JPH05326014A - Sealed square alkaline storage battery - Google Patents

Sealed square alkaline storage battery

Info

Publication number
JPH05326014A
JPH05326014A JP4127068A JP12706892A JPH05326014A JP H05326014 A JPH05326014 A JP H05326014A JP 4127068 A JP4127068 A JP 4127068A JP 12706892 A JP12706892 A JP 12706892A JP H05326014 A JPH05326014 A JP H05326014A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode plate
storage battery
alkaline storage
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4127068A
Other languages
Japanese (ja)
Inventor
Ryoji Tsuboi
良二 坪井
Hideaki Itou
秀晶 伊藤
Mitsuru Namihana
満 浪花
Shingo Tsuda
信吾 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4127068A priority Critical patent/JPH05326014A/en
Publication of JPH05326014A publication Critical patent/JPH05326014A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To lower the inner resistance while retaining the advantages of an alkaline storage battery by forming a water repelling layer on the surface of a negative electrode. CONSTITUTION:A sealed alkaline storage battery is provided with electricity generating elements consisting of a positive electrode plate 4, a negative electrode plate 6, and a separator 5 which insulates the positive electrode 4 and the negative electrode 6 electrically, contains an electrolytic solution necessary for charge-discharge reaction, has proper space inside, and is chemically stable against alkali. The outer most sides in right and left of the electrode group of the electricity generating elements are composed of the negative electrode plate 6 and at the same time water repelling layer of fluororein, etc., is formed on the negative electrode plate 6 except the outside electrode faces of the negative electrode plate 6 in the right and left outer most sides. The outside electrode faces of the negative electrode plate in the right and left outer most sides directly touch a metal case 1 and the positive pole plate 4 is connected with a cover 2 made of a metal through a lead 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、角型密閉アルカリ蓄電
池に関し、更に詳細には、負極の活物質に水素貯蔵合金
中の水素を用いた角型密閉アルカリ蓄電池に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a prismatic sealed alkaline storage battery, and more particularly to a prismatic sealed alkaline storage battery using hydrogen in a hydrogen storage alloy as an active material of a negative electrode.

【0002】[0002]

【従来の技術】近年、特に普及の著しいAV機器、通信
機をはじめとする各種のポータブル電子機器は、小型軽
量化、薄型化傾向が強くなるとともに、これ等の機器側
からの電源電池に対しても高エネルギー密度化の要望が
増大している。これ等の電源には主として密閉式のアル
カリ蓄電池を用いている場合が多く、電源電池に対して
も高容量密度化、省スペース化の要望が強い。
2. Description of the Related Art In recent years, various portable electronic devices such as AV devices and communication devices, which have become extremely popular, are becoming more and more compact and lighter and thinner. However, there is an increasing demand for higher energy density. In many cases, a sealed alkaline storage battery is mainly used as the power source, and there is a strong demand for the power source battery to have a high capacity density and space saving.

【0003】現在密閉式のアルカリ蓄電池を代表する電
池系はニッケル・カドミウム蓄電池であり、これ等の要
望に応じるために、この電池系は、近年急速に高容量密
度化が施されてきた。また省スペース化を目的として、
外形形状も一般的な円筒形から角形形状にしたニッケル
・カドミウム蓄電池も市販され始めた。
At present, a battery system that represents a sealed alkaline storage battery is a nickel-cadmium storage battery, and in order to meet these demands, this battery system has been rapidly increased in capacity in recent years. For the purpose of space saving,
Nickel-cadmium storage batteries whose outer shape has changed from a general cylindrical shape to a rectangular shape have also begun to be marketed.

【0004】種々のポータブル機器における電池収納部
の形状は、直方体のスペースであることが多く、このス
ペースに円筒形の電池を収容して用いる場合、隣接する
電池間には、利用できない余分な空間が生じる。これに
対し、角形の電池を用いれば、余分な空間を殆んど必要
としない。従って、適切な角形電池を用いると、円筒形
電池に比べて、約30%の実装スペースの低減が可能で
ある。
The shape of the battery storage portion in various portable devices is often a rectangular parallelepiped space, and when a cylindrical battery is stored in this space and used, an extra space that cannot be used between adjacent batteries is used. Occurs. On the other hand, if a prismatic battery is used, almost no extra space is needed. Therefore, when a suitable prismatic battery is used, the mounting space can be reduced by about 30% as compared with the cylindrical battery.

