JPH05326037A - Battery - Google Patents

Battery

Info

Publication number
JPH05326037A
JPH05326037A JP4148685A JP14868592A JPH05326037A JP H05326037 A JPH05326037 A JP H05326037A JP 4148685 A JP4148685 A JP 4148685A JP 14868592 A JP14868592 A JP 14868592A JP H05326037 A JPH05326037 A JP H05326037A
Authority
JP
Japan
Prior art keywords
battery
air
thin film
positive electrode
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4148685A
Other languages
Japanese (ja)
Inventor
Shunichi Shimatani
俊一 島谷
Minoru Ezoe
実 江副
Kazuyuki Yakura
和幸 矢倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP4148685A priority Critical patent/JPH05326037A/en
Publication of JPH05326037A publication Critical patent/JPH05326037A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/02Details

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To prevent moisture of an electrolyte solution in a battery from evaporating and to suitably maintain internal resistance inside the battery and a discharge characteristic by arranging a polyelectrolyte thin film. CONSTITUTION:In a battery 1 wherein an air pole 5 the active material of which is oxygen is arranged inside a positive electrode vessel 2 provided with air holes 21, a polyelectrolyte thin film 7 containing a functional group to be dissociated from a principal chain or a side chain in an aqueous solution is interposed in a clearance between the air pole 5 and the positive electrode vessel 2. A composite film S may be formed by supporting a fine porous film 10 with the polyelectrolyte thin film 7. An air diffusion porous body may be interposed in a clearance between the composite film S and the air pole 5 side and/or the positive electrode vessel 2 inside. A polytetrafluoroethylene porous film may also be arranged adjacent to the air pole 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は電池に係り、その目的
は湿度等外気の環境条件が変化しても電池内の重量変化
や電池の持つ作動電圧等の変化が小さく、環境変化によ
る影響を受けにくい重負荷放電特性と高低湿の雰囲気下
での長期放電特性を兼ね備えた電池の提供にある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery, and its object is to reduce the influence of the environmental change even if the environmental conditions of the outside air such as humidity are changed, and the change of the weight inside the battery and the operating voltage of the battery are small. It is to provide a battery having both a heavy load discharge characteristic that is difficult to receive and a long-term discharge characteristic in an atmosphere of high and low humidity.

【0002】[0002]

【発明の背景】現在、マンガン乾電池に代わる強力タイ
プの電池として「アルカリ電池」の使用が主流となって
きている。この「アルカリ電池」は電解液として30〜40
%の水酸化カリウムを用いたもので、モータ用やランプ
用電源として続けて使用でき、大電流の連続放電にも適
した高性能の電池であり、正極に用いる活性物質の種類
により「酸化銀電池」、「アルカリマンガン電池」、或
いは「水銀電池」などに分別される。
BACKGROUND OF THE INVENTION At present, the use of "alkaline batteries" is becoming the mainstream as a powerful type battery replacing manganese dry batteries. This "alkaline battery" has an electrolyte of 30-40
% Of potassium hydroxide, it is a high-performance battery that can be continuously used as a power source for motors and lamps and is suitable for continuous discharge of large current. Batteries "," alkaline manganese batteries ", or" mercury batteries "are classified.

【0003】しかし、これらアルカリ電池においても種
々の問題が存在した。つまり、「酸化銀電池」では原料
とされる「銀」の価格の変動が大きいため、長期に渡っ
て安定した供給ができないという問題があり、また「ア
ルカリマンガン電池」では、使用している間に次第に電
圧が低下してくるといった問題があった。一方「水銀電
池」は、「酸化銀電池」や「アルカリマンガン電池」に
比べると容量が大きく、しかも放電すると正極の水銀が
還元されて内部抵抗が下がるので「酸化銀電池」より電
圧を一定に保ちやすいといった優れた性能を有するが、
使用済電池の回収方法や焼却処理などに充分な注意が必
要とされ、環境汚染上の問題から、この製造が控えられ
てきているのが現状である。そこで近年では水銀などの
重金属をほとんど使用せず、環境汚染等の問題のない電
池として、「燃料電池」や「空気電池」に着目されるよ
うになってきている。
However, these alkaline batteries also have various problems. In other words, the "silver oxide battery" has a problem that the price of "silver", which is a raw material, fluctuates so much that a stable supply cannot be provided over a long period of time. However, there was a problem that the voltage gradually decreased. On the other hand, the "mercury battery" has a larger capacity than the "silver oxide battery" and "alkaline manganese battery", and moreover, when discharged, mercury in the positive electrode is reduced and the internal resistance decreases, so the voltage is more constant than the "silver oxide battery". It has excellent performance that it is easy to keep,
Due to the problem of environmental pollution, it is the current situation that the production of such batteries has been refrained from due to the environmental pollution problem. Therefore, in recent years, attention has been paid to "fuel cells" and "air cells" as batteries that hardly use heavy metals such as mercury and have no problem of environmental pollution.

