of dissolved substances becomes uniform, and therefore a very accurate value can be obtained as the above-mentioned average value.

また、転倒ます10の転倒回数をスイツチ17
の開閉回数により計測し、その開閉回数から雨量
を算出できるため、雨量も測定することができ
る。したがつて、従来の降雨測定装置のように別
に雨量計を設置する必要がなく、装置が簡単にな
るとともに、経済的にも有利である。
Also, switch the number of falls of 10 to 17.
Since the amount of rain can be calculated from the number of times the door is opened and closed, the amount of rain can also be measured. Therefore, there is no need to install a separate rain gauge as in conventional rainfall measuring devices, which simplifies the device and is also economically advantageous.

さらに、本装置においては、漏斗状採雨器1の
上端開口部1aの直径、転倒ます10の貯留槽1
0a,10bの容量を適宜選択することにより、
所望の雨量毎のPH、導電率及び雨水温度の平均値
を得ることができる。
Furthermore, in this device, the diameter of the upper end opening 1a of the funnel-shaped rain collector 1, the storage tank 1 of the overturning basin 10,
By appropriately selecting the capacity of 0a and 10b,
It is possible to obtain the average values of PH, conductivity, and rainwater temperature for each desired amount of rainfall.

[考案の効果] 以上のように、本考案の降雨測定装置は、下記
〜の効果を奏する。
[Effects of the invention] As described above, the rainfall measuring device of the invention has the following effects.

転倒ますによつて降雨を一定雨量毎に区切つ
て採取し、これを測定部に導入することによ
り、一定雨量毎に降雨の分析を行なうことがで
き、導電率,PH,雨水温度等に一定雨量毎の平
均値を簡単かつ正確に自動的に得ることができ
る。
By collecting rainfall by dividing it into fixed amounts using an overturning bucket and introducing it into the measurement unit, it is possible to analyze rainfall for each fixed amount of rainfall. The average value for each can be easily and accurately automatically obtained.

転倒ますが転倒することにより、一定雨量の
雨水が転倒ますから一気に排出され、短時間で
測定部に導入されるため、精度の高い測定を行
なうことができる。
Although it falls over, a certain amount of rainwater falls over and is discharged all at once and introduced into the measuring section in a short period of time, making it possible to perform highly accurate measurements.

転倒ますの一方の貯水槽に所定量の雨水が貯
留され、転倒ますが転倒した後、直ちに他方の
貯水槽に雨水が貯留されるため、雨水のサンプ
リングを中断することなく連続的に行なうこと
ができ、このため降雨の正確な観測を行なうこ
とができる。
A predetermined amount of rainwater is stored in one storage tank of the overturning cell, and after the overturning cell falls, rainwater is immediately stored in the other storage tank, allowing continuous sampling of rainwater without interruption. Therefore, accurate observation of rainfall can be carried out.

時間で区切つて雨水を採取した場合、降雨の
強さによつて採取される雨水の量が異なつてく
るが、本考案では転倒ますを用いたことによ
り、降雨の強さに関係なく一定雨量を連続的に
採取することができる。
If rainwater is collected in intervals of time, the amount of rainwater collected will vary depending on the intensity of the rainfall, but in this invention, by using an overturned basin, a constant amount of rainwater can be collected regardless of the intensity of the rainfall. Can be collected continuously.

降雨は採雨器、転倒ます等を通つて測定に供
されるため、その間に降雨中の成分が均一化
し、正確な測定値を得ることができる。
Since the rainfall is measured through a rain sampler, an overturning cell, etc., the components in the rain are homogenized during that time, making it possible to obtain accurate measured values.

転倒ますの転倒回数をスイツチの開閉回数で
計測することにより、雨量計を別に設けなくて
も雨量を測定することができる。
By measuring the number of times the bucket falls over by the number of times the switch is opened and closed, it is possible to measure the amount of rain without installing a separate rain gauge.

