JPH05326649A - Anode coupling system and electrode wiring method - Google Patents

Anode coupling system and electrode wiring method

Info

Publication number
JPH05326649A
JPH05326649A JP13025992A JP13025992A JPH05326649A JP H05326649 A JPH05326649 A JP H05326649A JP 13025992 A JP13025992 A JP 13025992A JP 13025992 A JP13025992 A JP 13025992A JP H05326649 A JPH05326649 A JP H05326649A
Authority
JP
Japan
Prior art keywords
electrode
heating
substrate
anodic bonding
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13025992A
Other languages
Japanese (ja)
Inventor
Sadatsugu Miura
禎次 三浦
Yoshio Maeda
佳男 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP13025992A priority Critical patent/JPH05326649A/en
Publication of JPH05326649A publication Critical patent/JPH05326649A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To realize highly reliable coupling by providing a pair of heating/ power supply electrodes having a flat plane contacting with an object to be coupled thereby heating the object uniformly. CONSTITUTION:An object to be coupled is placed on a lower electrode 22 and an upper electrode 21 is lowered, and then power is fed to a sheath heater while holding the object between the electrodes 21, 22 thus heating the object. Upper and lower temperature control sections 11, 12 are provided independently in order to heat an anode coupling jig through a small sheath heater while controlling the temperature by means of a temperature detecting thermocouple. A copper heating part is heated through embedded PID control and in order to transmit heat produced from heating sections 23, 24 effectively to an object to be coupled, thermal capacity at power supply sections 27, 28 is lowered and copper having high thermal conductivity is employed. Furthermore, heat insulating materials 30, 31 are placed between the electrodes and housing in order to suppress heat transmission loss.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、陽極接合技術を応用し
た小型センサやアクチュエータなどの回路製造方法に関
するもので、いわゆるマイクロマシニング技術に応用さ
れるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circuit manufacturing method for small sensors, actuators and the like to which anodic bonding technology is applied, and is applied to so-called micromachining technology.

【0002】[0002]

【従来の技術】マイクロマシニング技術は、従来のメカ
ニカル技術の概念を革新し、極限技術の実用化に向けて
開発が進められている。その技術分野を形成するのは半
導体製造技術で培われた異方性エッチング技術や、陽極
接合技術はたまた原子レベルでの物質の移動を可能とす
るような技術まで幅広く検討されている。しかしその反
面製品実用化のため、従来の技術を日経エレクトロニク
スNo.480P150−152(’89 8.21)
に示すように、多くの技術課題を有していた。すなわち
陽極接合技術においては、その一例を図6に示すごと
く、片側ヒータ構造による平板電極と針電極による陽極
接合装置であり、該陽極接合装置は簡素な構造でありな
がら、陽極接合のための被接合物同士の熱膨張係数が、
接合温度(高温)から室温領域まで揃った物であれば陽
極接合可能であった。しかし該陽極接合装置では、ヒー
タに接する被接合物表面温度と被接合物の自由表面との
温度差が大きく接合終了後の接合物には残留応力を生じ
ていた。また陽極接合方法では、被接合物同士の界面に
僅かでも凹凸があると陽極接合出来なかった。このた
め、電極配線のための金属薄膜などが一部分にでも存在
すると、前記電極の周辺に応力が集中して発生し、陽極
接合の強度は著しく低下し信頼性のある接合強度は得ら
れなかった。
2. Description of the Related Art Micromachining technology is being developed for the practical application of the ultimate technology by innovating the concept of conventional mechanical technology. Anisotropic etching technology that has been cultivated in semiconductor manufacturing technology and anodic bonding technology, which form the technical field of the technology, and technology that enables the movement of substances at the atomic level, have been widely studied. However, on the other hand, in order to put the product into practical use, the conventional technology was changed to Nikkei Electronics No. 480P150-152 ('89 8.21)
As shown in, there are many technical problems. That is, in the anodic bonding technique, as shown in FIG. 6, an anodic bonding device having a flat plate electrode and a needle electrode with a one-sided heater structure is used. The thermal expansion coefficient of the joints is
Anodic bonding was possible as long as the materials had a uniform bonding temperature (high temperature) to room temperature. However, in the anodic bonding apparatus, the temperature difference between the surface temperature of the object to be contacted with the heater and the free surface of the object to be bonded was large, and residual stress was generated in the object after bonding was completed. Further, in the anodic bonding method, anodic bonding could not be performed if there were even irregularities on the interface between the objects to be bonded. Therefore, if a metal thin film for electrode wiring is present even in a part, stress is concentrated around the electrodes, the strength of anodic bonding is significantly reduced, and reliable bonding strength cannot be obtained. .

