JPH05327360A - Constant current circuit - Google Patents

Constant current circuit

Info

Publication number
JPH05327360A
JPH05327360A JP3367891A JP3367891A JPH05327360A JP H05327360 A JPH05327360 A JP H05327360A JP 3367891 A JP3367891 A JP 3367891A JP 3367891 A JP3367891 A JP 3367891A JP H05327360 A JPH05327360 A JP H05327360A
Authority
JP
Japan
Prior art keywords
operational amplifier
resistor
load
constant current
input terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3367891A
Other languages
Japanese (ja)
Other versions
JP3066092B2 (en
Inventor
Hiromichi Tomura
宏通 戸村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N F KAIRO SEKKEI BLOCK KK
Original Assignee
N F KAIRO SEKKEI BLOCK KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N F KAIRO SEKKEI BLOCK KK filed Critical N F KAIRO SEKKEI BLOCK KK
Priority to JP3033678A priority Critical patent/JP3066092B2/en
Publication of JPH05327360A publication Critical patent/JPH05327360A/en
Application granted granted Critical
Publication of JP3066092B2 publication Critical patent/JP3066092B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain stable and high-accuracy characteristics by feeding voltages, which are generated at both of the terminals of a resistor, back to the input side of an operational amplifier with a load connected to the output side of the operational amplifier and a current flowing to the serially connected resistor. CONSTITUTION:An input signal source Ei is connected between the inverted input terminal of an operational amplifier 11 and the ground. One side of the joint of a serially connected resistor (r) is connected to a load Z connected to the output side of the operational amplifier 11, and the other side of the resistor (r) is connected to the non-inverted input terminal of the operational amplifier 11. The voltages [(r) and Iz] generated at both of the terminals of the resistor (r) are fed back to the input side of the operational amplifier 11. Thus, a load current Iz to flow to the load Z as a feedback signal reference is exactly detected, and error components are eliminated. Since the bias current of the operational amplifier 11 flows from a voltage source to the ground, it does not flow to the resistor (r) and does not become the error component, either. Thus, the stable and high-accuracy constant current circuit can be provided.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、定電流回路に関し、特
に安定且つ高精度動作が可能な定電流回路に関する。 【0002】 【従来の技術】オペアンプを用いた定電流回路として
は、安定性および設計の容易性の面から各種構成の回路
が提案、実用化されている。例えば、図2と図3には負
荷がフロート状態にある、いわゆるフローティング型の
定電流回路例が示されている。図2に示す回路は逆相ア
ンプ型回路、図3に示す回路は同相アンプ型回路であ
り、オペアンプ21と31への入力信号源Eiの接続構
成に違いがあるのみで、実質的動作、構成は同じであ
る。 【0003】図2と図3に示す定電流回路において、オ
ペアンプ21,31の反転入力端子に接続されている抵
抗rに流れる電流Iは、帰還インピーダンス(負荷)Z
を流れ、 I=Ei/r で表され、定電流特性が得られる。図2や図3のフロー
ティング型回路では、上述のように定電流特性が得られ
るが、負荷Zが片端接地されている場合には定電流動作
が得られない。 【0004】そこで、負荷片端が接地されている場合の
定電流回路として図4に示すような回路が使用されてい
る。図4において、オペアンプ41の反転入力端子に
は、抵抗R1を介して入力信号源Eiが接続され、非反
転入力端子には抵抗R3が接続されている。オペアンプ
41の出力には、抵抗rと負荷Zが直列接続され、その
接続点とオペアンプ41の非反転入力端子間には抵抗R
4が、オペアンプの出力端子と反転入力端子間には抵抗
R2が接続されている。この回路は、出力電流に比例す
る電圧を正帰還させて定電流特性を得るもので、抵抗R
1〜R4間に R1/R2=R3/R4 …(1) の関係が維持されていることが定電流動作の条件とな
る。 【0005】このように、図4に示す定電流回路では、
抵抗R1〜R4の間に(1)式の関係が必須であるが、
抵抗特性の経時変化等に起因して(1)式の関係を長期
間にわたって安定に維持することは非常に困難である。 【0006】図5には、電源をフロートさせる型の他の
定電流回路構成が示されている。図5において、オペア
ンプ51には、電圧源V1とV2により2電源(バイア
ス)が供給されている。また、オペアンプ51の非反転
入力端子には抵抗R1を介して入力信号源Eiが供給さ
れており、反転入力端子は接地されている。オペアンプ
51の出力と電圧源V1とV2の接続点間には負荷Zと
抵抗rの直列回路が接続され、抵抗rの両端部は、図示
の如く、オペアンプ51の非反転入力端子と反転入力端
子は抵抗R2を介して接続されている。 【0007】また、図5の回路の変形例が図6に示す回
路である。図6に示す回路は、オペアンプ51の入力側
の接続構成、特に入力信号源Eiの接続構成を変えた例