【0004】[0004]

【従来の技術】この「燃料電池」は、負極に送り込む水
素を燃料として、正極に送り込む酸素を酸化剤として電
解液の中で反応させる仕組みになっており、宇宙開発や
海底作業などの用途において非常に注目されている次世
代型の電池である。また、「空気電池」は前記した「燃
料電池」の負極の水素を亜鉛とした半燃料型のボタン電
池であり、図15に示すように内部に空気を拡散させる拡
散紙(k) 、空気の出入りを制御し、漏液の防止を行う撥
水膜(c) 、空気極(b) 、セロハンセパレーター(s) が配
設された正極容器(p) と、電解液と亜鉛粉末との混合体
からなる負極亜鉛(z) が設けられた負極容器(m) とがそ
れぞれガスケット(g) を介して封口された構成とされて
いる。この空気電池(E)では、正極容器(p) の底部に空
気孔(a) が設けられており、この空気孔(a) のシール
(t) を剥がして、空気を自然に取り入れ、その酸素を活
性物質として使用するものであった。
2. Description of the Related Art This "fuel cell" has a mechanism in which hydrogen sent to the negative electrode is used as a fuel and oxygen sent to the positive electrode is reacted in an electrolytic solution as an oxidant, and is used in applications such as space development and undersea work. It is a next-generation battery that has received a great deal of attention. Further, the "air cell" is a semi-fuel type button cell in which hydrogen of the negative electrode of the "fuel cell" is zinc, and as shown in FIG. 15, a diffusion paper (k) for diffusing air inside, A positive electrode container (p) with a water-repellent film (c) that controls entry and exit to prevent liquid leakage, an air electrode (b), and a cellophane separator (s), and a mixture of electrolyte and zinc powder. And a negative electrode container (m) provided with a negative electrode zinc (z) composed of (1) and (2) are respectively sealed via a gasket (g). In this air battery (E), an air hole (a) is provided at the bottom of the positive electrode container (p), and the air hole (a) is sealed.
The (t) was peeled off, air was taken in naturally, and the oxygen was used as an active substance.

【0005】このような構成からなる空気電池(E)で
は、外部環境による影響を受けやすく、特に湿度の変化
により空気極(b) から水蒸気の出入りが行われるため、
電池の性能に影響を与えてしまう結果となっていた。つ
まり、電解液の持つ相対湿度より外部の相対湿度の方が
高い場合には、外気の湿気が電池内に取り込まれてしま
うため電解液濃度が低下し、放電性能の低下、電解液の
漏液等が生じてしまい、逆に外部の相対湿度が電解液の
相対湿度以下の場合には電解液の蒸発が起こり、電池内
内部抵抗が増大し電池寿命(長期間放置した後の電池特
性)が劣るなどの課題が生じていた。そこで、このよう
な相対湿度による影響を軽減させるため、空気極(b) と
空気孔(a) との間に設けられる膜についての研究が進め
られており、シリコン系の均一な薄膜或いは多孔性膜と
有機化合物とを複合化させた膜などの開発が行われてい
る。
In the air battery (E) having such a structure, it is easily affected by the external environment, and in particular, water vapor enters and leaves the air electrode (b) due to a change in humidity.
As a result, the performance of the battery is affected. In other words, when the relative humidity of the outside is higher than the relative humidity of the electrolyte, the humidity of the outside air is taken into the battery, so the concentration of the electrolyte decreases, the discharge performance decreases, and the electrolyte leaks. If the external relative humidity is less than or equal to the relative humidity of the electrolytic solution, the electrolytic solution will evaporate, increasing the internal resistance of the battery and increasing the battery life (battery characteristics after being left for a long time). There were problems such as inferiority. Therefore, in order to reduce the influence of such relative humidity, research is underway on a film provided between the air electrode (b) and the air hole (a), and a silicon-based uniform thin film or porous film is used. The development of a film in which a film and an organic compound are combined is being developed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、一般に
高分子のフィルムや膜では、酸素よりも水蒸気をよく透
過させる性質があり、親水性の素材はもちろん、フッ素
樹脂のような疎水性の素材さえも選択的に水蒸気を通す
傾向にある。従って、酸素透過性を向上させるため薄膜
化したり、シリコン樹脂のような酸素透過性の高い膜を
用いても、やはり水蒸気の方が酸素よりも多く透過され
てしまう結果となっていた。そのため、このような膜を
電池に用いた場合、前記したように、電池内外における
水蒸気の透過が避けられないため、たとえ活性物質であ
る酸素を多く取り入れて高い電流値を得ようとしても、
長期保存性や寿命、放電特性などの性質が低下してしま
うという問題が存在した。そこで業界では、水蒸気の透
過を抑制し、選択的に酸素のみを透過させることがで
き、且つ湿度等の外気の環境条件が変化しても優れた特
性を示すことのできる電池の創出が望まれていた。
However, in general, a polymer film or membrane has a property of allowing water vapor to permeate better than oxygen, so that not only hydrophilic materials but also hydrophobic materials such as fluororesins can be used. It tends to selectively pass water vapor. Therefore, even if the film is thinned to improve the oxygen permeability or a film having a high oxygen permeability such as a silicone resin is used, the result is that more water vapor is permeated than oxygen. Therefore, when such a membrane is used in a battery, as described above, permeation of water vapor inside and outside the battery is unavoidable, so even if a large amount of oxygen, which is an active substance, is taken in to obtain a high current value,
There has been a problem that properties such as long-term storability, life and discharge characteristics are deteriorated. Therefore, in the industry, it is desired to create a battery that can suppress the permeation of water vapor, selectively permeate only oxygen, and exhibit excellent characteristics even when the environmental conditions of the outside air such as humidity change. Was there.

【0007】[0007]

【課題を解決するための手段】この発明では空気孔が設
けられてなる正極容器の内側に酸素を活性物質とする空
気極が配設されてなる電池であって、前記空気極と正極
容器との間隙には主鎖若しくは側鎖に水溶液中で解離す
る官能基を含有する高分子電解質薄膜が介在されてなる
ことを特徴とする電池を提供することにより上記従来の
課題を悉く解消する。
According to the present invention, there is provided a battery in which an air electrode having oxygen as an active substance is provided inside a positive electrode container having an air hole, the air electrode and the positive electrode container. By providing a battery in which a polymer electrolyte thin film containing a functional group that dissociates in an aqueous solution in its main chain or side chain is interposed in the gap, the above-mentioned conventional problems are alleviated.