【0003】また層間を相互結線する電極配線の密度は
低く、実装密度が上げられないという欠点を有してい
た。
Further, the density of the electrode wiring connecting the layers to each other is low, and there is a drawback that the packaging density cannot be increased.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来の陽極
接合装置で発生していた温度分布に起因する残留応力の
低減とそれに伴う陽極接合強度の増加あるいは陽極接合
条件の緩和を図るものであり、また陽極接合物質間の電
気配線を可能とするものである。
SUMMARY OF THE INVENTION The present invention is intended to reduce the residual stress caused by the temperature distribution generated in the conventional anodic bonding apparatus and increase the anodic bonding strength or alleviate the anodic bonding conditions. It also enables electrical wiring between anodic bonding materials.

【0005】[0005]

【課題を解決するための手段】本発明は、被接合物に生
じる温度分布を低減するために、被接合物質に両側から
接する電熱加熱手段を備えるもので、平板面電極におけ
る均一電界により残留応力の少ない接合を得るものであ
る。さらにまた、陽極接合工程にて印加する高電圧によ
る放電現象を活用し、被接合物質のそれぞれの面に配線
される電極配線の相互結線を行うものである。
The present invention comprises an electrothermal heating means for contacting the material to be bonded from both sides in order to reduce the temperature distribution generated in the material to be bonded. This is to obtain a bond with little loss. Furthermore, the discharge phenomenon due to the high voltage applied in the anodic bonding step is utilized to interconnect the electrode wirings on the respective surfaces of the materials to be bonded.

【0006】[0006]

【実施例】以下本発明の詳細を実施例に説明する。EXAMPLES Details of the present invention will be described below with reference to examples.

【0007】(実施例1)本発明による陽極接合装置の
ブロック図を図1に示す。また陽極接合治具の機能部を
図2に示す。被接合物1と接触する上部加熱・給電電極
21及び下部加熱・給電電極22はシースヒータ25、
26を内蔵する加熱部23、24と前記被接合物に電圧
を印加するための給電部27、28とからなり、被接合
物と接する給電部の表面は平面状となっている。前記下
部電極(加熱・給電電極を電極と略称する)22の上に
被接合物1を設置し、エアシリンダ29を作動して前記
上部電極21を下降し、前記被接合物を挟持した後、前
記シースヒータに通電し、前記電極による前記被接合物
を所定の温度まで加熱する。陽極接合のサイクルタイム
を最短化するためには短時間での急速加熱とリップルの
少ない安定した温度制御とが必要になる。このため、上
部温度制御部11と下部温度制御部12とを独立に設
け、温度検出用熱電対による温度管理をしながら容量3
00Wの小型シースヒータによる陽極接合治具の加熱を
行う。銅またはアルミニウムからなる前記加熱部に埋め
込みPID制御による加熱を行い、この加熱部23、2
4で発生する熱を、有効に被接合物1に伝えるために、
前記給電部27、28の熱容量を小さく(薄型設計)
し、熱伝導性の良い材料として銅やアルミニウムまたは
セラミックスを使用する。
Example 1 A block diagram of an anodic bonding apparatus according to the present invention is shown in FIG. The functional part of the anodic bonding jig is shown in FIG. The upper heating / feeding electrode 21 and the lower heating / feeding electrode 22 that come into contact with the article 1 are the sheath heater 25,
It comprises heating parts 23 and 24 containing 26 and power feeding parts 27 and 28 for applying a voltage to the object to be joined, and the surface of the power feeding part in contact with the object to be joined is flat. After the article to be joined 1 is placed on the lower electrode (the heating / power feeding electrode is abbreviated as an electrode) 22, the air cylinder 29 is operated to move down the upper electrode 21 to sandwich the article to be joined, The sheath heater is energized to heat the object to be joined by the electrode to a predetermined temperature. In order to minimize the cycle time of anodic bonding, rapid heating in a short time and stable temperature control with less ripple are required. For this reason, the upper temperature control unit 11 and the lower temperature control unit 12 are provided independently, and the capacitance 3 is controlled while the temperature is controlled by the temperature detecting thermocouple.
The anodic bonding jig is heated by a small 00 W sheath heater. The heating portion made of copper or aluminum is embedded and heated by PID control.
In order to effectively transfer the heat generated in 4 to the object to be welded 1,
The heat capacity of the power supply parts 27 and 28 is small (thin design)
However, copper, aluminum, or ceramics is used as a material having good thermal conductivity.

