JPH0421135B2 - - Google Patents

Info

Publication number
JPH0421135B2
JPH0421135B2 JP31452086A JP31452086A JPH0421135B2 JP H0421135 B2 JPH0421135 B2 JP H0421135B2 JP 31452086 A JP31452086 A JP 31452086A JP 31452086 A JP31452086 A JP 31452086A JP H0421135 B2 JPH0421135 B2 JP H0421135B2
Authority
JP
Japan
Prior art keywords
sample liquid
suction
clogging point
temperature
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP31452086A
Other languages
Japanese (ja)
Other versions
JPS63167257A (en
Inventor
Tetsuo Shimizu
Kazunaga Oono
Yoshiaki Togashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK Corp
Eneos Corp
Original Assignee
DKK Corp
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK Corp, Nippon Oil Corp filed Critical DKK Corp
Priority to JP31452086A priority Critical patent/JPS63167257A/en
Publication of JPS63167257A publication Critical patent/JPS63167257A/en
Publication of JPH0421135B2 publication Critical patent/JPH0421135B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、軽油等の石油製品の目づまり点を測
定する方法に関し、更に詳述すると、流動点降下
剤が含まれている石油製品の目づまり点をも正確
に自動測定することができる方法に関する。 従来の技術 従来、軽油等の石油製品の低温流動性を評価す
るためにその目づまり点(CFPP)を自動測定す
る場合、通常第3図に示すような目づまり点計が
使用されている。即ち、第3図に示す目づまり点
計において1は内部にサンプル液2が導入され、
サンプル液2を冷却するための冷却器3上に配設
された測定セルである。4は、上記セル1内のサ
ンプル液2中にその先端側が浸漬された吸引管
で、この吸引管4先端はセル1の底部近傍まで達
し、その先端大径部4aには開口部を覆つて所定
メツシユのフイルタ5が取り付けられている。ま
た、吸引管4の基端側はセル1外に突出してお
り、その基端には吸引機構6に連絡する連絡管7
の端部が連絡されていると共に、基端部近傍には
ランプ8及び光電センサ9からなる吸引管4内を
上昇してくるサンプル液2を検出するための液面
検出器10が配設されている。更に、11はセル
1の側壁を貫通して取り付けられ、検出端が上記
吸引管4の下端近傍に配置された温度検出器で、
この温度検出器11によつて吸引管4内に流入す
るサンプル液2の温度を検出し得るようになつて
いる。なお、図示しないが、上記セル1にはサン
プル液導入管及びサンプル液排出管がそれぞれ連
結されている。 上記目づまり点計によつてサンプル液の目づま
り点を測定する場合、まずセル1内の前回測定分
のサンプル液2をサンプル液排出管を通して排除
すると共に、サンプル液導入管からセル1内に測
定すべきサンプル液2を所定量導入する。次に、
サンプル液2を冷却器3により所定冷却速度で冷
却し、サンプル液温が例えば1度下がる毎に吸引
機構6の作動によつて吸引管4内を所定吸引圧
(200mm水柱)で吸引する。サンプル液2が流動性
のある間はサンプル液2はフイルタ5を通り吸引
管4を上昇して光電センサ9の位置まで吸引され
るが、サンプル液2の液温が下がつて流動性がな
くなると、サンプル液2がフイルタ5を通りにく
くなり、ついに光電センサ9の位置まで上昇しな
くなる。この上昇しなくなつた時のサンプル液2
の温度を温度検出器11で検出し、これを目づま
り点(CFPP)値とするものである。 発明が解決しようとする問題点 しかしながら、セル1内のサンプル液2を吸引
管4を通して吸引し、上昇してくるサンプル液2
の液面を検出することにより目づまり点を測定す
るようにした従来の目づまり点計は、以下に述べ
るような問題点を有するものであつた。 即ち、従来の目づまり点計においては、吸引に
よりサンプル液2が吸引管4内を上昇し、液面が
液面検出器10で検出されると、その段階で吸引
が停止され、吸引管4内のサンプル液2はセル1
内に戻り、その後サンプル液2が所定温度に冷却
された段階で次の吸引が開始されるものである
が、サンプル液2が流動点降下剤を含むものであ
る場合、液面を検出した後吸引を解除しても、吸
引管4内のサンプル液2がセル1内に充分に戻ら
ない現象が生じ、特に目づまり点付近の温度では
吸引力を解放してもサンプル液2が殆ど流動しな
くなる。従つて、流動点降下剤を含むサンプル液
2の目づまり点を測定する場合、目づまり点付近
になると吸引管4内のサンプル液2の液面が充分
下降しない状態で次の吸引が行なわれるため、液
面が吸引開始後すぐに液面検出器10の位置に到
達し、所定量のサンプル液2がフイルタ5を通過
する前に液面が検出されてしまうので、実際の目
づまり点よりかなり低温になつてもサンプル液2
の液面が検出される状態となり、その結果測定さ
れた目づまり点が実際の目づまり点より異常に低
い温度となつて、目づまり点を正確に測定するこ
とができない。このような不都合は、手分析の場
合はサンプル液の流動を目視することにより回避
することが可能であるが、プロセス用の自動分析
計ではサンプル液の流動状態を目視することは困
難であり、このため従来より流動点降下剤を含む
サンプル液の目づまり点を正確に自動測定し得る
方法が望まれていた。 本発明は、上記事情に鑑みなされたもので、流
動点降下剤を含む軽油等のように目づまり点付近
の温度になると吸引を解除しても吸引管からフイ
ルタを通つてセル内に充分に戻らなくなり、この
ため液面を検出する方法で目づまり点を正確に測
定することが難しいサンプル液の目づまり点をも
正確に測定することができる目づまり点の測定方
法を提供することを目的とする。 問題点を解決するための手段及び作用 即ち、本発明者らは、流動点降下剤が添加され
た軽油等のサンプル液は目づまり点検出温度付近
においては吸引力を解除しても殆ど流動しないこ
と、及び測定セル内のサンプル液は吸引時に下部
のものから順次フイルタを通つて吸引管内に流入
するものであるが、セル内のサンプル液は冷却装
置によつて下部から順次冷却されていくので、こ
のサンプル液は下部になるほど低温となつてお
り、このため吸引時にフイルタを通過するサンプ
ル液は吸引が進むに従つて高温となることに着目
すると共に、サンプル液が目づまり点検出温度に
近くなると吸引管内のサンプル液があまりセル内
に戻らないので、吸引を行なつても吸引開始時か
ら液面検出時までの間にフイルタをサンプル液が
殆ど通過せず、このためこの間にフイルタを通過
するサンプル液の温度も殆ど変化しなくなり、従
つてこの間の温度上昇量が予め設定した量以下に
なつた時のサンプル液の温度を目づまり点として
認定し得ることを見出し、本発明をなすに至つ
た。 従つて、本発明は、測定セル内のサンプル液を
冷却装置により所定冷却速度で冷却し、かつこの
サンプル液中に先端部にフイルタを取り付けた吸
引管を挿入すると共に、測定セル内のサンプル液
を間欠的に上記フイルタを通して吸引管内に所定
吸引圧で所定時間吸引し、所定量のサンプル液が
フイルタを通過した時には吸引を解除し、吸引管
内のサンプル液を測定セル内に戻すと共に、この
サンプル液のフイルタ通過とサンプル液の温度と
の関係から目づまり点を検出する目づまり点の測
定方法において、吸引時にフイルタを通過するサ
ンプル液の温度上昇量を検出し、この温度上昇量
が所定量以下になつた時のサンプル液の温度を目
づまり点とするようにしたものである。 本発明においては、フイルタを通過するサンプ
ル液の温度上昇量を検出し、この温度上昇量が所
定量以下になつたか否かにより目づまり点を測定
するようにしたので、液面を検出して目づまり点
を測定する場合と異なり、吸引を解除した時にサ
ンプル液がセル内に戻るか否かに関わりなく正確
に目づまり点を測定し得る。 以下、本発明につき更に詳しく説明する。 第1図は本発明方法の実施に用いる目づまり点
計の一例を示す。なお、第1図において第3図の
装置と同一構成の部分には同一参照符号を付して
その説明を省略するが、本装置においては第3図
の装置と異なり、ランプ8及び光電センサ9から
なる液面検出器10は設けられていない。 本実施例の目づまり点計を用いてサンプル液の
目づまり点を測定する場合、前記と同様にセル1
内に導入したサンプル液2を冷却器3により所定
冷却速度で冷却すると共に、サンプル液温が所定
温度(例えば1℃)下がる毎に吸引機構6の作動
によつて吸引管4内を所定吸引圧(200mm水柱)
で吸引し、この吸引時にフイルタ5を通過するサ
ンプル液2の温度上昇量を検出し、この温度上昇
量が予め設定しておいた所定量より大きい場合に
は吸引を解除して吸引管4内のサンプル液2をセ
ル1内に戻すと共に、上記所定量以下になつた時
のサンプル液2の温度を目づまり点とするもので
ある。 即ち、上述したようにセル1内のサンプル液2
は下部ほど温度が低く、上部ほど温度が高くなつ
ているが、サンプル液温が目づまり点よりかなり
高いと吸引解除時に吸引管4内のサンプル液2の
殆どがセル1内に戻り、次回の吸引の時にこのサ
ンプル液2がフイルタ5を通過するため、第2図
aに示すようにフイルタ5を通過するサンプル液
2の温度上昇量は大きい。これに対し、サンプル
液温が目づまり点に近づくにつれて吸引解除時の
セル1内へのサンプル液戻り量が少なくなるた
め、次回の吸引時のフイルタ5通過量が少なくな
り、これに対応してフイルタ5を通過するサンプ
ル液の温度上昇量も第2図中b〜cに示すように
徐々に小さくなり、サンプル液温が目づまり点検
出温度に到達すると温度上昇量は第2図dに示す