【0008】[0008]

【作用】水蒸気を保持する能力の高い親水性素材で、特
に水と強い水和構造を形成する解離基を有する高分子電
解質薄膜を正極容器内側と空気極との間隙に介在させる
ことにより、電池内電解液からの水分の蒸発を防止し、
電池内の内部抵抗や放電性能を好適に維持させることが
できる。特に、カルボキシル基、スルホン基若しくはこ
れらの金属塩、1〜3級アミノ基若しくはこれらの金属
塩又はアンモニウム塩のうちの少なくとも一つ以上を主
鎖若しくは側鎖に含有する高分子電解質薄膜を用いる
と、水の蒸発の防止がより一層効果的に発現される。ま
た、高分子電解質薄膜に微多孔膜を支持させて複合膜と
することにより、水分の蒸発の防止とともに、酸素の透
過性を良好に維持させることができ、特に高分子電解質
薄膜を空気極側に、微多孔膜を正極容器内側に配設する
とその効果が一層顕著に発現される。高分子電解質薄膜
と正極容器内側との間隙、又は/及び高分子電解質薄膜
と空気極との間隙に空気拡散多孔体を設ける構成とした
場合には酸素をより効果的に空気極に送り込むことがで
きる。さらに、空気極にポリテトラフルオロエチレン
(PTFE)多孔膜を隣設させる構造とした場合には高
い撥水性を発現させることができる。
[Function] A battery is formed by interposing a polymer electrolyte thin film having a dissociative group that forms a strong hydration structure with water in a gap between the inside of the positive electrode container and the air electrode. Prevents evaporation of water from the internal electrolyte,
It is possible to suitably maintain the internal resistance and discharge performance in the battery. In particular, when a polymer electrolyte thin film containing at least one or more of a carboxyl group, a sulfone group or a metal salt thereof, a primary to tertiary amino group, a metal salt thereof or an ammonium salt in a main chain or a side chain is used. The prevention of water evaporation is more effectively exhibited. In addition, by supporting a microporous membrane on the polymer electrolyte thin film to form a composite membrane, it is possible to prevent evaporation of water and maintain good oxygen permeability. In addition, when the microporous membrane is arranged inside the positive electrode container, the effect is more remarkably exhibited. When the air diffusion porous body is provided in the gap between the polymer electrolyte thin film and the inside of the positive electrode container and / or the gap between the polymer electrolyte thin film and the air electrode, oxygen can be more effectively sent to the air electrode. it can. Furthermore, when the structure is such that a polytetrafluoroethylene (PTFE) porous film is provided adjacent to the air electrode, high water repellency can be exhibited.

【0009】[0009]

【発明の構成】以下、この発明に係る電池を図面に基づ
いて説明する。図1はこの発明に係る電池の一実施例を
示した模式断面説明図であり、図示するように空気孔(2
1)が設けられた正極容器(2) と負極亜鉛(31)が内填され
た負極容器(3) とがガスケット(4) を介して封口されて
いる。正極容器(2) の内側には空気極(5) 、セパレータ
(6) が設けられており、空気孔(21)を介して取り入れら
れた空気中の酸素が活性物質とされる。(7) は主鎖若し
くは側鎖に水溶液中で解離する官能基を含有する高分子
電解質薄膜である。
DETAILED DESCRIPTION OF THE INVENTION A battery according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional explanatory view showing an embodiment of the battery according to the present invention.
A positive electrode container (2) provided with (1) and a negative electrode container (3) filled with negative electrode zinc (31) are sealed via a gasket (4). Inside the positive electrode container (2), the air electrode (5) and separator
(6) is provided, and oxygen in the air taken in through the air holes (21) is used as the active substance. (7) is a polymer electrolyte thin film having a main chain or a side chain containing a functional group that dissociates in an aqueous solution.

【0010】高分子電解質薄膜(7) としては、水蒸気を
保持する能力の高い親水性素材で、特に水と強い水和構
造を形成する解離基を有するものであればいずれのもの
でも限定されることなく、好適に使用できる。水溶液中
で解離する官能基としては、カルボキシル基(−COO
H)、スルホン基(−SO3H)若しくはこれらの金属
塩、1〜3級アミノ基(−NH2 ,−NH−,−N−)
若しくはこれらの金属塩又はアンモニウム塩等が例示さ
れ、これらのうちの少なくとも一つ以上を主鎖若しくは
側鎖に含有する高分子薄膜が、電池内電解液から蒸発す
る水分をトラップし、水の蒸発を効果的に防止できる性
能を有するため好ましく使用される。この発明におい
て、このような官能基の含有量は特に限定されないが、
ランダムで共重合される際には少なくとも50 mol%以
上存在しないと、水をトラップする効果が発現されない
ため好ましくない。
The polymer electrolyte thin film (7) is not particularly limited as long as it is a hydrophilic material having a high ability to retain water vapor and has a dissociative group that forms a strong hydration structure with water. It can be used suitably without As a functional group that dissociates in an aqueous solution, a carboxyl group (-COO
H), sulfone group (--SO3 H) or a metal salt thereof, primary to tertiary amino group (-NH 2, -NH -, - N-)
Alternatively, these metal salts or ammonium salts are exemplified, and a polymer thin film containing at least one or more of these in the main chain or side chain traps the water vaporized from the electrolytic solution in the battery and evaporates the water. It is preferably used because it has the ability to effectively prevent In the present invention, the content of such a functional group is not particularly limited,
When at least 50 mol% is not present during random copolymerization, the effect of trapping water is not exhibited, which is not preferable.