【0008】また、外匡への熱伝導損失を極力防止する
ために、前記電極と外匡との間に断熱性材料30、31
を使用する。ここでは、熱伝導性の低い快削性セラミッ
クスを使用した。
Further, in order to prevent heat conduction loss to the outer casing as much as possible, heat insulating materials 30 and 31 are provided between the electrodes and the outer casing.
To use. Here, free-cutting ceramics having low thermal conductivity was used.

【0009】被接合物として直径3インチのシリコンウ
エハとホウ珪酸ガラスとを陽極接合するために、温度を
250〜300℃に設定し、電源14の電圧を直流30
0ボルトに設定し、昇温工程・接合工程で10分の所用
時間によりガラスの破壊強度を越える接合強度を得るこ
とが出来た。
In order to perform anodic bonding of a silicon wafer having a diameter of 3 inches as a material to be bonded and borosilicate glass, the temperature is set to 250 to 300 ° C. and the voltage of the power supply 14 is set to direct current 30.
It was possible to obtain a bonding strength exceeding the breaking strength of glass by setting it to 0 volt and taking 10 minutes for the temperature raising step and the bonding step.

【0010】前記接合電圧を越える高い電圧での接合を
行うためには、前記加熱部と電圧印加部との間に、さら
に高耐圧の絶縁体32が必要になる。このため、前記加
熱部と前記給電部との間に絶縁性セラミックス板を設置
する。その配置場所は、接合治具の上部下部のどちら側
でもよいが、図に示すように上部側に配置することによ
り、伝導加熱と対流加熱との、被接合物の加熱に支配的
な役割を果たす下側加熱電極を効率良く機能させること
が出来る。これによりITO薄膜を接合膜としたサファ
イアガラス同士の陽極接合を、1、000ボルトの高電
圧を印加して接合できた。
In order to carry out the joining at a high voltage exceeding the joining voltage, an insulator 32 having a higher breakdown voltage is required between the heating section and the voltage applying section. Therefore, an insulating ceramic plate is installed between the heating unit and the power feeding unit. The location may be on either side of the upper and lower parts of the joining jig, but by placing it on the upper side as shown in the figure, it plays a dominant role in heating the objects to be joined, that is, conductive heating and convection heating. The lower heating electrode can be efficiently functioned. As a result, the anodic bonding between the sapphire glasses using the ITO thin film as the bonding film could be bonded by applying a high voltage of 1,000 volts.

【0011】(実施例2)本発明による陽極接合中の電
極配線方法を説明する。ここでは被接合物として、エッ
チングにより形成した立体形状と電極配線を有する、直
径4インチのシリコンウエハとホウ珪酸ガラス基板とか
らなる。これらの前記被接合物は、洗浄後にアライメン
ト・仮接合し、前記陽極接合治具の下部電極上にセット
する。上部電極を下降し前記被接合物を挟持した後、前
記シースヒータを通電し、約3分にて300℃の温度ま
で昇温する。被接合物の温度が安定したところで前記上
部及び下部の電極間に600ボルトの直流電圧を印加す
る。電圧印加直後、図3に示すように、シリコン基板側
から正イオンが注入し、一方ホウ珪酸ガラス基板のシリ
コン基板と対する面には負イオンが誘起され、前記ホウ
珪酸ガラス基板と前記シリコン基板とは静電気力により
吸引し合う。また高温下で前記ホウ珪酸ガラスの電気抵
抗は低下し電気伝導性となるため、前記ホウ珪酸ガラス
基板と前記シリコン基板との未接合界面にはそれぞれ極
性の異なる電荷が集中し、前記静電吸引が進行すると共
に前記静電吸着界面近傍での物質の移動が起こり接合が
進行する。前記ホウ珪酸ガラスと前記シリコンウエハと
の接合中の電流値は、そのピークを過ぎると時間の経過
と共に減少して行く。測定電流が、初期ピーク電流値の
5分の1を下回ったところで陽極接合の終点とし、その
所用時間は5分であった。
(Embodiment 2) An electrode wiring method during anodic bonding according to the present invention will be described. Here, the object to be bonded is composed of a 4-inch diameter silicon wafer having a three-dimensional shape formed by etching and electrode wiring, and a borosilicate glass substrate. These objects to be bonded are aligned / temporarily bonded after cleaning and set on the lower electrode of the anodic bonding jig. After lowering the upper electrode to sandwich the object to be bonded, the sheath heater is energized to raise the temperature to 300 ° C. in about 3 minutes. When the temperature of the object to be bonded is stable, a DC voltage of 600 V is applied between the upper and lower electrodes. Immediately after applying the voltage, as shown in FIG. 3, positive ions are injected from the silicon substrate side, while negative ions are induced on the surface of the borosilicate glass substrate facing the silicon substrate, and the borosilicate glass substrate and the silicon substrate are Attract each other by electrostatic force. In addition, since the electric resistance of the borosilicate glass decreases and becomes electrically conductive at high temperature, electric charges having different polarities are concentrated on the unbonded interface between the borosilicate glass substrate and the silicon substrate, and the electrostatic attraction occurs. As the above progresses, the substance moves in the vicinity of the electrostatic adsorption interface and the joining progresses. The current value during the bonding between the borosilicate glass and the silicon wafer decreases with the passage of time after passing the peak. When the measured current was below 1/5 of the initial peak current value, the end point of anodic bonding was determined, and the required time was 5 minutes.