【0005】また、角形電池は、その厚さにおいても、
円筒形電池に比べ容易に小さくすることができ、薄い電
池収納スペースを必要とする機器に適している。このよ
うな観点からニッケル・カドミウム蓄電池が実用化され
はじめたが、さらに容量密度を向上させようとした場合
は、ニッケル・カドミウム蓄電池よりもさらに高エネル
ギー密度が期待される材料を適用した新電池系の開発が
重要である。
The prismatic battery is also
It can be easily made smaller than a cylindrical battery, and is suitable for devices that require a thin battery storage space. From this point of view, nickel-cadmium storage batteries have begun to be put into practical use, but if the capacity density is to be further improved, a new battery system that uses a material that is expected to have a higher energy density than nickel-cadmium storage batteries Development is important.

【0006】最近、高密度に水素を吸蔵できる水素貯蔵
合金負極がカドミウム極よりも高エネルギー密度を有す
る点から、これを利用した高容量密度の金属酸化物−水
素化物蓄電池の開発が注目されている。そこで、この電
池系を角形電池に応用して、高容量かつ高スペース効率
の電池開発が行なわれてきた。しかし、近年のポータブ
ル機器用電源への適用に際しては更に高充電効率、急速
充電性能を有していることが強く要望される。水素貯蔵
合金を用いる新しい電池系の角形密閉電池を開発するに
は、これまでの電池構成技術の他に、新しい電池構成法
および構成材料の製法を付加してこれ等の要望を満たす
必要がある。そのためには、例えば以下の2つの技術的
課題を解決せねばならない。 1)負極の集電方式に関わる課題 高充電効率の角形電池の場合、複数枚の正負極を重ねて
極板群を構成することが好ましい。しかし、水素貯蔵合
金電極に集電のためのリード等を溶接する場合溶接部分
の熱で発火するなどの安全面での問題がある。特に、合
金電極に水素が吸蔵されている場合はさらに発火しやす
い傾向がある。また、負極より1本ずつリードを取り出
し、それらを1ヶ所で溶接し群外側の負極と外装金属ケ
ースを圧接触させて集電を行なう従来の技術を適用した
だけでは1点の溶接点へ電流が集中するため、電気抵抗
が増大し、電池の内部抵抗値を高める結果、とくに高率
放電時には、放電性能を低下させる原因ともなる。 2)急速充電を行なう上での課題 急速充電を行なうために、1C程度の大きな電流で充電
を行なった場合、充電末期における正極からの酸素ガス
発生や負極水素吸蔵合金の水素吸蔵速度の不足による遊
離水素の発生により電池内部圧力が上昇する。円筒形に
比べ密閉容器側面が平面で構成される角形電池の場合、
ケースが内圧により変形しやすく、低い圧力で金属容器
が降状点に達する。したがって許容される電池内部圧力
は容器の降伏点に左右され、具体的には12kg/cm2
度であり、それ以下に電池内部圧力の上昇を抑制しなけ
ればならない。
Recently, since a hydrogen storage alloy negative electrode capable of storing hydrogen at a high density has a higher energy density than a cadmium electrode, attention has been paid to the development of a high capacity density metal oxide-hydride storage battery using the same. There is. Therefore, by applying this battery system to a prismatic battery, a battery with high capacity and high space efficiency has been developed. However, when it is applied to a power source for portable devices in recent years, it is strongly required to have higher charging efficiency and quick charging performance. In order to develop a new prismatic battery of a new battery system using a hydrogen storage alloy, it is necessary to add new battery construction methods and manufacturing methods of constituent materials in addition to the conventional battery construction technology to meet these needs. .. For that purpose, for example, the following two technical problems must be solved. 1) Problems Related to Negative Electrode Current Collection System In the case of a prismatic battery having high charging efficiency, it is preferable to stack a plurality of positive and negative electrodes to form an electrode plate group. However, when a lead for collecting current is welded to the hydrogen storage alloy electrode, there is a safety problem such as ignition by heat of the welded portion. In particular, when hydrogen is occluded in the alloy electrode, it tends to ignite more easily. In addition, if you take out the lead from the negative electrode one by one, weld them at one place and press the negative electrode outside the group and the outer metal case into pressure contact to collect current, the current can be applied to one welding point. Are concentrated, the electrical resistance is increased, and the internal resistance value of the battery is increased. As a result, the discharge performance is deteriorated especially at a high rate discharge. 2) Issues in performing rapid charging When charging with a large current of about 1 C for rapid charging, oxygen gas is generated from the positive electrode at the end of charging and the hydrogen storage rate of the negative electrode hydrogen storage alloy is insufficient. The internal pressure of the battery rises due to the generation of free hydrogen. In the case of a prismatic battery where the side surface of the sealed container is flat compared to the cylindrical shape,
The case is easily deformed by the internal pressure, and the metal container reaches the yield point at a low pressure. Therefore, the allowable battery internal pressure depends on the yield point of the container, specifically about 12 kg / cm 2 , and the increase in the battery internal pressure must be suppressed below that.