ように所定量Trよりも小さくなる。従つて、こ
の時のサンプル液2の温度を検出することにより
目づまり点(CFPP)を測定することができるも
のである。 この場合、目づまり点の判定に用いる所定量
(温度上昇検査幅)Trはサンプル液の種類等に応
じて適宜選定することができるが通常0〜1.0℃
の範囲に設定することが好ましく、これにより目
づまり点を正確に測定することができる。 従つて、本発明によれば、吸引解除時に吸引管
4内のサンプル液2がセル1内に戻るかどうかに
関係なくその目づまり点を測定することができる
ので、流動点降下剤を含む軽油等の目づまり点を
も正確に自動測定し得るものである。 なお、上記実施例においては、温度検出器11
によるフイルタ5を通過するサンプル液2の温度
変化の検出のみによつて目づまり点を測定するよ
うにしたが、第3図の目づまり点計のように液面
検出器10を設け、サンプル油の種類に応じて温
度検出器11の信号と液面検出器10との信号を
適宜組み合わせて目づまり点を測定するようにし
てもよい。 次に、実験例により本発明の効果を具体例に示
す。 実験例 第1図に示した目づまり点計を使用し、上述し
た本発明方法によつて流動点降下剤を添加した軽
油(サンプルA〜C)の目づまり点(CFPP)を
測定した。この場合、温度上昇検出幅Trは0℃、
測定開始時のサンプル液温度Tsは0℃、測定間
隔Twは1℃、吸引時間jは60秒とした(第2図
参照)。また、比較のため、1P−309に準拠した
ろ過目づまり点試験方法による手分析法及び第3
図に示した従来の目づまり点計による上述した液
面検出法によつて同じサンプルの目づまり点をそ
れぞれ測定した。結果を第1表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for measuring the clogging point of petroleum products such as light oil, and more specifically, to a method for accurately and automatically measuring the clogging point of petroleum products containing pour point depressants. Regarding how it can be done. Conventional Technology Conventionally, when automatically measuring the clogging point (CFPP) of petroleum products such as light oil in order to evaluate their low-temperature fluidity, a clogging point meter as shown in Fig. 3 is usually used. That is, in the clogging point meter shown in FIG. 3, the sample liquid 2 is introduced into the clogging point 1,
This is a measurement cell disposed on a cooler 3 for cooling a sample liquid 2. Reference numeral 4 denotes a suction tube whose tip side is immersed in the sample liquid 2 in the cell 1. The tip of the suction tube 4 reaches near the bottom of the cell 1, and the large diameter portion 4a of the tip is provided with a tube that covers the opening. A filter 5 of a predetermined mesh is attached. In addition, the proximal end side of the suction tube 4 protrudes outside the cell 1, and the proximal end has a connecting tube 7 connected to the suction mechanism 6.
The ends of the tubes are connected to each other, and a liquid level detector 10 for detecting the sample liquid 2 rising inside the suction tube 4 consisting of a lamp 8 and a photoelectric sensor 9 is arranged near the base end. ing. Furthermore, 11 is a temperature sensor installed through the side wall of the cell 1 and whose detection end is arranged near the lower end of the suction pipe 4,
This temperature detector 11 is designed to detect the temperature of the sample liquid 2 flowing into the suction tube 4. Although not shown, a sample liquid introduction pipe and a sample liquid discharge pipe are connected to the cell 1, respectively. When measuring the clogging point of a sample liquid using the clogging point meter, first, the sample liquid 2 from the previous measurement in cell 1 is removed through the sample liquid discharge pipe, and at the same time, it is introduced into cell 1 from the sample liquid inlet pipe. A predetermined amount of sample liquid 2 to be measured is introduced. next,
The sample liquid 2 is cooled by the cooler 3 at a predetermined cooling rate, and each time the sample liquid temperature drops, for example, by one degree, the suction mechanism 6 is operated to suck the inside of the suction tube 4 at a predetermined suction pressure (200 mm water column). While the sample liquid 2 has fluidity, the sample liquid 2 passes through the filter 5, ascends the suction tube 4, and is sucked up to the position of the photoelectric sensor 9, but as the temperature of the sample liquid 2 decreases, it loses its fluidity. Then, the sample liquid 2 becomes difficult to pass through the filter 5, and finally does not rise to the position of the photoelectric sensor 9. Sample liquid 2 when this rise stops
The temperature is detected by the temperature detector 11, and this is used as the clogging point (CFPP) value. Problems to be Solved by the Invention However, the sample liquid 2 in the cell 1 is sucked through the suction tube 4, and the sample liquid 2 rises.
Conventional clogging point meters that measure the clogging point by detecting the liquid level have had the following problems. That is, in the conventional clogging point meter, when the sample liquid 2 rises in the suction tube 4 due to suction and the liquid level is detected by the liquid level detector 10, suction is stopped at that stage and the suction tube 4 Sample liquid 2 in cell 1