【0012】この結果、全面でのボイドの少ない十分な
接合強度を得ることが出来た。
As a result, sufficient bonding strength with few voids on the entire surface could be obtained.

【0013】本発明による陽極接合装置では、上下にそ
れぞれヒータを有し試料内での温度分布が抑えられるた
め、平板電極による接合試料全体への均一電界と相まっ
て、残留応力が少なく良好な接合強度が得られる。
In the anodic bonding apparatus according to the present invention, since the upper and lower heaters are respectively provided to suppress the temperature distribution in the sample, the residual stress is reduced and the good bonding strength is achieved in combination with the uniform electric field to the entire bonded sample by the plate electrode. Is obtained.

【0014】次に本発明の電極配線方法を説明する。互
いに接合する前記ホウ珪酸ガラス基板41と前記シリコ
ン基板42の単位セルの斜視図を図4に示し、電極導通
部の放電導通接続前の断面を図5に示す。これらの基板
には、電気配線用電極材として、それぞれ相対向する前
記基板の面上に厚さ約1500Aのクロムを下地とする
厚さ1500Aの金電極とからなる電極配線43、4
4、45(以下Cr−Au電極と略称する)を有してい
る。膜厚3000Aの電極による突起を有する基板同士
の陽極接合は、突起のために基板に割れが発生するか接
合力が著しく低下する。このため、導通接続部分の基板
を部分エッチングし、配線電極の突起を収容するエッチ
ング溝48を形成する。図例ではシリコン基板上にエッ
チング溝を設けているが、ガラス側でもよい。また、前
記シリコンウエハ上の前記Cr−Au電極44は、シリ
コン基板との間に絶縁膜としてシリコン酸化膜46を有
するもので、その一部の酸化膜を除去し前記Cr−Au
電極とシリコン基板とが導通するコンタクトホール47
を有している。
Next, the electrode wiring method of the present invention will be described. FIG. 4 shows a perspective view of a unit cell of the borosilicate glass substrate 41 and the silicon substrate 42 which are bonded to each other, and FIG. 5 shows a cross section of the electrode conducting portion before discharge conducting connection. In these substrates, electrode wirings 43 and 4 each made of a 1500A-thick gold electrode with chromium of a 1500A-thickness as a base on the surfaces of the substrates facing each other as electric wiring electrode materials.
4 and 45 (hereinafter abbreviated as Cr-Au electrodes). In the anodic bonding of substrates having protrusions with an electrode having a film thickness of 3000A, the protrusions may cause cracks in the substrates or the bonding force may be significantly reduced. Therefore, the substrate of the conductive connection portion is partially etched to form the etching groove 48 for accommodating the protrusion of the wiring electrode. In the illustrated example, the etching groove is provided on the silicon substrate, but it may be on the glass side. The Cr-Au electrode 44 on the silicon wafer has a silicon oxide film 46 as an insulating film between itself and the silicon substrate. A part of the oxide film is removed to remove the Cr-Au electrode.
Contact hole 47 for electrically connecting the electrode and the silicon substrate
have.