【0007】これらの課題を解決するため、本出願人
は、先に角形の金属ケースに発電要素を収納し、安全弁
を備えた金属製蓋体で上記ケースを封口した密閉アルカ
リ蓄電池であって、金属酸化物を主とする活物質から成
る矩形の正極板と、水素貯蔵合金粉末および導電性を有
する支持体を主構成材料とし、電極表面にフッ素樹脂
系、石油ピッチおよびポリブテン等からなる撥水層を付
与した矩形の負極板と、アルカリ電解液と、上記正極と
負極とを電気的に絶縁し、充放電反応に必要な上記電解
液と適切な空間部を内部に有し、アルカリに対し化学的
に安定なセパレータとから成る発電要素を備え、この発
電要素における電極群の左右の最両外側部は上記負極板
で構成されて金属ケースと直接接触し、正極板はリード
を介して、金属製蓋体とは絶縁して設けられた端子に接
続されている角型密閉アルカリ蓄電池を提案した。
In order to solve these problems, the present applicant has proposed a sealed alkaline storage battery in which a power generating element is first housed in a rectangular metal case and the case is sealed with a metal lid provided with a safety valve. A rectangular positive electrode plate composed of an active material mainly composed of a metal oxide, a hydrogen storage alloy powder and a conductive support as main constituent materials, and a water repellent composed of fluororesin, petroleum pitch, polybutene, etc. on the electrode surface. A rectangular negative electrode plate provided with a layer, an alkaline electrolyte, electrically insulates the positive electrode and the negative electrode, and has the above-mentioned electrolytic solution and a proper space necessary for the charge and discharge reaction inside, and with respect to alkali It comprises a power generating element consisting of a chemically stable separator, the left and right outermost parts of the electrode group in this power generating element are constituted by the negative electrode plate and are in direct contact with the metal case, and the positive electrode plate is through a lead, Metal lid It proposed a prismatic sealed alkaline storage battery which is connected to a terminal provided with insulating.

【0008】なお、上記負極板の電極表面上の撥水層の
形成は、通常フッ素樹脂の粉体を塗布することにより行
なわれる。
The formation of the water repellent layer on the electrode surface of the negative electrode plate is usually carried out by applying a fluororesin powder.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記し
たような構造のアルカリ蓄電池においては、従来のアル
カリ蓄電池よりも内部抵抗が大きくなってしまうという
欠点が見出された。
However, it has been found that the alkaline storage battery having the above structure has a larger internal resistance than the conventional alkaline storage battery.

【0010】本発明は、上記提案によるアルカリ蓄電池
の利点を保持しつつ、内部抵抗の低減された角型密閉ア
ルカリ蓄電池を提供することを目的とするものである。
An object of the present invention is to provide a prismatic sealed alkaline storage battery with reduced internal resistance while maintaining the advantages of the alkaline storage battery proposed above.

【0011】[0011]

【課題を解決するに至った経緯および課題を解決するた
めの手段】本願の発明者らは、この内部抵抗が大きくな
ってしまうという問題点を鋭意研究した結果、上記の内
部抵抗の増大は、金属ケースと最外部の負極板との電気
的接触が、負極の上に形成された導電性の良くないフッ
素樹脂等である撥水層の影響で阻害されてしまうことに
よることを知見した。
[Background of the Solution to the Problem and Means for Solving the Problem] The inventors of the present application have earnestly studied the problem that the internal resistance becomes large, and as a result, It was found that the electrical contact between the metal case and the outermost negative electrode plate is hindered by the influence of the water repellent layer formed on the negative electrode, which is a fluororesin having poor conductivity.