The next suction is started when the sample liquid 2 is cooled to a predetermined temperature. However, if the sample liquid 2 contains a pour point depressant, the suction is started after the liquid level is detected. Even if the suction force is released, a phenomenon occurs in which the sample liquid 2 in the suction tube 4 does not return sufficiently into the cell 1, and especially at temperatures near the clogging point, the sample liquid 2 hardly flows even if the suction force is released. Therefore, when measuring the clogging point of the sample liquid 2 containing a pour point depressant, when the clogging point is near, the next suction is performed before the liquid level of the sample liquid 2 in the suction tube 4 has fallen sufficiently. Therefore, the liquid level reaches the position of the liquid level detector 10 immediately after the start of suction, and the liquid level is detected before the predetermined amount of sample liquid 2 passes through the filter 5. Even if the temperature is quite low, the sample solution 2
As a result, the measured clogging point becomes abnormally lower in temperature than the actual clogging point, making it impossible to accurately measure the clogging point. Such inconveniences can be avoided by visually observing the flow of the sample liquid in the case of manual analysis, but it is difficult to visually observe the flow state of the sample liquid with automatic process analyzers. For this reason, there has been a desire for a method that can accurately and automatically measure the clogging point of a sample liquid containing a pour point depressant. The present invention was developed in view of the above circumstances, and when the temperature of light oil containing a pour point depressant reaches near the clogging point, even if the suction is canceled, there is still enough water to flow from the suction pipe through the filter into the cell. It is an object of the present invention to provide a clogging point measuring method that can accurately measure the clogging point of a sample liquid, which is difficult to accurately measure the clogging point by the method of detecting the liquid level. shall be. Means and action for solving the problem That is, the present inventors found that a sample liquid such as light oil to which a pour point depressant was added hardly flows even when the suction force is removed near the clogging point detection temperature. Also, during suction, the sample liquid in the measurement cell flows into the suction tube from the bottom through the filter, but the sample liquid in the cell is cooled sequentially from the bottom by the cooling device. , this sample liquid becomes colder as it goes to the bottom, so it is important to note that the sample liquid that passes through the filter during suction becomes hotter as the suction progresses, and the sample liquid is close to the clogging point detection temperature. In this case, the sample liquid in the suction tube does not return much into the cell, so even if suction is performed, almost no sample liquid passes through the filter between the start of suction and the time of liquid level detection. The present invention has been made based on the discovery that the temperature of the sample liquid when the temperature rises during this period becomes less than or equal to a preset amount can be recognized as the clogging point. I've reached it. Therefore, the present invention cools the sample liquid in the measurement cell at a predetermined cooling rate with a cooling device, inserts a suction tube with a filter attached to the tip into the sample liquid, and cools the sample liquid in the measurement cell. is intermittently sucked into the suction tube through the filter at a predetermined suction pressure for a predetermined period of time, and when a predetermined amount of sample liquid has passed through the filter, the suction is released, and the sample liquid in the suction tube is returned to the measurement cell. In the clogging point measurement method, which detects the clogging point from the relationship between the liquid passing through the filter and the temperature of the sample liquid, the amount of temperature rise of the sample liquid passing through the filter during suction is detected, and this temperature rise is determined by a predetermined amount. The clogging point is defined as the temperature of the sample liquid when the temperature falls below. In the present invention, the amount of temperature rise of the sample liquid passing through the filter is detected, and the clogging point is determined based on whether or not this amount of temperature rise has become less than a predetermined amount. Unlike the case of measuring the clogging point, the clogging point can be accurately measured regardless of whether or not the sample liquid returns to the cell when suction is released. The present invention will be explained in more detail below. FIG. 1 shows an example of a clogging point meter used in carrying out the method of the present invention. In FIG. 1, parts having the same configuration as those in the device in FIG. 3 are given the same reference numerals and their explanations are omitted. However, unlike the device in FIG. 3, this device has a lamp 8 and a photoelectric sensor 9. A liquid level detector 10 consisting of the following is not provided. When measuring the clogging point of the sample liquid using the clogging point meter of this example, the cell 1