【0015】かかる電極配線構造の元で、前記接合のた
めに高電圧が印加されると、前記ホウ珪酸ガラス基板電
極43と前記シリコン基板電極44とには電荷が誘起さ
れ前記微小間隙には、高電圧が印加され、放電が発生す
る。この放電エネルギーにより、前記ホウ珪酸ガラス基
板上の電極あるいは前記シリコン基板上の電極は溶融し
導通接続する。なお初期の誘起電荷の発生以後も高電圧
による電荷の注入は継続している。また、印加する陽極
接合電圧は、低い電圧では放電(直接エミッションも含
む)が発生せずかつ陽極接合強度も低く実用強度の限界
がある。また、高い電圧では、放電エネルギーの増大に
より前記電極配線の飛散による大きな食が生じ、安定し
た導通が得られなくなる。このため印加する電圧は25
0ないし500ボルトの電圧が望ましい。
Under this electrode wiring structure, when a high voltage is applied for the bonding, electric charges are induced in the borosilicate glass substrate electrode 43 and the silicon substrate electrode 44, and in the minute gap, A high voltage is applied and discharge occurs. Due to this discharge energy, the electrode on the borosilicate glass substrate or the electrode on the silicon substrate is melted and electrically connected. It should be noted that, even after the initial generation of the induced charges, the injection of the charges by the high voltage continues. Further, when the applied anodic bonding voltage is low, discharge (including direct emission) does not occur, the anodic bonding strength is low, and the practical strength is limited. Further, at a high voltage, the increase in discharge energy causes a large erosion due to the scattering of the electrode wiring, so that stable conduction cannot be obtained. Therefore, the applied voltage is 25
A voltage of 0 to 500 volts is desirable.

【0016】このようにして形成された前記ホウ珪酸ガ
ラス基板と前記シリコン基板とを導通する電極配線は、
その一端をコンタクトホール47においてシリコン基板
層に終端している。シリコン基板層とは独立した電気配
線を得るために、YAGレーザー光を照射強度5mJ/
cm2^で照射し、前記Cr−Au電極を切断する。な
お高エネルギー照射により、前記Cr−Au電極のみな
らず下地のシリコン酸化膜まで切断する。この結果シリ
コン層の被覆酸化膜が無くなり、前記Cr−Au電極と
前記シリコン層とは、高抵抗値ながら電気短絡となるこ
とがある。絶縁抵抗の低下を防止するためは、アッテネ
ータを用いてレーザー光の強度低減を図り、所望の前記
Cr−Au電極のみの切断ができる。
The electrode wiring that connects the borosilicate glass substrate and the silicon substrate thus formed is
One end thereof is terminated in the silicon substrate layer at the contact hole 47. In order to obtain electrical wiring independent of the silicon substrate layer, irradiation intensity of YAG laser light is 5 mJ /
Irradiation with cm2 ^ is performed to cut the Cr-Au electrode. By the high-energy irradiation, not only the Cr-Au electrode but also the underlying silicon oxide film is cut. As a result, the oxide film covering the silicon layer is lost, and the Cr-Au electrode and the silicon layer may be electrically short-circuited while having a high resistance value. In order to prevent a decrease in insulation resistance, the intensity of the laser beam can be reduced by using an attenuator, and only the desired Cr-Au electrode can be cut.

【0017】電極の切断方法として、この他、放電加工
切断やダイシングなどにより前記配線電極およびシリコ
ン基板の同時切断による電極分離も利用できる。
As an electrode cutting method, in addition to this, electrode separation by simultaneous cutting of the wiring electrode and the silicon substrate by electric discharge machining cutting or dicing can also be used.

【0018】またこのようにして、導通した電極を保護
し耐環境特性を向上せしめるためにエッジ露出部分をシ
リコンレジンやエポキシレジンなどにて塗布被覆するこ
とは、信頼性を向上するために有効である。
In this way, it is effective to improve reliability by coating the exposed edges with silicon resin or epoxy resin in order to protect the conductive electrodes and improve the environment resistance. is there.

【0019】また、本実施例では、Au−Cr電極の例
を述べたが、アルミニウム電極や銀電極など任意の金属
電極の応用が可能である。
In this embodiment, the Au-Cr electrode has been described as an example, but any metal electrode such as an aluminum electrode or a silver electrode can be applied.