である。つまり、オペアンプ51の非反転入力端子は、
抵抗R1を介して接地され、反転入力端子と接地間に入
力信号源Eiが接続されている。 【0008】 【発明が解決しようとする課題】しかしながら、以上の
ような図5と図6に示す定電流回路には次のような問題
点がある。つまり、本来、負荷Zに流れる電流Izが帰
還すべき情報を検出する抵抗rに流れる電流と一致する
ことが定電流特性の基本となるが、図5の回路では、抵
抗rに流れる電流は、負荷Zに流れる電流Izから、入
力信号源、抵抗R1、抵抗R2および抵抗rを通って流
れる電流Iiを減じた(IzーIi)となるので、誤差
成分が生じ、正しい定電流動作が得られない。また、抵
抗rには、上記電流(Iz−Ii)の他にオペアンプを
貫通して図の点線経路を流れるバイアス電流も流れ、誤
差成分がより大きくなる。 【0009】また、図6の回路においても、抵抗rに流
れる電流は、負荷に流れる電流Izだけでなく、入力信
号源Eiに起因して流れる電流Iiが存在するため、同
様に誤差が生じ、安定な定電流特性を損なう。このよう
に、図5や図6に示す従来の定電流回路では、定電流動
作に必要な負荷電流の検出が正確ではないため、安定且
つ高精度な定電流特性が得られないという問題がある。 【0010】そこで、本発明の目的は、正確な負荷電流
を検出し、安定且つ高精度な定電流特性が得られる定電
流回路を提供することにある。 【0011】 【課題を解決するための手段】前述の課題を解決するた
め、本発明による定電流回路は、オペアンプの出力側に
接続された負荷と直列に接続された抵抗に流れる電流に
よって両端に生ずる電圧を前記オペアンプの入力側に帰
還する定電流回路において、前記オペアンプの反転入力
端子には入力信号源が接続され、前記負荷との接続点で
ある前記抵抗の−側が接地されるとともに、前記抵抗の
他側が前記オペアンプの非反転入力端子に接続される。 【0012】 【作用】本発明では、オペアンプの反転入力端子には入
力信号源が接続され、オペアンプの出力側に接続された
負荷と直列に接続されている抵抗の接続点である−側が
接地され、抵抗の他側がオペアンプの非反転入力端子に
接続され、上記抵抗の両端に生ずる電圧をオペアンプの
入力側に帰還することにより、安定且つ高精度な定電流
特性を得ている。 【0013】 【実施例】次に、本発明について図面を参照しながら説
明する。図1は、本発明による定電流回路の一実施例を
示す回路図である。図1に示す回路において、オペアン
プ11の反転入力端子と接地間に入力信号源Eiが接続
されている。オペアンプ11の出力端子と電圧源V1と
V2の接続点間には負荷Zと抵抗rの直列回路が接続さ
れ、抵抗rと負荷Zの−つの接続点は接地され、抵抗r
の他の接続点がオペアンプ11の非反転入力端子に接続
されている。 【0014】図1において、オペアンプ11の反転入力
端子と抵抗rの他の接続点間の電圧をE2とし、負荷Z
に流れる電流(抵抗rを流れる電流)をIzとし、オペ
アンプ11のゲインをAとすると、 E2=Ei+r・Iz …(2) E2(−A)=Iz(Z+r) …(3) となる。(2)式と(3)式を用いて、負荷電流Izを
求めると、 Iz=−Ei/(r+(r+Z)/A) =−(Ei/r)・(1/(1+(1+Z/r)/A) …(4 ) が得られる。ゲインAを無限大とすれば、結局 Iz=−Ei/r …(5) となる。 【0015】このように、図1に示す実施例回路におけ
る負荷に流れる負荷電流Izは、抵抗rに流れるので、
図5や図6に示すように帰還電流を検出する検出抵抗r
に入力源からの電流成分が流入して誤差成分となること
がない。また、オペアンプ11を流れるバイアス電流
は、電圧源から接地に流れるので、抵抗rには流入せず
誤差成分となることもない。 【0016】 【発明の効果】以上説明したように、本発明による定電
流回路によれば帰還信号基準となる負荷に流れる負荷電
流を正確に検出でき、他の誤差成分がなくなるので、高
精度な定電流特性が得られる。また、図4に示す定電流
回路のように入力側抵抗、帰還抵抗等の抵抗間の制約が
ないので長時間にわたる安定動作が可能となる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a constant current circuit, and more particularly to a constant current circuit capable of stable and highly accurate operation. As a constant current circuit using an operational amplifier, circuits having various configurations have been proposed and put into practical use in terms of stability and ease of design. For example, FIGS. 2 and 3 show examples of so-called floating type constant current circuits in which the load is in a floating state. The circuit shown in FIG. 2 is an anti-phase amplifier type circuit, and the circuit shown in FIG. 3 is an in-phase amplifier type circuit. Only the connection configuration of the input signal source Ei to the operational amplifiers 21 and 31 is different, and the actual operation and configuration are the same. Are the same. In the constant current circuit shown in FIGS. 2 and 3, the current I flowing through the resistor r connected to the inverting input terminals of the operational amplifiers 21 and 31 is the feedback impedance (load) Z.
, I = Ei / r, and constant current characteristics are obtained. In the floating type circuit of FIGS. 2 and 3, the constant current characteristic is obtained as described above, but the constant current operation cannot be obtained when the load Z is grounded at one end. Therefore, a circuit as shown in FIG. 4 is used as a constant current circuit when one end of the load is grounded. In FIG. 4, the inverting input terminal of the operational amplifier 41 is connected to the input signal source Ei via the resistor R1, and the non-inverting input terminal is connected to the resistor R3. A resistor r and a load Z are connected in series to the output of the operational amplifier 41, and a resistor R is provided between the connection point and the non-inverting input terminal of the operational amplifier 41.
