JPH05326379A - Manufacture of thin film - Google Patents

Manufacture of thin film

Info

Publication number
JPH05326379A
JPH05326379A JP15434892A JP15434892A JPH05326379A JP H05326379 A JPH05326379 A JP H05326379A JP 15434892 A JP15434892 A JP 15434892A JP 15434892 A JP15434892 A JP 15434892A JP H05326379 A JPH05326379 A JP H05326379A
Authority
JP
Japan
Prior art keywords
thin film
film
internal stress
substrate
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15434892A
Other languages
Japanese (ja)
Inventor
Akihiko Nagata
愛彦 永田
Hitoshi Noguchi
仁 野口
Shu Kashida
周 樫田
Yoshihiro Kubota
芳宏 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP15434892A priority Critical patent/JPH05326379A/en
Publication of JPH05326379A publication Critical patent/JPH05326379A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To set the internal stress of a mask substrate for X-ray lithography within a proper range and to reduce an irregularity in the internal stress by a method wherein, when a thin film is formed on the substrate by sputtering, the electric power of reflected waves is kept at a definite value when the film is formed. CONSTITUTION:A target, 3cm in diameter and 5 mm in thickness, which is composer of SiC is set on the cathode side of, e.g. an RF magnetron sputtering apparatus, Model SDF-32H (made by Nichiden Anelva K.K.). A silicon wafer substrate, 3cm in diameter and 600mum in thickness, whose both faces have been polished is heated to 200 deg.C. In addition, while argon gas is being made to flow at a flow rate of 7cc/min, a sputtering operation is performed for 10 minutes under the following conditions: power supply: 10W/cm<2> (in this case, the electric power of incident waves is kept at 400W and the electric power of reflected waves is kept at 65W); and reaction pressure: 6.0X10<-2>Torr. A thin film, 1.0mum in film thickness, which is composed of SiC is former. Thereby, it is possible to reduce an irregularity in the internal stress of the film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜の製造方法、特には
膜の内部応力のバッチ内、バッチ間でのばらつきを低減
させたX線リソグラフィー用マスク基板として有用とさ
れる薄膜の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thin film, and more particularly to a method for producing a thin film which is useful as a mask substrate for X-ray lithography in which variation in internal stress of the film within and between batches is reduced. It is a thing.

【0002】[0002]

【従来の技術】X線リソグラフィー用マスクのX線透過
膜については、 (1)高エネルギー電子線やシンクロトロン放射光の様
な高エネルギービームの照射に耐える材料であること。 (2)50%以上の高い可視光透過率を有し、高精度なア
ライメント(位置合わせ)ができること。 (3)良好な耐薬品性や耐湿性を有し、エッチング工程
や洗浄工程で損傷されにくいこと。 (4)メンブレンの表面が平滑で、傷やピンホールが無
いこと。 という性能が要求されており、このX線リソグラフィー
用マスク基板は基板の薄膜の内部応力が引張応力である
が、この引張応力が1×108 dyne/cm2以下であるとメン
ブレン化したときにしわが発生し易く、また1×1010dy
ne/cm2以上になるとメンブレンが破壊し易くなることか
ら、好適な引張応力は5×108 dyne/cm2〜5×109 dyne
/cm2の範囲とされている。
2. Description of the Related Art The X-ray transparent film of an X-ray lithography mask is (1) a material that can withstand irradiation of high energy beams such as high energy electron beams and synchrotron radiation. (2) It has a high visible light transmittance of 50% or more and can perform highly accurate alignment. (3) It has good chemical resistance and moisture resistance, and is not easily damaged in the etching process and cleaning process. (4) The surface of the membrane is smooth and free from scratches and pinholes. The performance of the mask substrate for X-ray lithography is tensile stress, and the internal stress of the thin film of the substrate is tensile stress, but when this tensile stress is 1 × 10 8 dyne / cm 2 or less Easy to generate wrinkles, 1 × 10 10 dy
When ne / cm 2 or more, the membrane is easily broken, so the preferred tensile stress is 5 × 10 8 dyne / cm 2 to 5 × 10 9 dyne.
The range is / cm 2 .