【0020】(実施例3)本発明によるシリコン基板5
1とホウ珪酸ガラス基板(以下ガラス基板と略称する)
52、53、54とからなり、ダイアフラムポンプ55
とダイアフラム構造による入力弁56および出力弁57
を備えたマイクロポンプを図5に示す。前記出力弁のダ
イアフラム膜58には、前記出力弁突起の反対側にスイ
ッチ突起59が構成されており、前記出力弁57の動作
状態を検知し前記ダイアフラムポンプ55の動作を制御
する。前記スイッチ突起59上には、電極(シリコン基
板の比抵抗が小さい時は、この電極配線を無くすことも
できる)が形成され、かつ前記スイッチ突起と対向する
ガラス基板上にも電極60が形成され、接点型スイッチ
回路あるいは静電容量型スイッチ回路を構成する。なお
本実施例では、電極配線による基板との浮遊容量の影響
を軽減できる接点型スイッチとし、そのギャップを約5
μmとする。前記スイッチ信号を取り出すために、シリ
コン絶縁膜上に2個の外部出力端子61、62を設け、
それぞれ、シリコン基板上を引き回し前記スイッチ突起
に至る第1の配線(この配線では、シリコン基板との間
に絶縁膜が、必ずしも無くても良い)と、陽極接合時に
結線するシリコン基板上(絶縁膜上の配線)の配線63
と前記ガラス基板上の電極配線64とからなる第2の配
線とを接続する。なお前記第2の電極配線において、シ
リコン縁膜上の配線63は、前記ガラス基板と重畳する
部分において前記シリコン基板上に約1μmの逃げ溝の
中に予め設けてられている、さらにこの配線63は、一
点鎖線で示されるダイシング線65を越えて、隣接セル
まで延びており、酸化膜に設けた10μm角のコンタク
トホールにおいてシリコン基板層と接触している。なお
前記配線63,64は、前記シリコン基板と前記ガラス
基板とに、それぞれ正極性と負極性の高電圧を印加し陽
極接合を行う接合工程中に、先の実施例で述べたように
放電接続される。このようにして形成された電気流路
は、単位セルの切り出しの時に前記ダイシング線におい
て切断され、前記ガラス基板上のスイッチ電極はシリコ
ン基板と高抵抗絶縁化する。なお万一、その絶縁抵抗が
低下する時には、前記シリコン基板側のスイッチ電極
を、シリコン基板との間に絶縁膜を形成して置くことに
より絶縁の目的は達成される。
(Embodiment 3) Silicon substrate 5 according to the present invention
1 and borosilicate glass substrate (hereinafter abbreviated as glass substrate)
52, 53, 54 and a diaphragm pump 55
And input valve 56 and output valve 57 with a diaphragm structure
A micropump provided with is shown in FIG. A switch projection 59 is formed on the diaphragm film 58 of the output valve on the side opposite to the output valve projection, and detects the operating state of the output valve 57 and controls the operation of the diaphragm pump 55. An electrode (the electrode wiring can be omitted when the specific resistance of the silicon substrate is small) is formed on the switch protrusion 59, and an electrode 60 is also formed on the glass substrate facing the switch protrusion. , A contact type switch circuit or a capacitance type switch circuit. In this embodiment, a contact type switch that can reduce the influence of the stray capacitance with the substrate due to the electrode wiring, and its gap is set to about 5
μm. In order to extract the switch signal, two external output terminals 61 and 62 are provided on the silicon insulating film,
A first wiring (which does not necessarily need to have an insulating film between itself and the silicon substrate in this wiring) that is routed over the silicon substrate and reaches the switch protrusion, and a silicon substrate (insulating film that is connected at the time of anodic bonding) Upper wiring) wiring 63
And a second wiring including the electrode wiring 64 on the glass substrate are connected. In the second electrode wiring, the wiring 63 on the silicon edge film is provided in advance in a clearance groove of about 1 μm on the silicon substrate in a portion overlapping with the glass substrate. Extends beyond the dicing line 65 indicated by the alternate long and short dash line to the adjacent cell and is in contact with the silicon substrate layer at the 10 μm square contact hole provided in the oxide film. The wirings 63 and 64 are connected to the silicon substrate and the glass substrate by discharge connection as described in the previous embodiment during the joining process of applying a positive and negative high voltage to each other to perform anodic joining. To be done. The electric flow path thus formed is cut along the dicing line when the unit cell is cut out, and the switch electrode on the glass substrate is insulated with high resistance from the silicon substrate. If the insulation resistance is lowered, the purpose of insulation can be achieved by forming the insulating film between the switch electrode on the silicon substrate side and the silicon substrate.