The sample liquid 2 introduced into the tube is cooled at a predetermined cooling rate by the cooler 3, and each time the sample liquid temperature drops by a predetermined temperature (for example, 1°C), the suction mechanism 6 is operated to raise the suction pressure inside the suction tube 4 to a predetermined suction pressure. (200mm water column)
The temperature rise of the sample liquid 2 passing through the filter 5 during this suction is detected, and if this temperature rise is larger than a preset amount, the suction is canceled and the sample liquid 2 passes through the filter 5. The sample liquid 2 is returned into the cell 1, and the temperature of the sample liquid 2 when the temperature drops below the predetermined amount is determined as the clogging point. That is, as mentioned above, the sample liquid 2 in the cell 1
The temperature is lower at the bottom and higher at the top, but if the sample liquid temperature is much higher than the clogging point, most of the sample liquid 2 in the suction tube 4 will return to the cell 1 when the suction is released, and the next Since this sample liquid 2 passes through the filter 5 during suction, the amount of temperature rise of the sample liquid 2 passing through the filter 5 is large, as shown in FIG. 2a. On the other hand, as the sample liquid temperature approaches the clogging point, the amount of sample liquid returned to the cell 1 when suction is released decreases, so the amount of sample liquid that passes through the filter 5 during the next suction decreases. The amount of temperature rise of the sample liquid passing through the filter 5 also gradually decreases as shown in b to c in Fig. 2, and when the sample liquid temperature reaches the clogging point detection temperature, the amount of temperature rise is shown in Fig. 2 d. becomes smaller than the predetermined amount Tr. Therefore, by detecting the temperature of the sample liquid 2 at this time, the clogging point (CFPP) can be measured. In this case, the predetermined amount (temperature rise test width) Tr used to determine the clogging point can be selected as appropriate depending on the type of sample liquid, etc., but is usually 0 to 1.0°C.
It is preferable to set the value within the range of 0.001 to 0.000, thereby making it possible to accurately measure the clogging point. Therefore, according to the present invention, the clogging point can be measured regardless of whether or not the sample liquid 2 in the suction tube 4 returns to the cell 1 when the suction is released. It is also possible to accurately and automatically measure clogging points such as the following. In addition, in the above embodiment, the temperature detector 11
Although the clogging point was measured only by detecting the temperature change of the sample liquid 2 passing through the filter 5, a liquid level detector 10 was provided as in the clogging point meter shown in FIG. The clogging point may be measured by appropriately combining the signal from the temperature detector 11 and the signal from the liquid level detector 10 depending on the type of the liquid. Next, the effects of the present invention will be specifically illustrated through experimental examples. Experimental Example Using the clogging point meter shown in FIG. 1, the clogging point (CFPP) of light oil (samples A to C) to which a pour point depressant was added was measured by the above-described method of the present invention. In this case, the temperature rise detection width Tr is 0°C,
The sample liquid temperature Ts at the start of the measurement was 0°C, the measurement interval Tw was 1°C, and the suction time j was 60 seconds (see Figure 2). In addition, for comparison, a manual analysis method using the filtration clogging point test method based on 1P-309 and a third
The clogging points of the same samples were measured using the above-described liquid level detection method using the conventional clogging point meter shown in the figure. The results are shown in Table 1.