【0003】また、このX線リソグラフィー用マスクの
X線透過膜の素材としてはプラズマCVD法、LPCV
D法によるBN、SiN、SiCなどの材料が提案され
ているが、いずれも一長一短があり、前記したような性
能をすべて満足するものは得られていない。例えばプラ
ズマCVD法によるBNやSiN膜は優れた可視光線透
過率を有しているが、耐高エネルギービーム性および耐
薬品性が不十分であり、またLPCVD法によるSiN
膜も優れた可視光線透過率を有するものの耐高エネルギ
ービーム性が不十分であると指摘されており、またLP
CVD法によるSiC膜には表面平滑性が不十分である
という欠点がある。
The material of the X-ray transparent film of the X-ray lithography mask is plasma CVD method, LPCV.
Materials such as BN, SiN, and SiC by the D method have been proposed, but each has advantages and disadvantages, and none satisfying all of the above-described performances has been obtained. For example, a BN or SiN film formed by the plasma CVD method has excellent visible light transmittance, but it has insufficient high energy beam resistance and chemical resistance, and SiN formed by the LPCVD method.
Although the film also has excellent visible light transmittance, it has been pointed out that the high energy beam resistance is insufficient.
The SiC film formed by the CVD method has a drawback that the surface smoothness is insufficient.

【0004】[0004]

【発明が解決しようとする課題】このため、本発明者ら
は先にスパッター法によってSiC、SiC/Si3
4 複合膜を形成する方法を提案しており(特開平2-1597
16号、特開平3-56660 号各公報参照)、これによれば耐
高エネルギービーム性、可視光線透過率、耐薬品性、表
面平滑性などの点で優れた性質をもつ薄膜を得ることが
できるけれども、このスパッター法により成膜した薄膜
には成膜時の条件の変動などに対して極めて敏感に反応
するために、内部応力の制御が難しく、前記の内部応力
値をしばしば逸脱し、その製造歩留りが低下するという
不利のあることが判った。
For this reason, the inventors of the present invention first conducted the sputtering method using SiC and SiC / Si 3 N.
4 We have proposed a method for forming a composite film (Japanese Patent Laid-Open No. 2-1597).
No. 16, JP-A-3-56660). According to this, it is possible to obtain a thin film having excellent properties such as high energy beam resistance, visible light transmittance, chemical resistance, and surface smoothness. However, since the thin film formed by this sputtering method reacts extremely sensitively to changes in the conditions during film formation, it is difficult to control the internal stress, and the internal stress value often deviates from the above. It turned out that there is a disadvantage that the production yield is reduced.

【0005】[0005]

【課題を解決するための手段】本発明はこのような不利
を解決した薄膜の製造方法に関するものであり、これは
基板上にスパッター法で薄膜を形成するにあたり、製膜
時の反射波電力を一定の値に保つことを特徴とするもの
である。
The present invention relates to a method of manufacturing a thin film which solves such disadvantages, and in forming a thin film on a substrate by a sputtering method, the reflected wave power during film formation is It is characterized by maintaining a constant value.

【0006】すなわち、本発明者らは基板上にスパッタ
ー法で薄膜を製造する方法における前記した不利を解決
する方法について種々検討した結果、スパッタリング中
に制御可能な種々のスパッタリング条件とバッチ内、バ
ッチ間における膜の内部応力との関係を調べ、この場合
における反射波電力の大きさを最小にするだけでなく、
できるだけ小さくなるようにし、これを一定の値に保持
するようにすれば、膜の内部応力のばらつきを低減させ
ることができるということを見出し、これによればX線
リソグラフィー用マスク基板として最も重要な特性の一
つである膜の内部応力を適当な範囲内に仕上げることが
容易となり、歩留りを向上することができるし、内部応
力のばらつきが小さくなるので吸収体の形成工程におけ
る膜の歪特性を均一にすることができ、さらには吸収体
形成時のパターンの歪補正工程が容易になるということ
を確認して本発明を完成させた。以下にこれをさらに詳
述する。
That is, the inventors of the present invention have made various investigations on methods for solving the above-mentioned disadvantages in the method of producing a thin film on a substrate by a sputtering method, and as a result, various sputtering conditions controllable during sputtering and in batch and batch The relationship between the internal stress of the film and the internal stress of the film is investigated.
It has been found that the variation in the internal stress of the film can be reduced by making it as small as possible and keeping it at a constant value, and according to this, it is most important as a mask substrate for X-ray lithography. It is easy to finish the internal stress of the film, which is one of the characteristics, within an appropriate range, the yield can be improved, and the variation in internal stress can be reduced. The present invention has been completed by confirming that the pattern can be made uniform and the pattern distortion correction process at the time of forming the absorber becomes easy. This will be described in more detail below.