【0021】また、上記実施例では放電流路として酸化
膜にコンタクトホールを設ける例を説明したが、それ以
外に絶縁膜を介してシリコン基板と対向する電極面積を
大きくし、容量結合性配線とすることでも放電は発生す
るため電極の接続は可能である。さらに、本実施例で
は、シリコン基板上に電極をまとめて出力する例を述べ
たが、ガラス基板上にまとめて出力することもできる。
In the above embodiment, the example in which the contact hole is provided in the oxide film as the discharge flow path has been described. However, in addition to that, the electrode area facing the silicon substrate through the insulating film is increased to form the capacitive coupling wiring. By doing so, the discharge is generated and the electrodes can be connected. Further, in the present embodiment, the example in which the electrodes are collectively output on the silicon substrate has been described, but it is also possible to collectively output the electrodes on the glass substrate.

【0022】本実施例では、シリコン基板上に電極出力
を設けることにより、陽極接合でのガラス基板と負極性
電極との界面で発生するイオンの析出が、シリコン基板
と電極配線の界面においては防止できる。このため、シ
リコン基板に対する配線電極の密着強度も高く信頼性の
高い電極形成ができる。これと同時に、シリコン基板上
に局在しているため、高密度な一括した実装ができる。
このようにして形成された出力電極は、外部回路との接
続方法において、ハンダづけにも耐える強固な出力端子
となった。
In the present embodiment, by providing the electrode output on the silicon substrate, the precipitation of ions generated at the interface between the glass substrate and the negative electrode at the anodic bonding is prevented at the interface between the silicon substrate and the electrode wiring. it can. Therefore, the adhesion strength of the wiring electrode to the silicon substrate is high and the electrode can be formed with high reliability. At the same time, since it is localized on the silicon substrate, high-density batch mounting can be performed.
The output electrode formed in this way became a strong output terminal that can withstand soldering in the connection method with an external circuit.

【0023】[0023]

【発明の効果】本発明によれば、被接合物と接触する表
面が平坦である一対の加熱・給電電極により、温度ムラ
のない均一な加熱を行い低い温度でも安定した信頼性の
ある接合を得るもので、また複数の物体を層状に接合す
る構造体において、前記複数の物体の層間を互いに容易
に導通する電気配線を形成することができる。本発明に
よる電気配線では、電気配線密度も向上と基板との密着
強度に優れたものとなる。
According to the present invention, a pair of heating / feeding electrodes having a flat surface in contact with an object to be bonded can perform uniform heating without temperature unevenness and achieve stable and reliable bonding even at a low temperature. What is obtained, and in a structure in which a plurality of objects are joined in layers, it is possible to form electric wiring that easily conducts the layers of the plurality of objects to each other. The electric wiring according to the present invention has an improved electric wiring density and excellent adhesion strength with the substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による陽極接合装置のブロック図。FIG. 1 is a block diagram of an anodic bonding apparatus according to the present invention.

【図2】 本発明による陽極接合治具の機能図。FIG. 2 is a functional diagram of an anodic bonding jig according to the present invention.

【図3】 本発明による陽極接合の状態図。FIG. 3 is a state diagram of anodic bonding according to the present invention.

【図4】 本発明による陽極接合中の電気結線を示す
図。
FIG. 4 is a diagram showing electrical connection during anodic bonding according to the present invention.

【図5】 本発明によるマイクロポンプの構造図。FIG. 5 is a structural diagram of a micropump according to the present invention.

【図6】 従来の陽極接合治具の概略図。FIG. 6 is a schematic view of a conventional anodic bonding jig.

【符号の説明】[Explanation of symbols]

11 上部温度制御部 12 下部温度制御部 13 陽極接合治具 14 電源 11 Upper Temperature Control Section 12 Lower Temperature Control Section 13 Anodic Bonding Jig 14 Power Supply