【表】 第1表の結果より、本発明方法による測定値は
手分析値とよく合致し、従つて本発明によれば流
動点降下剤を添加した軽油の目づまり点を正確に
測定し得ることが認められる。これに対し、従来
の液面検出法で検出した場合は、目づまり点が手
分析値より著しく低い値として検出されるもので
あつた。 発明の効果 以上説明したように、本発明に係る目づまり点
の測定方法によれば、通常の軽油、A重油のみな
らず、これらに流動点降下剤が添加されている場
合でもその目づまり点を正確に測定し得、このよ
うな流動点降下剤を含むサンプルの目づまり点と
して手分析値とほぼ等しい測定値を得ることがで
きるものである。
[Table] From the results in Table 1, the measured values obtained by the method of the present invention agree well with the manual analysis values, and therefore, according to the present invention, the clogging point of light oil to which a pour point depressant has been added can be accurately measured. It is recognized that On the other hand, when detected using the conventional liquid level detection method, the clogging point was detected as a significantly lower value than the manual analysis value. Effects of the Invention As explained above, according to the method for measuring the clogging point according to the present invention, the clogging point can be measured not only for ordinary light oil and A heavy oil but also for cases where a pour point depressant is added to these oils. It is possible to accurately measure the clogging point of a sample containing such a pour point depressant, and to obtain a measurement value that is almost the same as a manual analysis value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に用いる目づまり点計の
一例を示す一部断面概略図、第2図は本発明方法
の測定原理を示すグラフ、第3図は従来の目づま
り点計を示す一部断面概略図である。 1……測定セル、2……サンプル液、3……冷
却器、4……吸引管、5……フイルタ、6……吸
引機構。
Fig. 1 is a partial cross-sectional schematic diagram showing an example of a clogging point meter used in carrying out the present invention, Fig. 2 is a graph showing the measurement principle of the method of the present invention, and Fig. 3 shows a conventional clogging point meter. It is a partial cross-sectional schematic diagram. 1... Measurement cell, 2... Sample liquid, 3... Cooler, 4... Suction tube, 5... Filter, 6... Suction mechanism.