【0007】[0007]

【作用】本発明は薄膜の製造方法に関するものであり、
これは基板上にスパッター法で薄膜を形成するにあた
り、成膜時の反射波電力を一定の値に保持することを特
徴とするものであるが、これによればX線リソグラフィ
ー用マスク基板の内部応力を適宜な範囲内とすることが
でき、内部応力のばらつきも小さくすることができると
いう有利性が与えられる。
The present invention relates to a method for producing a thin film,
This is characterized in that when forming a thin film on a substrate by a sputtering method, the reflected wave power during film formation is maintained at a constant value. According to this, the inside of the mask substrate for X-ray lithography is There is an advantage that the stress can be set within an appropriate range and the variation of the internal stress can be reduced.

【0008】本発明による薄膜の製造は基板上にスパッ
ター法で薄膜を形成させるという方法で行われるのであ
るが、このスパッター法は公知のものでよく、これは一
般に行われている高周波(以下RFと略記する)スパッ
ター法とすればよい。このRFスパッター法による成膜
は装置内に配置したターゲットのために電力(以下入射
波電力と略記する)が投入され、この入射波電力に対し
てマッチングのずれにより発生する反射波電力を常に最
小になるように調整しながら行なわれているが、RF発
振器の出力インピーダンスと負荷インピーダンスに大き
なずれがあるとRF発振管やRFケーブルの寿命が短く
なるし、投入する電力を効率よくターゲットのスパッタ
リングに使うという点ではこのようなずれを小さくする
ことが必要とされる。
The thin film according to the present invention is manufactured by a method of forming a thin film on a substrate by a sputtering method. This sputtering method may be a known method, which is a commonly used high frequency (hereinafter referred to as RF). The sputter method may be used. In the film formation by the RF sputtering method, electric power (hereinafter, abbreviated as incident wave power) is input for the target arranged in the apparatus, and the reflected wave power generated due to the mismatch of the incident wave power is always the minimum. However, if there is a large deviation between the output impedance of the RF oscillator and the load impedance, the life of the RF oscillator tube and the RF cable will be shortened, and the input power will be used for efficient target sputtering. In terms of use, it is necessary to reduce such deviation.

【0009】しかし、これについて種々検討した結果、
この反射波電力が最小になるように調整すると、最も効
率よく電力が投入されてスパッタリングが行なわれる
が、この反射波電力を最小にする操作をしてもターゲッ
トの状態が変化するとスパッタリングに寄与する電力量
に変化が生じるために、一定したスパッタリングが行な
われなくなり、したがってこれが成膜後の薄膜の物性
値、特には内部応力がばらつく原因となる。
However, as a result of various studies on this,
If the reflected wave power is adjusted to be the minimum, the power is supplied most efficiently to perform the sputtering, but even if the operation to minimize the reflected wave power changes the state of the target, it contributes to the sputtering. Since the amount of electric power changes, constant sputtering is not performed, and this causes variations in the physical properties of the thin film after film formation, especially internal stress.

【0010】そこで、スパッター法で成膜された膜につ
いて調べたところ、スパッター圧力を一定とした場合、
反射波電力と内部応力の大きさには相関があり、反射波
電力の大きさに応じて内部応力が変化しており、反射波
電力が内部応力のばらつきに寄与していることが明らか
になった。
Then, when the film formed by the sputtering method was examined, when the sputtering pressure was constant,
There is a correlation between the magnitude of the reflected wave power and the internal stress, and the internal stress changes depending on the magnitude of the reflected wave power, and it is clear that the reflected wave power contributes to the variation in the internal stress. It was

【0011】このため、本発明者らはこの内部応力のば
らつきを低下させるために、成膜圧力と反射波電力を一
定値にしてスパッター法で薄膜の形成をしたところ、こ
の内部応力のばらつきの低下することを確認した。
Therefore, the inventors of the present invention formed a thin film by the sputtering method with the film forming pressure and the reflected wave power at constant values in order to reduce the variation in the internal stress. It was confirmed that it would decrease.