【0012】本発明は、上記知見に基づくものであり、
角形の金属ケースに発電要素を収納し、安全弁を備えた
金属製蓋体で前記ケースを封口した密閉アルカリ蓄電池
であって、金属酸化物を主とする活物質から成る矩形の
正極板と、水素貯蔵合金粉末と導電性を有する支持体と
を主構成材料とする矩形の負極板と、アルカリ電解液
と、前記正極と負極とを電気的に絶縁し、充放電反応に
必要な上記電解液と適切な空間部を内部に有し、アルカ
リに対し化学的に安定なセパレータとから成る発電要素
を備え、この発電要素における電極群の左右の最両外側
が上記負極板で構成されているとともに、前記負極板に
は、前記左右の最両外側の負極板の外側の電極面を除い
ては、電極面に撥水層が形成されており、前記左右の最
両外側の負極板の外側の電極面が金属ケースと直接接触
し、正極板はリードを介して、金属製蓋体とは絶縁して
設けられた端子に接続されていることを特徴とするもの
である。
The present invention is based on the above findings,
A sealed alkaline storage battery in which a power generating element is housed in a rectangular metal case and the case is sealed with a metal lid provided with a safety valve, wherein a rectangular positive electrode plate composed of an active material mainly containing a metal oxide, and hydrogen. A rectangular negative electrode plate containing a storage alloy powder and a support having conductivity as a main constituent material, an alkaline electrolyte, and the positive electrode and the negative electrode are electrically insulated from each other, and the electrolytic solution necessary for a charge-discharge reaction. It has a power generating element having a suitable space inside and a separator that is chemically stable against alkali, and the left and right outermost sides of the electrode group in this power generating element are constituted by the negative electrode plate, The negative electrode plate has a water-repellent layer formed on the electrode surfaces except for the outer electrode surfaces of the left and right outermost negative electrode plates, and the outer electrodes of the left and right outermost negative electrode plates are formed. The surface is in direct contact with the metal case and the positive plate is the lead Through it, the metallic lid is characterized in that it is connected to a terminal provided with insulating.

【0013】上記撥水性材料としては、フッ素樹脂系、
石油ピッチまたはポリブテンを用いることが望ましい。
As the water-repellent material, a fluororesin-based material,
It is desirable to use petroleum pitch or polybutene.

【0014】[0014]

【発明の作用・効果】負極表面に撥水層を設けることに
より、負極表面に気−液−固の三相界面が広く形成さ
れ、正極より過充電時に発生した酸素ガスや吸蔵反応の
遅れで負極より遊離した水素ガスを電極表面へ速やかに
導いて反応させ、水へ戻す反応を促進し、急速充電にお
ける内部圧力の上昇を抑制することができた。また、最
外部の負極板の外側の電極面については、撥水層を施さ
ないようにしたので、電極が直に金属ケースと接触する
こととなり、従って、電池の内部抵抗が減少した。
By providing a water repellent layer on the surface of the negative electrode, a gas-liquid-solid three-phase interface is widely formed on the surface of the negative electrode, and the oxygen gas generated during overcharge and the occlusion reaction are delayed from the positive electrode. The hydrogen gas liberated from the negative electrode was promptly guided to the electrode surface for reaction, and the reaction of returning to water was promoted, and the rise in internal pressure during rapid charging could be suppressed. In addition, since the water repellent layer was not provided on the outer electrode surface of the outermost negative electrode plate, the electrode was brought into direct contact with the metal case, thus reducing the internal resistance of the battery.

【0015】[0015]

【実施例】以下、添付図面を参照しつつ、本発明の実施
例の好ましい実施例による角型密閉アルカリ蓄電池につ
いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A prismatic sealed alkaline storage battery according to a preferred embodiment of the present invention will be described below with reference to the accompanying drawings.

【0016】角型ニッケル水素電池における実施例を述
べる。図1A,B,Cは、本発明の実施例による角型密
閉アルカリ蓄電池であり、この図において、1は外装金
属ケース、2は金属製蓋体、3は正極端子、4は正極、
5は正極を含む袋状のセパレータ、6はU字状とした負
極、7は正極のリードをそれぞれ示す。
An example of the prismatic nickel-hydrogen battery will be described. 1A, 1B, 1C show a prismatic sealed alkaline storage battery according to an embodiment of the present invention, in which 1 is an outer metal case, 2 is a metal lid, 3 is a positive electrode terminal, 4 is a positive electrode,
Reference numeral 5 denotes a bag-shaped separator including a positive electrode, 6 denotes a U-shaped negative electrode, and 7 denotes a positive electrode lead.