4, a resistor R2 is connected between the output terminal and the inverting input terminal of the operational amplifier. This circuit obtains constant current characteristics by positively feeding back a voltage proportional to the output current.
The condition for constant current operation is that the relationship of R1 / R2 = R3 / R4 (1) is maintained between 1 and R4. As described above, in the constant current circuit shown in FIG.
Although the relationship of the expression (1) is essential between the resistors R1 to R4,
It is very difficult to maintain the relationship of the expression (1) stable for a long period of time due to the change in resistance characteristics with time. FIG. 5 shows another constant current circuit configuration of a type in which the power supply is floated. In FIG. 5, the operational amplifier 51 is supplied with two power supplies (bias) by the voltage sources V1 and V2. The input signal source Ei is supplied to the non-inverting input terminal of the operational amplifier 51 via the resistor R1, and the inverting input terminal is grounded. A series circuit of a load Z and a resistor r is connected between the output of the operational amplifier 51 and the connection point of the voltage sources V1 and V2, and both ends of the resistor r are connected to the non-inverting input terminal and the inverting input terminal of the operational amplifier 51 as shown in the figure. Are connected via a resistor R2. A modification of the circuit shown in FIG. 5 is the circuit shown in FIG. The circuit shown in FIG. 6 is an example in which the connection configuration on the input side of the operational amplifier 51, in particular, the connection configuration of the input signal source Ei is changed. That is, the non-inverting input terminal of the operational amplifier 51 is
It is grounded via a resistor R1 and an input signal source Ei is connected between the inverting input terminal and ground. However, the constant current circuit shown in FIGS. 5 and 6 has the following problems. That is, basically, the basic of constant current characteristics is that the current Iz flowing through the load Z matches the current flowing through the resistor r that detects the information to be fed back. However, in the circuit of FIG. 5, the current flowing through the resistor r is Since the current Ii flowing through the load Z, the current Ii flowing through the input signal source, the resistor R1, the resistor R2, and the resistor r is subtracted (Iz-Ii), an error component occurs and a correct constant current operation can be obtained. Absent. In addition to the above current (Iz-Ii), a bias current that flows through the operational amplifier and flows along the dotted line in the figure also flows through the resistor r, and the error component becomes larger. Also in the circuit of FIG. 6, the current flowing through the resistor r is not only the current Iz flowing through the load but also the current Ii flowing due to the input signal source Ei. Stable constant current characteristics are impaired. As described above, in the conventional constant current circuit shown in FIGS. 5 and 6, since the load current required for the constant current operation is not accurately detected, stable and highly accurate constant current characteristics cannot be obtained. . Therefore, an object of the present invention is to provide a constant current circuit capable of detecting an accurate load current and obtaining stable and