【0011】前述した官能基を主鎖若しくは側鎖に含有
する高分子電解質薄膜(7) は、アクリル酸、メタクリル
酸のようにモノマー状態から簡単に単独で重合、若しく
は他のモノマーと共重合して得られる。或いは、他のモ
ノマーと共重合して得られるものや、一般のポリマー
に、スルホン基などを後から化学的に導入して得られる
もの、電子線、ガンマー線等の放射線や紫外線などによ
りポリマーに反応活性点を生じさせ、前述した官能基を
含んだモノマーをグラフト若しくはブロック共重合させ
て得られるもの等が限定されることなく好適に使用され
る。
The polymer electrolyte thin film (7) containing the above-mentioned functional group in the main chain or side chain is easily polymerized alone or copolymerized with other monomers from a monomer state such as acrylic acid and methacrylic acid. Obtained. Alternatively, those obtained by copolymerization with other monomers, those obtained by chemically introducing a sulfone group or the like into a general polymer later, and the polymers obtained by radiation such as electron beam or gamma ray or ultraviolet rays. Those obtained by graft- or block-copolymerizing the above-mentioned monomer containing a functional group, which generates a reactive site, are preferably used without limitation.

【0012】このようなポリマーは、適当な溶剤に溶か
したり、或いはアクリル酸など水に可溶なポリマー若し
くはコポリマーの場合では水による膨潤を防ぐため、適
度に架橋剤などで架橋させ、薄膜にして、この発明にお
いて使用される高分子電解質薄膜(7) とされる。或い
は、前述したグラフトによる共重合の場合には、始めに
溶剤に可溶か押し出し成形可能なポリマーで薄膜にした
後、表面層のみに官能基を導入し、高分子電解質薄膜
(7) とされてもよい。得られた高分子電解質薄膜(7)
は、厚みが10μm以下、より好ましくは5μm以下とさ
れるのが望ましい。この理由は10μmを越えると、高分
子電解質薄膜(7) が空気極(5) への酸素の供給の妨げと
なってしまうため好ましくないからである。また、この
高分子電解質薄膜(7) は、水存在下で膨潤し、ミクロな
空隙を有する構造であってもよく、特に限定はされな
い。
Such a polymer is dissolved in a suitable solvent, or in the case of a water-soluble polymer or copolymer such as acrylic acid, in order to prevent swelling by water, it is appropriately crosslinked with a crosslinking agent or the like to form a thin film. The polymer electrolyte thin film (7) used in the present invention. Alternatively, in the case of the above-mentioned graft copolymerization, a thin film of a polymer soluble in a solvent or an extrudable polymer is first introduced, and then a functional group is introduced only in the surface layer to form a polymer electrolyte thin film.
(7) may be used. Obtained polymer electrolyte thin film (7)
Is preferably 10 μm or less, more preferably 5 μm or less. The reason is that if the thickness exceeds 10 μm, the polymer electrolyte thin film (7) hinders the supply of oxygen to the air electrode (5), which is not preferable. The polymer electrolyte thin film (7) may have a structure that swells in the presence of water and has microscopic voids, and is not particularly limited.

【0013】このような高分子電解質薄膜(7) は、これ
自体単独で電池(1) に配設されても、或いは強度的に弱
い場合には図2に示すように微多孔膜(10)を支持させて
複合膜(S) として配設されてもいずれの場合でもよく、
用いる高分子電解質薄膜(7)の強度等により適宜決定さ
れればよい。また、図3はこの発明に係る電池の他の実
施例を示した断面図であり、この発明では、図示するよ
うに高分子電解質薄膜(7) と微多孔膜(10)とによる複合
膜(S)と正極容器(2) 内側との間隙に空気を電池内部に
拡散させる空気拡散多孔体(8)を介在させて、酸素の透
過性をより向上させてもよい。この空気拡散多孔体(8)
としてはナイロン、ポリプロピレン等からなる不織布で
厚みが 100〜200 μm 程度の網目のあらい多孔性のもの
が好適な実施例として例示されるが特に限定はされな
い。また図4に示すように、高分子電解質薄膜(7) と微
多孔膜(10)とによる複合膜(S)と空気極(5) との間隙に
介在させておいてもよく、或いは図5に示すように複合
膜(S)と正極容器(2) 内側との間隙、及び複合膜(S)と空
気極(5) との間隙にそれぞれ介在させて複層構造として
もよく、或いは、図6乃至図7に示すように高分子電解
質薄膜(7) 単体の空気極(5)側又は正極容器(2) 内側に
空気拡散多孔体(8) を介在させておいてもよく、電池の
用途、性能等に応じて適宜設定すればよい。
Such a polymer electrolyte thin film (7) may be disposed in the battery (1) by itself, or if it is weak in strength, as shown in FIG. It may be arranged as a composite membrane (S) by supporting
It may be appropriately determined depending on the strength of the polymer electrolyte thin film (7) used. FIG. 3 is a cross-sectional view showing another embodiment of the battery according to the present invention. In the present invention, as shown in the figure, a composite membrane (composite membrane comprising a polymer electrolyte thin film (7) and a microporous membrane (10) ( Oxygen permeability may be further improved by interposing an air diffusion porous body (8) for diffusing air inside the battery in the gap between S) and the inside of the positive electrode container (2). This air diffusion porous body (8)
As the non-woven fabric, a non-woven fabric made of nylon, polypropylene or the like and having a coarse mesh having a thickness of about 100 to 200 μm is exemplified as a preferred example, but is not particularly limited. Further, as shown in FIG. 4, it may be interposed in the gap between the composite electrode (S) formed by the polymer electrolyte thin film (7) and the microporous membrane (10) and the air electrode (5), or in FIG. As shown in Fig. 7, a multi-layer structure may be provided by interposing them in the gap between the composite membrane (S) and the inside of the positive electrode container (2) and in the gap between the composite membrane (S) and the air electrode (5), respectively, or As shown in FIGS. 6 to 7, an air diffusion porous body (8) may be provided inside the air electrode (5) side of the polymer electrolyte thin film (7) alone or inside the positive electrode container (2). It may be appropriately set according to the performance and the like.