Claims (1)

【特許請求の範囲】[Claims] 1 測定セル内のサンプル液を冷却装置により所
定冷却速度で冷却し、かつこのサンプル液中に先
端部にフイルタを取り付けた吸引管を挿入すると
共に、測定セル内のサンプル液を間欠的に上記フ
イルタを通して吸引管内に所定吸引圧で所定時間
吸引し、所定量のサンプル液がフイルタを通過し
た時には吸引を解除し、吸引管内のサンプル液を
測定セル内に戻すと共に、このサンプル液のフイ
ルタ通過とサンプル液の温度との関係から目づま
り点を検出する目づまり点の測定方法において、
吸引時にフイルタを通過するサンプル液の温度上
昇量を検出し、この温度上昇量が所定量以下にな
つた時のサンプル液の温度を目づまり点とするよ
うにしたことを特徴とする目づまり点の測定方
法。
1. The sample liquid in the measurement cell is cooled at a predetermined cooling rate by a cooling device, and a suction tube with a filter attached to the tip is inserted into the sample liquid, and the sample liquid in the measurement cell is intermittently passed through the filter. When a predetermined amount of sample liquid has passed through the filter, the suction is released and the sample liquid in the suction tube is returned to the measurement cell, and the sample liquid passes through the filter and the sample is removed. In the clogging point measurement method, which detects the clogging point from the relationship with the temperature of the liquid,
A clogging point characterized in that the temperature rise of the sample liquid passing through the filter during suction is detected, and the temperature of the sample liquid when this temperature rise falls below a predetermined amount is set as the clogging point. How to measure.
JP31452086A 1986-12-27 1986-12-27 Measuring method for clogging point Granted JPS63167257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31452086A JPS63167257A (en) 1986-12-27 1986-12-27 Measuring method for clogging point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31452086A JPS63167257A (en) 1986-12-27 1986-12-27 Measuring method for clogging point