highly accurate constant current characteristics. In order to solve the above-mentioned problems, the constant current circuit according to the present invention has a load connected to the output side of an operational amplifier and a load connected in series with a resistor connected in series. In a constant current circuit for feeding back the generated voltage to the input side of the operational amplifier, an input signal source is connected to the inverting input terminal of the operational amplifier, and the − side of the resistor, which is a connection point with the load, is grounded, and The other side of the resistor is connected to the non-inverting input terminal of the operational amplifier. According to the present invention, the input signal source is connected to the inverting input terminal of the operational amplifier, and the negative side, which is the connection point of the resistor connected in series with the load connected to the output side of the operational amplifier, is grounded. The other side of the resistor is connected to the non-inverting input terminal of the operational amplifier, and the voltage generated across the resistor is fed back to the input side of the operational amplifier to obtain stable and highly accurate constant current characteristics. Next, the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram showing an embodiment of a constant current circuit according to the present invention. In the circuit shown in FIG. 1, an input signal source Ei is connected between the inverting input terminal of the operational amplifier 11 and the ground. A series circuit of the load Z and the resistor r is connected between the output terminal of the operational amplifier 11 and the connection point of the voltage sources V1 and V2, and the negative connection point of the resistor r and the load Z is grounded and the resistor r is connected.
The other connection point is connected to the non-inverting input terminal of the operational amplifier 11. In FIG. 1, the voltage between the inverting input terminal of the operational amplifier 11 and the other connection point of the resistor r is E2, and the load Z
When the current flowing through (current flowing through the resistor r) is Iz and the gain of the operational amplifier 11 is A, E2 = Ei + r · Iz (2) E2 (−A) = Iz (Z + r) (3) When the load current Iz is calculated using the equations (2) and (3), Iz = -Ei / (r + (r + Z) / A) =-(Ei / r). (1 / (1+ (1 + Z / r ) / A) (4) is obtained, and if the gain A is infinite, then Iz = -Ei / r (5) Finally, in the embodiment circuit shown in FIG. Since the load current Iz flowing through the load flows through the resistor r,
As shown in FIGS. 5 and 6, the detection resistor r for detecting the feedback current
The current component from the input source does not flow into and does not become an error component. Further, since the bias current flowing through the operational amplifier 11 flows from the voltage source to the ground, it does not flow into the resistor r and does not become an error component. As described above, according to the constant current circuit of the present invention, the load current flowing through the load serving as the feedback signal reference can be accurately detected, and other error components are eliminated. Constant current characteristics can be obtained. Further, unlike the constant current circuit shown in FIG. 4, there is no restriction between resistors such as input side resistors and feedback resistors, so that stable operation for a long time becomes possible.