【0014】さらに、図8乃至図14に示すように高分子
電解質薄膜(7) 単体で、或いは複合膜(S) として、また
はこれらの空気極(5) 側及び/又は正極容器(2) 内側に
空気拡散多孔体(8) を介在させた状態で、撥水性の高い
ポリテトラフルオロエチレン多孔膜(9) を空気極(5) に
隣設させ、より電解質液の漏洩を防ぐ効果を向上させる
構造としてもよい。
Further, as shown in FIGS. 8 to 14, the polymer electrolyte thin film (7) is used alone, as a composite film (S), or on the air electrode (5) side and / or inside the positive electrode container (2). In the state where the air diffusion porous body (8) is interposed, the polytetrafluoroethylene porous membrane (9) with high water repellency is placed next to the air electrode (5) to further improve the effect of preventing leakage of electrolyte solution. It may be a structure.

【0014】[0014]

【実施例】以下、この発明に係る電池の効果を実施例に
より、一層明確に説明する。 (実施例1)多孔性ポリスルホン(PS)微多孔膜(日
東電工(株)製,厚み50μm )上に5%ポリエチレンイ
ミン水溶液を塗布した後、トリレンジイソシアネートで
架橋させてカチオン性の荷電を持つ高分子電解質薄膜を
調整した。得られた高分子電解質薄膜と微多孔膜との複
合膜を図14に示す電池と同様に設計された電池(直径35
mm、高さ13mm)に配設して実施例1の電池とした。
尚、この電池内には厚み150μmのポリプロピレン製
の不織布を空気拡散多孔体として、複合膜と正極容器内
側との間隙及び複合膜と空気極との間隙に介在させてお
いた。さらに空気極にはポリテトラフルオロエチレン多
孔膜を隣設させておいた。
EXAMPLES The effects of the battery according to the present invention will be described more clearly below with reference to examples. (Example 1) A 5% polyethyleneimine aqueous solution was applied onto a porous polysulfone (PS) microporous membrane (manufactured by Nitto Denko Corporation, thickness: 50 μm) and then crosslinked with tolylene diisocyanate to have a cationic charge. A polymer electrolyte thin film was prepared. A composite membrane of the obtained polymer electrolyte thin film and microporous membrane was designed in the same manner as the battery shown in FIG. 14 (diameter 35
mm, height 13 mm) to obtain the battery of Example 1.
In this battery, a polypropylene non-woven fabric having a thickness of 150 μm was used as an air diffusion porous body in the gap between the composite membrane and the inside of the positive electrode container and in the gap between the composite membrane and the air electrode. Further, a polytetrafluoroethylene porous film was provided adjacent to the air electrode.

【0015】(実施例2)スルホン化ポリエーテルスル
ホン(S−PES)の4%2−メトキシエタノール溶液
をポリテトラフルオロエチレン微多孔膜(孔径0.05μ
m)に塗布して、アニオン性の高分子電解質薄膜を微多
孔膜上に形成させて複合膜を形成した。得られた複合膜
を実施例1と同様の電池に実施例1と同様に配設して実
施例2の電池とした。
(Example 2) A 4% 2-methoxyethanol solution of sulfonated polyether sulfone (S-PES) was added to a polytetrafluoroethylene microporous membrane (pore size: 0.05 μm).
m), and an anionic polyelectrolyte thin film was formed on the microporous membrane to form a composite membrane. The obtained composite film was arranged in the same battery as in Example 1 in the same manner as in Example 1 to obtain a battery of Example 2.

【0016】(実施例3)ポリエチレン微多孔膜(孔径
0.1μm)に電子線を照射してラジカルを発生させた後、
アクリル酸モノマーをグラフト重合させてグラフト化率
60%の荷電を有する高分子電解質薄膜を微多孔膜上に形
成させて複合膜を形成した。得られた複合膜を実施例1
と同様の電池に実施例1と同様に配設して実施例3の電
池とした。
(Example 3) Polyethylene microporous membrane (pore size
(0.1 μm) to generate a radical by irradiating with an electron beam,
Grafting rate by graft polymerization of acrylic acid monomer
A polyelectrolyte thin film having a charge of 60% was formed on the microporous film to form a composite film. The obtained composite membrane was used in Example 1.
A battery similar to that of Example 1 was arranged in the same battery as in Example 3 to obtain a battery of Example 3.

【0017】(実施例4)実施例1と同様の複合膜を図
11に示す電池と同様に設計された電池(直径35mm、高
さ13mm)に配設して実施例4の電池とした。尚、この
電池内には厚み150μmのポリプロピレン製の不織布
を空気拡散多孔体として、複合膜と空気極との間隙にの
み介在させておいた。さらに空気極にはポリテトラフル
オロエチレン多孔膜を隣設させておいた。
(Embodiment 4) A composite membrane similar to that of Embodiment 1 is illustrated.
The battery of Example 4 was arranged in a battery (diameter 35 mm, height 13 mm) designed similarly to the battery shown in FIG. In this battery, a nonwoven fabric made of polypropylene having a thickness of 150 μm was used as an air diffusion porous body and was interposed only in the gap between the composite membrane and the air electrode. Further, a polytetrafluoroethylene porous film was provided adjacent to the air electrode.