【0012】マッチングのずれの調整によって可能な、
最小の反射波電力の値は、成膜する膜の種類、ターゲッ
トの使用状況によって変化するので、一定に保つ反射波
電力の値は状況に応じた値を選択する必要があるが、こ
の反射波電力の値はこの値を小さく取りすぎると一連の
スパッタ成膜の間に変更せざるを得なくなり、大きすぎ
るとRF発振器の出力インピーダンスと負荷インピーダ
ンスの差が大きくなって、RF発振管やRFケーブルの
寿命を短くするので、経時的に変化するマッチングのず
れを調整することによって補正が可能な最小の反射波電
力で、かつ一連のスパッタ成膜の間にその値を変えるこ
とのない値とすることがよい。
It is possible by adjusting the deviation of matching,
The value of the minimum reflected wave power changes depending on the type of film to be formed and the usage of the target, so the value of the reflected wave power to be kept constant must be selected according to the situation. If the power value is too small, it will have to be changed during a series of sputtering film formation, and if it is too large, the difference between the output impedance and the load impedance of the RF oscillator will become large, and the RF oscillation tube or RF cable Since it shortens the life of the laser, it is the minimum reflected wave power that can be corrected by adjusting the matching shift that changes over time, and the value does not change during a series of sputter deposition. Is good.

【0013】本発明による薄膜の製造は基板上にスパッ
ター法で行なわれるため、これは装置にターゲットを設
置し、このターゲットから成膜されるのであるが、この
スパッター成膜用ターゲット物質に特に制限はなく、こ
れにはセラミックス、金属等を用いることができる。ま
た、これによって得られた薄膜はX線リソグラフィー用
マスク基板とされるので、このものはSiC、Si3
4 、SiCとSi34 との複合材、Si、SiO2
BN、ダイヤモンド等からなるものとされるが、この材
質はこれに限定されるものではない。
Since the production of the thin film according to the present invention is carried out on the substrate by the sputtering method, the target is set in the apparatus and the film is formed from this target. The target material for the sputter film formation is particularly limited. However, ceramics, metals, etc. can be used for this. Further, since this thin film obtained by is the X-ray lithography mask substrate, this compound SiC, Si 3 N
4 , composite material of SiC and Si 3 N 4 , Si, SiO 2 ,
The material is not limited to this, although it may be made of BN, diamond, or the like.

【0014】この薄膜はスパッター法で基板上に成膜さ
れるのであるが、この基板としては通常シリコンウエー
ハが用いられ、このシリコン基板の温度は 100〜1,000
℃とすれば生成した膜が欠陥やピンホールの少ないもの
となるので好ましいものとされる。また、このターゲッ
トに印加する電力は5w/cm2 以上とすれば得られる膜の
応力が引張応力となるので好ましいが、この印加電圧は
高い程成膜速度が増加して有利なものとなる。
This thin film is formed on a substrate by a sputtering method. A silicon wafer is usually used as this substrate, and the temperature of this silicon substrate is 100 to 1,000.
When the temperature is set to ° C, the formed film has few defects and pinholes, which is preferable. Further, if the power applied to this target is 5 w / cm 2 or more, the stress of the obtained film becomes a tensile stress, which is preferable, but the higher the applied voltage, the more the film formation rate increases, which is advantageous.

【0015】なお、スパッター時に使用するガスは純度
が99%以上、好ましくは99.9%以上の不活性ガスとする
ことがよく、これにはAr、Ne、He、Xeなどが例
示される。また、このスパッター圧力については特に制
限はないが、このスパッター圧力は成膜後の膜の応力値
に大きな影響を及ぼすので、ターゲットの組成を含めた
スパッター条件下で所定の引張応力となるように設定す
る必要があり、したがってこれは1×10-2〜1×10-1To
rrとすることがよい。
The gas used for sputtering is preferably an inert gas having a purity of 99% or more, preferably 99.9% or more, and examples thereof include Ar, Ne, He and Xe. The sputter pressure is not particularly limited, however, since the sputter pressure has a great influence on the stress value of the film after film formation, it is necessary to obtain a predetermined tensile stress under the sputter conditions including the composition of the target. Must be set, so this is 1x10 -2 to 1x10 -1 To
It should be rr.

【0016】[0016]