【0017】負極6は次のようにして作製される。ま
ず、セリウム約40wt%、ランタン約30wt%、ネ
オジウム約13wt%を主成分とするミッシュメタル
(Mm)、ニッケル、コバルト、アルミニウムおよびマ
ンガンをそれぞれ原子比で1:3.5:0.8:0.
3:0.4となるように混合後、不活性ガス雰囲気の高
周波溶解炉で溶解し、撹拌しながら冷却装置を設けた容
器内に移し急冷する。得られた合金塊を機械的な手段で
粗粉砕を行なう。その後、この合金をアルゴン中で10
50℃まで加熱し、3時間保持するとSF値が2.5以
下の水素吸蔵合金が得られる。該合金の再粉砕を行い3
7μm以下の粉末にする。さらに、この粉末を80℃の
カ性カリ水溶液(7N)に30分間浸漬し、水洗乾燥を
施して表面層近傍の約0.01μm厚さ部分に無数の凹
凸を有する合金粉末を得る。
The negative electrode 6 is manufactured as follows. First, about 40 wt% of cerium, about 30 wt% of lanthanum, and about 13 wt% of neodymium, misch metal (Mm), nickel, cobalt, aluminum, and manganese in atomic ratios of 1: 3.5: 0.8: 0, respectively. .
After mixing so as to have a ratio of 3: 0.4, the mixture is melted in a high-frequency melting furnace in an inert gas atmosphere, transferred to a container provided with a cooling device with stirring, and rapidly cooled. The obtained alloy ingot is coarsely pulverized by mechanical means. Then, the alloy is placed in argon for 10
When heated to 50 ° C. and kept for 3 hours, a hydrogen storage alloy having an SF value of 2.5 or less can be obtained. Re-mill the alloy 3
The powder is 7 μm or less. Further, this powder is dipped in a potassium hydroxide aqueous solution (7N) at 80 ° C. for 30 minutes, washed with water and dried to obtain an alloy powder having innumerable irregularities in a portion of about 0.01 μm thickness near the surface layer.

【0018】得られた水素吸蔵合金にポリビニルアルコ
ール0.5wt%を加えて水によりペースト状に練合
し、発泡状ニッケル多孔体(多孔度約98%、厚さ約
0.7mm、平均球状空間径400μm)に充填し、乾燥
後加圧し、ついで切断して、中央部に活物質未充填部分
である負極リード8を有する図4に示す負極6を得る。
さらにこの負極表面にはフッ素樹脂微粉末を所定重量均
一に塗布する。ここで、特に重要なことは、一電池に対
して、2枚、一方の電極面にはフッソ樹脂微粉末を施さ
ないものを準備しておくことである。なお、合金組成は
特に前述の組成に限定されない。また、使用に当って
は、PTC曲線において、平坦なものが望ましく、前述
のSF値が0.25以下のもの、合金の組成としては、
一般式Mm1-X1XNiY 2ZにおいてMmはミッシュ
メタル、M1 はCa、Ti、Zrの元素のうちのいずれ
か一種またはこれ等の混合物、M2 はCo、Al、M
n、Cu、Cr、FeおよびVの元素群から選択された
一種もしくは組合わせたものであり、1>x≧0、y>
3.0かつ4.7≦y+z≦5.3を満足するものが望
ましい。また合金の表面凹凸化処理は、アルカリによる
エッチング処理のほか、酸や塩類によるエッチング処
理、あるいは物理的方法によるエッチング処理など合金
表面に微細な凹凸を形成する手法ならば問題はない。ま
た合金粉末の支持体としては、三次元網状構造をもつ発
泡状ニッケル多孔体を用いたが、金属繊維など同様に三
次元網状構造を有し、耐アルカリ性能を有する支持体で
あれば、いずれも使用することができる。また負極表面
の撥水処理としてフッ素樹脂を用いたが、この他にポリ
オレフィン系樹脂を用いることも可能であり、他の撥水
性を持つ物質による処理も本発明の意図するところであ
る。また撥水性樹脂の形状も粒状に限らず、負極表面に
撥水性を付与できるものであればよい。
0.5 wt% of polyvinyl alcohol was added to the obtained hydrogen storage alloy and kneaded into a paste with water to form a foamed nickel porous body (porosity about 98%, thickness about 0.7 mm, average spherical space). (Diameter 400 μm), dried, pressed, and then cut to obtain a negative electrode 6 shown in FIG. 4 having a negative electrode lead 8 which is a portion not filled with an active material in the central portion.
Further, a predetermined weight of fluororesin fine powder is uniformly applied to the surface of the negative electrode. Here, what is particularly important is to prepare two sheets of one battery, one of which is not coated with the fluorine resin fine powder on one electrode surface. The alloy composition is not particularly limited to the above composition. In use, a flat PTC curve is desirable, and the above SF value is 0.25 or less, and the alloy composition is
In the general formula Mm 1-X M 1X Ni Y M 2Z , Mm is misch metal, M 1 is any one of Ca, Ti, Zr elements or a mixture thereof, and M 2 is Co, Al, M
One or a combination of elements selected from the group consisting of n, Cu, Cr, Fe and V, and 1> x ≧ 0, y>
Those satisfying 3.0 and 4.7 ≦ y + z ≦ 5.3 are desirable. There is no problem with the surface roughening treatment of the alloy as long as it is a method for forming fine irregularities on the alloy surface, such as etching treatment with an acid, etching treatment with an acid or salt, or etching treatment with a physical method. Further, as the support of the alloy powder, a foamed nickel porous body having a three-dimensional network structure was used, but any support that has a three-dimensional network structure like metal fibers and alkali resistance can be used. Can also be used. Further, although the fluororesin is used for the water repellent treatment on the surface of the negative electrode, a polyolefin resin may be used in addition to this, and treatment with another substance having water repellency is also intended by the present invention. Further, the shape of the water-repellent resin is not limited to a granular shape as long as it can impart water repellency to the surface of the negative electrode.