【0017】(実施例5)実施例1と同様の複合膜を図
10に示す電池と同様に設計された電池(直径35mm、高
さ13mm)に配設して実施例5の電池とした。尚、この
電池内には厚み150μmのポリプロピレン製の不織布
を空気拡散多孔体として、複合膜と正極容器内側との間
隙にのみ介在させておいた。さらに空気極にはポリテト
ラフルオロエチレン多孔膜を隣設させておいた。
(Example 5) A composite membrane similar to that of Example 1 is illustrated.
The battery of Example 5 was arranged in a battery (diameter 35 mm, height 13 mm) designed similarly to the battery shown in 10. In this battery, a polypropylene non-woven fabric having a thickness of 150 μm was used as an air diffusion porous body and was interposed only in the gap between the composite membrane and the inside of the positive electrode container. Further, a polytetrafluoroethylene porous film was provided adjacent to the air electrode.

【0018】(比較例)複合膜に変えて、開孔比8%の
ポリテトラフルオロエチレン多孔膜を用いた以外は実施
例1と同様の電池を得た。
Comparative Example A battery was obtained in the same manner as in Example 1 except that a polytetrafluoroethylene porous film having an opening ratio of 8% was used instead of the composite film.

【0019】(試験例1)前記実施例1乃至5及び比較
例にて作成した高分子電解質薄膜と微孔膜との複合膜に
ついてそれぞれ酸素透過性速度(RO2)及び水蒸気透過
性速度(RH2O)を測定した。フィルムのガス透過性
の測定方法はASTM−D−1434−63,JIS−
Z0208で開示されている方法に基づいて行った。こ
の結果を表1にて示す。
Test Example 1 Oxygen permeability rate (RO2) and water vapor permeability rate (RH2O) of the composite membranes of the polymer electrolyte thin film and microporous membrane prepared in Examples 1 to 5 and Comparative Example, respectively. Was measured. The gas permeability of the film is measured by ASTM-D-1434-63, JIS-
It was performed based on the method disclosed in Z0208. The results are shown in Table 1.

【表1】 [Table 1]

【0020】(試験例2)前記実施例1乃至5及び比較
例にて得られた電池についてそれぞれ以下の各項目につ
いて試験した。 湿度60%/25℃、負荷130Ωの条件における連続放電
持続時間(hr)及び平均作動電圧(V) 。 湿度35%/25℃及び湿度80%/25℃下でそれぞれ長期
( 1500時間)保存した後の、電池内の水分の出入りによ
る電池の重量変化(mg)及び作動電圧(V) 。 この結果を表2に示す。
Test Example 2 The batteries obtained in Examples 1 to 5 and Comparative Example were tested for the following items. Continuous discharge duration (hr) and average operating voltage (V) under conditions of humidity 60% / 25 ° C and load 130Ω. Long-term under humidity 35% / 25 ℃ and humidity 80% / 25 ℃
(1,500 hours) The change in battery weight (mg) and operating voltage (V) due to moisture in and out of the battery after storage. The results are shown in Table 2.

【表2】 [Table 2]

【0022】[0022]

【発明の効果】以上詳述した如く、この発明は空気孔が
設けられてなる正極容器の内側に酸素を活性物質とする
空気極が配設されてなる電池であって、前記空気極と正
極容器との間隙には主鎖若しくは側鎖に水溶液中で解離
する官能基を含有する高分子電解質薄膜が介在されてな
ることを特徴とする電池であるから、前記実施例からも
明らかな如く、高分子電解質薄膜の有する高い親水能に
より電池内電解液からの水分の蒸発を防止し、電池内の
内部抵抗や放電性能を好適に維持させることができる。
特に、カルボキシル基、スルホン基若しくはこれらの金
属塩、1〜3級アミノ基若しくはこれらの金属塩又はア
ンモニウム塩のうちの少なくとも一つ以上を主鎖若しく
は側鎖に含有する高分子電解質薄膜を用いると、水の蒸
発の防止がより一層効果的に発現される。また、高分子
電解質薄膜に微多孔膜を複合させることにより、水分の
蒸発の防止とともに、酸素の透過性を良好に維持させる
ことができ、特に高分子電解質薄膜を空気極側に、微多
孔膜を正極容器内側に配設するとその効果が一層顕著に
発現される。高分子電解質薄膜と正極容器内側との間
隙、又は/及び高分子電解質薄膜と空気極との間隙に空
気拡散多孔体を設ける構成とした場合には酸素をより効
果的に空気極に送り込むことができる。さらに、空気極
にポリテトラフルオロエチレン(PTFE)多孔膜を隣
設させる構造とした場合には高い撥水性を発現させるこ
とができる。
As described in detail above, the present invention is a battery in which an air electrode having oxygen as an active substance is disposed inside a positive electrode container having air holes, wherein the air electrode and the positive electrode are Since the battery is characterized in that the polymer electrolyte thin film containing a functional group that dissociates in the main chain or side chains in an aqueous solution is interposed in the gap with the container, as is clear from the above examples, Due to the high hydrophilicity of the polymer electrolyte thin film, it is possible to prevent the evaporation of water from the electrolytic solution in the battery, and to appropriately maintain the internal resistance and discharge performance in the battery.
In particular, when a polymer electrolyte thin film containing at least one or more of a carboxyl group, a sulfone group or a metal salt thereof, a primary to tertiary amino group, a metal salt thereof or an ammonium salt in a main chain or a side chain is used. The prevention of water evaporation is more effectively exhibited. In addition, by combining a microporous membrane with the polymer electrolyte thin film, it is possible to prevent evaporation of water and to maintain good oxygen permeability. By arranging the inside of the positive electrode container, the effect is more remarkably exhibited. When the air diffusion porous body is provided in the gap between the polymer electrolyte thin film and the inside of the positive electrode container and / or the gap between the polymer electrolyte thin film and the air electrode, oxygen can be more effectively sent to the air electrode. it can. Furthermore, when the structure is such that a polytetrafluoroethylene (PTFE) porous film is provided adjacent to the air electrode, high water repellency can be exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る電池の一実施例を示した模式断
面説明図である。
FIG. 1 is a schematic cross-sectional explanatory view showing an embodiment of a battery according to the present invention.