【実施例】次に本発明の実施例、比較例をあげる。 実施例1 RFマグネトロンスパッター装置・SPF−332 H型
(日電アネルバ社製商品名)のカソード側に直径3イン
チで厚さが5mmのSiCからなるターゲットをセットし
たのち、直径3インチ、厚さ 600μmの両面研摩シリコ
ンウエーハ基板を200 ℃に加熱し、アルゴンガスを7cc
/ 分の流量で流しながら、パワー密度10w/cm2 (この場
合、入射波電力は400w、反射波電力は65w に保持し
た)、反応圧力6.0×10-2Torrの条件で10分間スパッタ
ーを行ない、SiCよりなる膜厚1.0 μmの薄膜を成膜
した。
EXAMPLES Next, examples and comparative examples of the present invention will be described. Example 1 A target made of SiC having a diameter of 3 inches and a thickness of 5 mm was set on the cathode side of an RF magnetron sputtering apparatus SPF-332 H type (trade name, manufactured by Nichiden Anelva Co., Ltd.), and then a diameter of 3 inches and a thickness of 600 μm. Double-sided polished silicon wafer substrate is heated to 200 ℃, and argon gas is 7cc.
Sputtering was performed for 10 minutes under the conditions of a power density of 10w / cm 2 (incident wave power was kept at 400w, reflected wave power was kept at 65w) and reaction pressure was 6.0 × 10 -2 Torr while flowing at a flow rate of / min. , A thin film of SiC having a thickness of 1.0 μm was formed.

【0017】これについては同じ条件で10バッチ繰り返
し成膜を行なったところ、このときの応力値は平均およ
び3σ(σは標準偏差)が 2.5×109 ± 0.5×109 dyne
/cm2であった。
When 10 batches of film formation were repeated under the same conditions, the stress values at this time were 2.5 × 10 9 ± 0.5 × 10 9 dyne with an average and 3σ (σ is standard deviation).
It was / cm 2 .

【0018】比較例1 実施例1と同じ方法でSiCの薄膜を製造したが、これ
については反射波電力を一定とせず、60w 〜65w まで変
動させ、常に最小になるようにして10バッチ繰り返し成
膜したところ、このときの応力値は平均および3σが
2.5×109 ±1.5×109 dyne/cm2であった。
Comparative Example 1 A thin film of SiC was manufactured by the same method as in Example 1, but the reflected wave power was not kept constant, but was varied from 60w to 65w and was constantly minimized for 10 batches. When a film is formed, the stress value at this time is the average and 3σ
It was 2.5 × 10 9 ± 1.5 × 10 9 dyne / cm 2 .

【0019】実施例2 RFマグネトロンスパッター装置・SPF−332 H型
(前出)のカソード側に直径3インチ、厚さ5mmのSi
CとSi34 が95:5のモル比で混合されたターゲッ
トをセットしたのち、直径3インチ、厚さ 600μmの両
面研磨シリコンウエーハ基板を 200℃に加熱し、アルゴ
ンガスを7cc/ 分の流量で流しながら、パワー密度10w/
cm2 (この場合、入射波電力は400w、反射波電力は65w
に保持した)、反応圧力 6.0×10-2Torrの条件で15分間
スパッターを行なって、SiCとSi34 よりなる膜
厚 1.0μmの薄膜を成膜したが、これと同じ条件で10バ
ッチ繰り返し成膜したところ、このときの応力値は平均
および3σが 1.5×109 ±0.5 ×109 dyne/cm2であっ
た。
Example 2 Si having a diameter of 3 inches and a thickness of 5 mm on the cathode side of the RF magnetron sputtering apparatus SPF-332 H type (described above).
After setting a target in which C and Si 3 N 4 were mixed at a molar ratio of 95: 5, a double-side polished silicon wafer substrate having a diameter of 3 inches and a thickness of 600 μm was heated to 200 ° C., and argon gas was supplied at 7 cc / min. While flowing at a flow rate, power density 10w /
cm 2 (In this case, the incident wave power is 400w, the reflected wave power is 65w
Under a reaction pressure of 6.0 × 10 -2 Torr for 15 minutes to form a thin film of SiC and Si 3 N 4 with a thickness of 1.0 μm. When the film was repeatedly formed, the average stress value and the 3σ value at this time were 1.5 × 10 9 ± 0.5 × 10 9 dyne / cm 2 .

【0020】比較例2 また、この実施例2と同じ方法でSiCとSi34
薄膜を製造したが、これについては反射波電力を一定と
せず、60w 〜65w まで変動させ、常に最小になるように
して10バッチ繰り返し成膜したところ、このときの応力
値は平均および3σが 1.5×109 ± 1.0×109dyne/cm2
であった。
Comparative Example 2 Further, a thin film of SiC and Si 3 N 4 was manufactured by the same method as in Example 2, but the reflected wave power was not made constant but was varied from 60w to 65w and was constantly minimized. As a result of repeatedly depositing 10 batches of the film, the average stress value and 3σ were 1.5 × 10 9 ± 1.0 × 10 9 dyne / cm 2
Met.