Publications (2)

Publication Number Publication Date
JPS63167257A JPS63167257A (en) 1988-07-11
JPH0421135B2 true JPH0421135B2 (en) 1992-04-08

Family

ID=18054269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31452086A Granted JPS63167257A (en) 1986-12-27 1986-12-27 Measuring method for clogging point

Country Status (1)

Country Link
JP (1) JPS63167257A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130042305A (en) * 2011-10-18 2013-04-26 삼성디스플레이 주식회사 Laser crystallization apparatus and laser crystallizatio method using the same
KR20180003496A (en) * 2017-12-19 2018-01-09 삼성디스플레이 주식회사 Laser crystallization apparatus and laser crystallizatio method using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2662863B2 (en) * 1987-04-09 1997-10-15 京セラ株式会社 Method for producing silicon nitride based sintered body
AT515081B1 (en) * 2014-02-20 2015-06-15 Anton Paar Provetec Gmbh Method for setting the temperature and temperature control tank

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130042305A (en) * 2011-10-18 2013-04-26 삼성디스플레이 주식회사 Laser crystallization apparatus and laser crystallizatio method using the same
KR101865222B1 (en) * 2011-10-18 2018-06-08 삼성디스플레이 주식회사 Laser crystallization apparatus and laser crystallizatio method using the same
KR20180003496A (en) * 2017-12-19 2018-01-09 삼성디스플레이 주식회사 Laser crystallization apparatus and laser crystallizatio method using the same
KR101865224B1 (en) * 2017-12-19 2018-06-08 삼성디스플레이 주식회사 Laser crystallization apparatus and laser crystallizatio method using the same

Also Published As

Publication number Publication date
JPS63167257A (en) 1988-07-11

Similar Documents

Publication Publication Date Title
US6119533A (en) Sampling system with selectable pumps to communicate with reading station
PL306731A1 (en) Automated device for aspirating and metering a fluid sample
US4426878A (en) Viscosimeter
CN107796843B (en) Automatic condensation detector using micro-pressure tilting method
WO1995030899A1 (en) Fluid analyser
CN205679501U (en) A kind of capillary viscosimeter apparatus for automatically measuring of system
US4807464A (en) Leak detector apparatus and method
US4184359A (en) Gas monitor for liquid flow line
JPH0421135B2 (en)
JP2570677B2 (en) Liquid level meter
US4055986A (en) Basic sediment and water measurement
JPS6250651A (en) Method and device for measuring turbidity point and pour point of liquid
JP2005055446A (en) Method of detecting gas bubbles in liquid
JPS589050A (en) Method and apparatus for measuring content of endotoxin
US4105334A (en) Optical detector
JP2721620B2 (en) Dispensing device with blockage detection function
FI95750C (en) Method and apparatus for measuring the cloud point of oil
CN217033723U (en) Pour point and condensation point measuring device
US4484821A (en) Method and apparatus for determining the no-flow temperature of a liquid
CN114563439A (en) Pour point and condensation point measuring device
JPS62502777A (en) Method for continuous measurement of viscosity of liquid and apparatus for carrying out this method
CN207623177U (en) A kind of desorption analyzer for unconventional oil and gas resource exploration
JPH0532737Y2 (en)
CN217820115U (en) Device for determining cloud point of petroleum product
CN208984563U (en) A kind of condensation point experimental rig of the novel metal cryostat based on mercury switch control