【図2】この発明に係る電池の第一変更例を示した模式
断面説明図である。
FIG. 2 is a schematic cross-sectional explanatory view showing a first modified example of the battery according to the present invention.

【図3】この発明に係る電池の第二変更例を示した模式
断面説明図である。
FIG. 3 is a schematic cross-sectional explanatory view showing a second modified example of the battery according to the present invention.

【図4】この発明に係る電池の第三変更例を示した模式
断面説明図である。
FIG. 4 is a schematic cross-sectional explanatory view showing a third modified example of the battery according to the present invention.

【図5】この発明に係る電池の第四変更例を示した模式
断面説明図である。
FIG. 5 is a schematic cross-sectional explanatory view showing a fourth modified example of the battery according to the present invention.

【図6】この発明に係る電池の第五変更例を示した模式
断面説明図である。
FIG. 6 is a schematic cross-sectional explanatory view showing a fifth modified example of the battery according to the present invention.

【図7】この発明に係る電池の第六変更例を示した模式
断面説明図である。
FIG. 7 is a schematic cross-sectional explanatory view showing a sixth modified example of the battery according to the present invention.

【図8】この発明に係る電池の第七変更例を示した模式
断面説明図である。
FIG. 8 is a schematic cross-sectional explanatory view showing a seventh modified example of the battery according to the present invention.

【図9】この発明に係る電池の第八変更例を示した模式
断面説明図である。
FIG. 9 is a schematic cross-sectional explanatory view showing an eighth modified example of the battery according to the present invention.

【図10】この発明に係る電池の第九変更例を示した模式
断面説明図である。
FIG. 10 is a schematic cross-sectional explanatory view showing a ninth modified example of the battery according to the present invention.

【図11】この発明に係る電池の第十変更例を示した模式
断面説明図である。
FIG. 11 is a schematic cross-sectional explanatory view showing a tenth modified example of the battery according to the present invention.

【図12】この発明に係る電池の第十一変更例を示した模
式断面説明図である。
FIG. 12 is a schematic cross-sectional explanatory view showing an eleventh modified example of the battery according to the present invention.

【図13】この発明に係る電池の第十二変更例を示した模
式断面説明図である。
FIG. 13 is a schematic cross-sectional explanatory view showing a twelfth modified example of the battery according to the present invention.

【図14】この発明に係る電池の第十三変更例を示した模
式断面説明図である。
FIG. 14 is a schematic cross-sectional explanatory view showing a thirteenth modified example of the battery according to the present invention.

【図15】従来の電池を示した模式断面説明図である。FIG. 15 is a schematic cross-sectional explanatory view showing a conventional battery.

【符号の説明】[Explanation of symbols]

1 電池 2 正極容器 21 空気孔 5 空気極 7 高分子電解質薄膜 10 微多孔膜 8 空気拡散多孔体 9 ポリテトラフルオロエチレン多孔膜 S 複合膜 DESCRIPTION OF SYMBOLS 1 Battery 2 Positive electrode container 21 Air hole 5 Air electrode 7 Polymer electrolyte thin film 10 Microporous membrane 8 Air diffusion porous body 9 Polytetrafluoroethylene porous membrane S Composite membrane