【0021】[0021]

【発明の効果】本発明は薄膜の製造方法に関するもので
あり、これは前記したように基板上にスパッター法で薄
膜を形成するにあたり、成膜時の反射波電力を一定の値
に保持することを特徴とするものであるが、これによれ
ばスパッター法の繰り返しによって得られる成膜は膜の
内部応力のばらつきが低減されるので、この薄膜から作
られるX線リソグラフィー用マスク基板はその製造歩留
りが向上するし、さらには吸収体形成工程におけるマス
ク基板の歪補正が容易になるという効果が与えられる。
The present invention relates to a method of manufacturing a thin film, and as described above, when the thin film is formed on the substrate by the sputtering method, the reflected wave power during film formation is kept constant. According to this, since the variation in the internal stress of the film is reduced in the film formation obtained by repeating the sputtering method, the mask substrate for X-ray lithography made from this thin film has a high manufacturing yield. And the distortion correction of the mask substrate in the absorber forming step is facilitated.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保田 芳宏 群馬県安中市磯部2丁目13番1号 信越化 学工業株式会社精密機能材料研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshihiro Kubota 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Chemical Co., Ltd. Precision Materials Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板上にスパッター法で薄膜を形成するに
あたり、成膜時の反射波電力を一定の値に保持すること
を特徴とする薄膜の製造方法。
1. A method of manufacturing a thin film, characterized in that when a thin film is formed on a substrate by a sputtering method, the reflected wave power during film formation is maintained at a constant value.
【請求項2】薄膜がセラミックスまたは金属である請求
項1に記載した薄膜の製造方法。
2. The method for producing a thin film according to claim 1, wherein the thin film is ceramics or metal.
【請求項3】薄膜がX線リソグラフィー用マスク基板と
される請求項2に記載された薄膜の製造方法。
3. The method for producing a thin film according to claim 2, wherein the thin film is used as a mask substrate for X-ray lithography.
JP15434892A 1992-05-21 1992-05-21 Manufacture of thin film Pending JPH05326379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15434892A JPH05326379A (en) 1992-05-21 1992-05-21 Manufacture of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15434892A JPH05326379A (en) 1992-05-21 1992-05-21 Manufacture of thin film

Publications (1)

Publication Number Publication Date
JPH05326379A true JPH05326379A (en) 1993-12-10

Family

ID=15582203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15434892A Pending JPH05326379A (en) 1992-05-21 1992-05-21 Manufacture of thin film

Country Status (1)

Country Link
JP (1) JPH05326379A (en)

Similar Documents

Publication Publication Date Title
US7842168B2 (en) Method for producing silicon oxide film and method for producing optical multilayer film
US20090246385A1 (en) Control of crystal orientation and stress in sputter deposited thin films
KR930003605B1 (en) Microwave enhanced cvd method for coating plastic articles with carbon films and its products
JPH11279757A (en) Method and device for forming thin film of composite metal compound
US4096026A (en) Method of manufacturing a chromium oxide film
JP2002169265A (en) Photomask blank and method of manufacturing photomask blank
JP2001059899A (en) Manufacture of x-ray phosphor and substrate for forming the same
JP2000098582A (en) Phase shift photomask blank, phase shift photomask, their fabrication and equipment for fabrication of the same photomask blank
JPH07116588B2 (en) Method for manufacturing transparent body of mask for X-ray lithography
JP2534406B2 (en) Method for producing silicon carbide film
US5624719A (en) Process for synthesizing diamond in a vapor phase
JPH05326379A (en) Manufacture of thin film
JPH05326380A (en) Thin-film composition and mask for x-ray exposure using the same
JPS63317676A (en) Production of thin metallic compound film having non-grained structure
JPH10229043A (en) X-ray mask blank, its manufacture and manufacture of x-ray mask
JP3866912B2 (en) Lithographic mask substrate and method of manufacturing the same
US5246802A (en) X-ray permeable membrane for X-ray lithographic mask
TW414957B (en) X-ray mask and method of fabricating the same
US5164221A (en) Forming die manufacturing method
JP3437389B2 (en) Mask membrane for electron beam and X-ray lithography
KR20010070195A (en) Method of producing diamond film for lithography
JPH0194347A (en) Manufacture of mask for radiation lithography
JP2883400B2 (en) X-ray mask manufacturing method
US5089085A (en) Silicon carbide membrane for x-ray lithography and method for the prepartion thereof
JP2790900B2 (en) Method for manufacturing a composite film composed of SiC and Si &lt;3&gt; N &lt;4&gt; and method for manufacturing a mask for X-ray lithography