【図面の簡単な説明】 【図1】本発明による定電流回路の一実施例を示す回路
図である。 【図2】〜 【図6】従来の定電流回路例を示す回路図である。 【符号の説明】 11,21,31,41,51 オペアンプ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram showing an embodiment of a constant current circuit according to the present invention. 2 to 6 are circuit diagrams showing an example of a conventional constant current circuit. [Explanation of Codes] 11, 21, 31, 41, 51 Operational Amplifier

Claims (1)

【特許請求の範囲】 オペアンプの出力側に接続された負荷と直列に接続され
た抵抗に流れる電流によって両端に生ずる電圧を前記オ
ペアンプの入力側に帰還する定電流回路において、 前記オペアンプの反転入力端子には入力信号源が接続さ
れ、前記負荷との接続点である前記抵抗の−側が接地さ
れるとともに、前記抵抗の他側が前記オペアンプの非反
転入力端子に接続されて成ることを特徴とする定電流回
路。
Claim: What is claimed is: 1. A constant current circuit for feeding back to an input side of an operational amplifier a voltage generated at both ends thereof by a current flowing through a resistor connected in series with a load connected to the output side of the operational amplifier, the inverting input terminal of the operational amplifier Is connected to an input signal source, the − side of the resistor, which is a connection point with the load, is grounded, and the other side of the resistor is connected to the non-inverting input terminal of the operational amplifier. Current circuit.
JP3033678A 1991-02-01 1991-02-01 Constant current circuit Expired - Lifetime JP3066092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3033678A JP3066092B2 (en) 1991-02-01 1991-02-01 Constant current circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3033678A JP3066092B2 (en) 1991-02-01 1991-02-01 Constant current circuit

Publications (2)

Publication Number Publication Date
JPH05327360A true JPH05327360A (en) 1993-12-10
JP3066092B2 JP3066092B2 (en) 2000-07-17

Family

ID=12393104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3033678A Expired - Lifetime JP3066092B2 (en) 1991-02-01 1991-02-01 Constant current circuit

Country Status (1)

Country Link
JP (1) JP3066092B2 (en)

Also Published As

Publication number Publication date
JP3066092B2 (en) 2000-07-17

Similar Documents

Publication Publication Date Title
JPS62245503A (en) Magnetic record detection circuit
JPH0351118B2 (en)
US4437023A (en) Current mirror source circuitry
US5157322A (en) PNP transistor base drive compensation circuit
JPH0544845B2 (en)
JPH0344447B2 (en)
JP2704245B2 (en) Reference voltage generation circuit
JP2876854B2 (en) Potential detection circuit
US4217555A (en) Amplifier circuit arrangement with stabilized power-supply current
US4644253A (en) Voltage reference source with true ground sensing and force-sense outputs referred thereto
US4612513A (en) Differential amplifier
JP3066092B2 (en) Constant current circuit
KR900000103B1 (en) Differential amplifier
JPS58117730A (en) Output stage for integrated ecl circuit
EP0384710B1 (en) Amplifier circuit operable at low power source voltage
JPS6359009A (en) Current source type output circuit
KR100355381B1 (en) Current-controlled power amplifier
JP2938657B2 (en) Current detection circuit
JP2596125Y2 (en) Operational amplifier circuit
JP2969665B2 (en) Bias voltage setting circuit
JP2722769B2 (en) Gain control circuit
JPH0666649B2 (en) Hysteresis comparator
KR960013746B1 (en) Current detection circuit
JPH0216042B2 (en)
JP3547895B2 (en) Constant current generation circuit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080512

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090512

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100512

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100512

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110512

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11