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 空気孔が設けられてなる正極容器の内側
に酸素を活性物質とする空気極が配設されてなる電池で
あって、前記空気極と正極容器との間隙には主鎖若しく
は側鎖に水溶液中で解離する官能基を含有する高分子電
解質薄膜が介在されてなることを特徴とする電池。
1. A battery in which an air electrode having oxygen as an active substance is disposed inside a positive electrode container having an air hole, and a main chain or a gap is provided between the air electrode and the positive electrode container. A battery comprising a side chain and a polymer electrolyte thin film containing a functional group that dissociates in an aqueous solution.
【請求項2】 前記高分子電解質薄膜の水溶液中にて解
離する官能基がカルボキシル基、スルホン基若しくはこ
れらの金属塩、1〜3級アミノ基若しくはこれらの金属
塩又はアンモニウム塩のうちの少なくとも一つであるこ
とを特徴とする請求項1に記載の電池。
2. A functional group that dissociates in an aqueous solution of the polymer electrolyte thin film is at least one of a carboxyl group, a sulfone group or a metal salt thereof, a primary to tertiary amino group, or a metal salt or an ammonium salt thereof. The battery according to claim 1, wherein the battery is three.
【請求項3】 前記高分子電解質薄膜に微多孔膜が支持
されて複合膜とされてなることを特徴とする請求項1乃
至2に記載の電池。
3. The battery according to claim 1, wherein a microporous membrane is supported on the polymer electrolyte thin film to form a composite membrane.
【請求項4】 前記高分子電解質薄膜が空気極側に、微
多孔膜が空気孔側に配設されてなることを特徴とする請
求項3に記載の電池。
4. The battery according to claim 3, wherein the polymer electrolyte thin film is disposed on the air electrode side and the microporous membrane is disposed on the air hole side.
【請求項5】 前記複合膜と正極容器内側との間隙に空
気拡散多孔体が介在されてなることを特徴とする請求項
3乃至4に記載の電池。
5. The battery according to claim 3, wherein an air diffusion porous body is interposed in a gap between the composite membrane and the inside of the positive electrode container.
【請求項6】 前記複合膜と空気極との間隙に空気拡散
多孔体が介在されてなることを特徴とする請求項3乃至
5に記載の電池。
6. The battery according to claim 3, wherein an air diffusion porous body is interposed in a gap between the composite membrane and the air electrode.
【請求項7】 前記空気極にポリテトラフルオロエチレ
ン多孔膜が隣設されてなることを特徴とする請求項1乃
至6に記載の電池。
7. The battery according to claim 1, wherein a polytetrafluoroethylene porous membrane is provided adjacent to the air electrode.
JP4148685A 1992-05-14 1992-05-14 Battery Pending JPH05326037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4148685A JPH05326037A (en) 1992-05-14 1992-05-14 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4148685A JPH05326037A (en) 1992-05-14 1992-05-14 Battery

Publications (1)

Publication Number Publication Date
JPH05326037A true JPH05326037A (en) 1993-12-10

Family

ID=15458313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4148685A Pending JPH05326037A (en) 1992-05-14 1992-05-14 Battery

Country Status (1)

Country Link
JP (1) JPH05326037A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528420A (en) * 1998-08-28 2003-09-24 フオスター・ミラー・インコーポレイテツド Composite solid polymer electrolyte membrane
JP2005150008A (en) * 2003-11-19 2005-06-09 Nitto Denko Corp Fuel cell
US7550216B2 (en) 1999-03-03 2009-06-23 Foster-Miller, Inc. Composite solid polymer electrolyte membranes
US7862954B2 (en) 2003-11-19 2011-01-04 Aquafairy Corporation Fuel cell
JP5182559B2 (en) * 2006-01-16 2013-04-17 日本電気株式会社 Polymer electrolyte fuel cell
JP2014192065A (en) * 2013-03-28 2014-10-06 Nissan Motor Co Ltd Alkaline secondary battery
US9276301B2 (en) 2012-12-07 2016-03-01 Samsung Electronics Co., Ltd. Polymeric compound, oxygen permeable membrane, and electrochemical device
US9343786B2 (en) 2012-12-10 2016-05-17 Samsung Electronics Co., Ltd. Electrochemical device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528420A (en) * 1998-08-28 2003-09-24 フオスター・ミラー・インコーポレイテツド Composite solid polymer electrolyte membrane
US7550216B2 (en) 1999-03-03 2009-06-23 Foster-Miller, Inc. Composite solid polymer electrolyte membranes
JP2005150008A (en) * 2003-11-19 2005-06-09 Nitto Denko Corp Fuel cell
US7862954B2 (en) 2003-11-19 2011-01-04 Aquafairy Corporation Fuel cell
JP5182559B2 (en) * 2006-01-16 2013-04-17 日本電気株式会社 Polymer electrolyte fuel cell
US9276301B2 (en) 2012-12-07 2016-03-01 Samsung Electronics Co., Ltd. Polymeric compound, oxygen permeable membrane, and electrochemical device
US9343786B2 (en) 2012-12-10 2016-05-17 Samsung Electronics Co., Ltd. Electrochemical device
JP2014192065A (en) * 2013-03-28 2014-10-06 Nissan Motor Co Ltd Alkaline secondary battery

Similar Documents

Publication Publication Date Title
KR101498330B1 (en) Battery separator and method for producing same, and lithium ion secondary battery and method for producing same
KR100676558B1 (en) Separator for a battery having a zinc electrode
Patnaik et al. Proton exchange membrane from the blend of poly (vinylidene fluoride) and functional copolymer: Preparation, proton conductivity, methanol permeability, and stability
JP5179410B2 (en) Battery separator and manufacturing method thereof, and lithium ion secondary battery and manufacturing method thereof
JPH05326037A (en) Battery
WO1994018711A1 (en) Diaphragm for cell, and cell
EP1523515A1 (en) Porous polymeric membrane comprising vinylidene fluoride
JPH05326035A (en) Battery
JPH05326036A (en) Battery
JPS6051505A (en) Gas selective composite membrane
JPS62252067A (en) Composite separator for battery
JP5249688B2 (en) Battery separator and manufacturing method thereof, and lithium ion secondary battery and manufacturing method thereof
JPS6261275A (en) Air cell
JP2002343450A (en) Zinc air battery
JP2778078B2 (en) Battery
JPH04188575A (en) Manufacture of battery
CN118173387A (en) PTFE composite diaphragm, preparation method and supercapacitor
JPH05198318A (en) Air battery
JP2757383B2 (en) Battery
JPH0475253A (en) Manufacture of battery
JPH0287459A (en) Battery
JPS5933762A (en) Air electrode and its manufacture
JPH01267974A (en) Battery
JPH0644954A (en) Battery and selective permeation film used therefor
JP2007280681A (en) Solid polymer fuel cell and method of manufacturing electrode base material used for its solid polymer fuel cell