【0019】また負極6におけるリード部8の形成に当
っては、活物質の多孔体への充填に先だって、機械的加
圧により、活物質未充填部分を作成したが、たとえばリ
ード部8上にマスキングを行なって未充填部分を作成し
たり、活物質を充填した後、その部分の活物質を何等か
の方法で除去し、負極リード部を形成することも何ら支
障にはならない。
In forming the lead portion 8 in the negative electrode 6, a portion not filled with the active material was formed by mechanical pressure prior to filling the active material into the porous body. There is no problem in forming the negative electrode lead portion by masking the unfilled portion or filling the active material and then removing the active material in that portion by some method.

【0020】上記正極4は、水酸化ニッケル粉100重
量部に対し、酸化コバルト6重量部、金属コバルト3重
量部の割合で混合し、これに水を加えて練合し、ペース
ト状にした後、発泡状ニッケル多孔体(多孔度98%、
厚さ0.7mm、平均球状空間径400μm)に充填し、
乾燥後加圧して、発泡メタル式のニッケル正極4として
作製される。
The positive electrode 4 was prepared by mixing 100 parts by weight of nickel hydroxide powder with 6 parts by weight of cobalt oxide and 3 parts by weight of metallic cobalt, and adding water to the mixture to knead it to form a paste. , Foamed nickel porous body (porosity 98%,
Filled to a thickness of 0.7 mm and an average spherical space diameter of 400 μm,
After drying, pressure is applied to produce a metal foam nickel positive electrode 4.

【0021】この正極4に集電用のニッケルリード7を
スポット溶接し、ポリプロピレンの不織布にスルフォン
基を導入した厚さ0.22mmのセパレータ5を袋状に溶
着したもので図3の状態に包み込む。本実施例では正極
活物質としてニッケル酸化物を主成分とし、これにコバ
ルトを加えた混合物を用いたが、他の金属、たとえばマ
ンガン等アルカリ水溶液中で酸化還元反応を行なえる金
属塩類であれば添加物として使用できる。
A nickel lead 7 for current collection is spot-welded to the positive electrode 4, and a separator 5 having a thickness of 0.22 mm in which a sulfone group is introduced into a polypropylene non-woven fabric is welded in a bag shape and wrapped in the state shown in FIG. .. In this example, a mixture of nickel oxide as a main component and nickel added as the positive electrode active material was used, but other metals, such as manganese, can be used as long as they are metal salts capable of performing a redox reaction in an alkaline aqueous solution. It can be used as an additive.