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 陽極接合のための一対の加熱・給電電極
において、前記加熱・給電電極は発熱体を含む加熱部と
電圧を印加する給電部とからなり、前記加熱・給電電極
の被接合物を挟持する部分は一対の平坦状電極であり、
かつ外匡との間に断熱支持体を有し、さらに前記一対の
加熱・給電電極のいずれか一方は可動構造であることを
特徴とする陽極接合装置。
1. A pair of heating / power-supplying electrodes for anodic bonding, wherein the heating / power-supplying electrode comprises a heating part including a heating element and a power-supplying part for applying a voltage. The part that sandwiches is a pair of flat electrodes,
An anodic bonding apparatus having a heat insulating support between the outer casing and one of the pair of heating / power feeding electrodes has a movable structure.
【請求項2】 上下方向に配置する陽極接合のための一
対の加熱・給電電極において、上方に配置する前記加熱
・給電電極の加熱部と給電部との間に電気絶縁物を有す
ることを特徴とする請求項1記載の陽極接合装置。
2. A pair of heating / feeding electrodes arranged vertically for anodic bonding, wherein an electric insulator is provided between the heating part and the feeding part of the heating / feeding electrodes arranged above. The anodic bonding apparatus according to claim 1.
【請求項3】 互いに接合する第1の基板と第2の基板
とからなり、前記第1の基板と前記第2の基板とには、
それぞれ第1基板電極配線および第2基板電極配線とを
有し、前記第1基板と前記第2基板の接合は、高温・高
電圧による陽極接合法によるものであり、かつ前記陽極
接合中に前記第1基板電極と前記第2基板電極との導通
接続を行うことを特徴とする電極配線方法。
3. A first substrate and a second substrate which are bonded to each other, wherein the first substrate and the second substrate are:
Each has a first substrate electrode wiring and a second substrate electrode wiring, and the bonding of the first substrate and the second substrate is performed by an anodic bonding method using high temperature and high voltage, and during the anodic bonding, An electrode wiring method, comprising conducting connection between a first substrate electrode and the second substrate electrode.
【請求項4】 ダイアフラムを有するシリコン基板とガ
ラス基板とからなるマイクロポンプにおいて、前記ダイ
アフラム上に形成した第1の電極と前記ダイアフラム上
の第1電極と対向する第2の電極とからなり、前記第1
の電極と前記第2の電極とは前記シリコン基板もしくは
前記ガラス基板の何れか一方の基板上にまとめた出力電
極端子を有することを特徴とする電極配線方法。
4. A micropump comprising a silicon substrate having a diaphragm and a glass substrate, comprising a first electrode formed on the diaphragm, and a second electrode facing the first electrode on the diaphragm. First
The electrode wiring method, characterized in that the electrode and the second electrode have output electrode terminals which are integrated on one of the silicon substrate and the glass substrate.
【請求項5】 シリコン基板の電極とガラス基板上の電
極とを陽極接合工程中に接続したことを特徴とする請求
項4記載の電極配線方法。
5. The electrode wiring method according to claim 4, wherein the electrode on the silicon substrate and the electrode on the glass substrate are connected during the anodic bonding process.
JP13025992A 1992-05-22 1992-05-22 Anode coupling system and electrode wiring method Pending JPH05326649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13025992A JPH05326649A (en) 1992-05-22 1992-05-22 Anode coupling system and electrode wiring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13025992A JPH05326649A (en) 1992-05-22 1992-05-22 Anode coupling system and electrode wiring method

Publications (1)

Publication Number Publication Date
JPH05326649A true JPH05326649A (en) 1993-12-10

Family

ID=15029990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13025992A Pending JPH05326649A (en) 1992-05-22 1992-05-22 Anode coupling system and electrode wiring method

Country Status (1)

Country Link
JP (1) JPH05326649A (en)

Similar Documents

Publication Publication Date Title
EP0734055B1 (en) Method of manufacturing an electrostatic chuck
US5421943A (en) Pulsed current resistive heating for bonding temperature critical components
US20070033782A1 (en) Electrode sandwich separation
JPWO2002061781A1 (en) Switch and integrated circuit device
WO2017038282A1 (en) Heater chip, bonding device, and bonding method
EP0619598B1 (en) Method for bonding an insulator and a conductor
JP6697997B2 (en) Electrostatic chuck, substrate fixing device
JPH05326649A (en) Anode coupling system and electrode wiring method
JPH0567673A (en) Electrostatic chuck
CN100505358C (en) Method for creating an electrical contact for a piezoelectric actuator and polarizing the piezoelectric actuator
CN116490965A (en) Controlled localized heating of a substrate
JP3915287B2 (en) Method for manufacturing electrostatic actuator
JP6856334B2 (en) heater
EP0579440B1 (en) Method of making an assembly including patterned film submount with self-aligned electronic device
JPH0661305A (en) Semiconductor device and method for mounting semiconductor chip
JP4062906B2 (en) Infrared sensor manufacturing method
JP2586409B2 (en) Manufacturing method of semiconductor acceleration sensor
JP2919923B2 (en) Gas sensor manufacturing method
JP2800207B2 (en) Positive characteristic thermistor heating element
JP2642154B2 (en) Electrostatic bonding jig
JPS61229342A (en) Connection for bump electrode
JPH07288267A (en) Outer lead bonding equipment
JPH10233436A (en) Electrostatic chuck
US20140322892A1 (en) Multi-wafer pair anodic bonding apparatus and method
JPH06236886A (en) Semiconductor device