したがつて、本考案の装置は、酸性雨の精密な
観測に特に好適に使用できるものである。
Therefore, the device of the present invention can be particularly suitably used for precise observation of acid rain.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例に係る降雨測定装置
を示す一部断面概略図、第2図は同装置を転倒ま
すを示す平面図、第3図は従来の降雨測定装置を
示す一部断面概略図である。 1……採雨器、2……降雨流路、3……測定
部、10……転倒ます。
Fig. 1 is a partial cross-sectional schematic diagram showing a rainfall measuring device according to an embodiment of the present invention, Fig. 2 is a plan view showing how the device is tipped over, and Fig. 3 is a partial diagram showing a conventional rainfall measuring device. It is a cross-sectional schematic diagram. 1...Rain sampler, 2...Rainfall channel, 3...Measuring unit, 10...Tumbles down.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 下端部に降雨流出口が形成された採雨器と、上
記採雨器の下方に配設され、二個の貯水槽の一方
に上記採雨器から所定雨量の降雨が注入されると
転倒して両貯水槽から雨水が交互に排出される転
倒ますと、転倒ますの転倒動作により排出された
雨水が導入される少なくとも導電率、pH及び雨
水温度の測定を行う雨水分析用の測定部と、転倒
ますの転倒動作により開閉するスイツチとを具備
することを特徴とする降雨測定装置。
A rain collector has a rain outlet formed at the lower end, and a rain collector is installed below the rain collector, and when a predetermined amount of rainfall is injected into one of the two water tanks from the rain collector, it will overturn. a measuring section for rainwater analysis that measures at least conductivity, pH, and rainwater temperature into which rainwater discharged by the overturning action of the overturning container is introduced; A rainfall measuring device characterized by comprising a switch that opens and closes according to the overturning action of the overturning basin.
JP1984167452U 1984-11-06 1984-11-06 Expired - Lifetime JPH0532737Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984167452U JPH0532737Y2 (en) 1984-11-06 1984-11-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984167452U JPH0532737Y2 (en) 1984-11-06 1984-11-06

Publications (2)

Publication Number Publication Date
JPS6184525U JPS6184525U (en) 1986-06-04
JPH0532737Y2 true JPH0532737Y2 (en) 1993-08-20

Family

ID=30725245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984167452U Expired - Lifetime JPH0532737Y2 (en) 1984-11-06 1984-11-06

Country Status (1)

Country Link
JP (1) JPH0532737Y2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064481A1 (en) * 2008-12-02 2010-06-10 三菱重工業株式会社 Outdoor structure and method of estimating deterioration of component member of outdoor structure
JP2010133750A (en) * 2008-12-02 2010-06-17 Mitsubishi Heavy Ind Ltd Outdoor structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2630583B2 (en) * 1991-06-25 1997-07-16 重治 川浪 Initial rainfall sorter
JP4879921B2 (en) * 2008-01-30 2012-02-22 新日本製鐵株式会社 Continuous collection device for atmospheric fallout

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974372U (en) * 1982-11-09 1984-05-19 矢野 長孜 Rainfall warning device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064481A1 (en) * 2008-12-02 2010-06-10 三菱重工業株式会社 Outdoor structure and method of estimating deterioration of component member of outdoor structure
JP2010133750A (en) * 2008-12-02 2010-06-17 Mitsubishi Heavy Ind Ltd Outdoor structure

Also Published As

Publication number Publication date
JPS6184525U (en) 1986-06-04

Similar Documents

Publication Publication Date Title
US4665743A (en) Automatic rain gauge
US6651480B2 (en) Particulate mass measuring method with intrinsic correction for volatilization losses
JPH0532737Y2 (en)
WO1997003355A1 (en) Portable hand-held device with a biosensor
US5048331A (en) Continuous rainwater monitoring system
Cole A system for measuring conductivity, acidity, and rate of water flow in a forest soil
CN107764593B (en) Continuous mixed water sample collection device and water sample collection method thereof
CN108431599A (en) Detect the method that whether there is grumeleuse in fluid specimen sample analysis instrument
KR19990082146A (en) Moisture analyzer
US4165630A (en) Continuous in-stack pollutant monitoring system
US4087743A (en) Fog-water conductivity measuring device
JP3438885B1 (en) Salt spray test equipment
Fuzzi et al. An automatic station for fog water collection
US5118628A (en) Method for analyzing water and apparatus to carry out this method
JP2979478B2 (en) Real-time diagnostic method of plant nutrition during growth and its measuring device
JPH0424477Y2 (en)
JPH05288744A (en) Automatic measuring apparatus for acid rain
CN214252624U (en) Portable rainfall measurement system
RU2253106C1 (en) Universal multi-sensor detecting cell
SU1562780A1 (en) Method of determining concentration of dust
JPH062143Y2 (en) Proportional urine collection device
JPS5871478A (en) Method and device for measuring rainfall
KR20030030279A (en) Automatic Measurement System for Acid Rain
JPH0421135B2 (en)
Manges et al. Samplers for Monitoring Runoff Waters