【0022】前述のU字状負極6を2枚、正極4を3枚
用いて、図2に示した極板群を形成する。このとき、こ
の電極群の左右の最両外側の電極は、上記の一方の電極
面6aに撥水層が形成されていない負極6を、該電極面
6aが外側に向くように、すなわちこの電極群を後に説
明するように外装金属ケース1に挿入したときに、該電
極面6aが負極の収電要素として作用する外装金属ケー
ス1の内面に直接接触するようになる。これにより、負
極6と外装金属ケース1との電気的接続が良好なものと
なる。図中8は折り曲げた際、底部をなす負極リードで
ある。この極板群は、外装金属ケース1内に収納され
る。次にこの極板群の上部にナイロン製ワク体22に酸
素還元性触媒を挿入したものを挿入する。
Two U-shaped negative electrodes 6 and three positive electrodes 4 are used to form the electrode plate group shown in FIG. At this time, the left and right outermost electrodes of this electrode group are arranged such that the negative electrode 6 having no water-repellent layer formed on the one electrode surface 6a faces outward, that is, this electrode surface 6a faces outward. When the group is inserted into the outer metal case 1 as described later, the electrode surface 6a comes into direct contact with the inner surface of the outer metal case 1 which acts as a current collecting element for the negative electrode. Thereby, the electrical connection between the negative electrode 6 and the exterior metal case 1 becomes good. Reference numeral 8 in the drawing denotes a negative electrode lead that forms a bottom when bent. This electrode plate group is housed in the exterior metal case 1. Next, a nylon vacuum body 22 with an oxygen-reducing catalyst inserted therein is inserted into the upper portion of the electrode plate group.

【0023】ワク体22の材質は、耐アルカリ性と電気
絶縁性を有するものであれば何でも使用可能であり、た
とえばポリプロピレン、ポリエチレン、ポリ塩化ビニー
ル、フッ素樹脂等が使用可能である。また酸素還元性触
媒も本実施例では炭素担体にパラジウムを担持させ、テ
フロン樹脂で撥水処理を行なったものを用いたが、担体
については、耐アルカリ性を有するものであれば問題な
く使用でき、例えばアルミナ、マグネシア、ジルコニ
ア、焼結式ニッケル多孔体等を使用することが可能であ
る。また、触媒もパラジウムの他の白金族触媒の使用が
可能であり、撥水処理方法としてはフッ素樹脂による他
にパラフィン処理、シリコン系撥水処理剤による処理等
が可能である。
Any material can be used as the material of the wax body 22 as long as it has alkali resistance and electric insulation, and for example, polypropylene, polyethylene, polyvinyl chloride, fluororesin, etc. can be used. Further, as the oxygen-reducing catalyst, in the present embodiment, a carbon carrier was used to carry palladium, and a water-repellent treatment with Teflon resin was used, but the carrier can be used without any problem as long as it has alkali resistance. For example, alumina, magnesia, zirconia, sintered nickel porous body, etc. can be used. As the catalyst, a platinum group catalyst other than palladium can be used, and as the water repellent treatment method, a paraffin treatment, a silicone water repellent treatment agent, or the like can be used in addition to the fluororesin.

【0024】上記蓋体2は、次のようにして作製される
(図5A,B,C参照)。まずニッケルメッキ鋼板を
5.2×16.5mmの長方形に切断し、中央部に3mmの
穴を開けて座金13部分を作成する。ついで、ナイロン
樹脂を成形して上部ガスケット12、下部ガスケット1
4を得る。これとは別にニッケルメッキ鋼板を金型で打
抜いてキャップ9および正極集電用ワッシャ15を得
る。
The lid 2 is manufactured as follows (see FIGS. 5A, 5B and 5C). First, a nickel-plated steel plate is cut into a rectangle of 5.2 × 16.5 mm, and a hole of 3 mm is opened in the center to form a washer 13 portion. Next, a nylon resin is molded to form an upper gasket 12 and a lower gasket 1.
Get 4. Separately from this, a nickel-plated steel plate is punched with a die to obtain the cap 9 and the positive electrode current collecting washer 15.

【0025】次にゴムを成形して弁体10を得る。そし
て座金13の開口部上下に撥水性材料としてプロンアス
ファルトを塗布し、上下より上部ガスケット12および
下部ガスケット14を重ねる。さらに上部ガスケット1
2の穴部にプロンアスファルトを塗布し、座金のくぼみ
形状にほぼ対応した座をもつ中空リベット11を挿入す
る。これにさらに下部より正極集電用ワッシャ15を挿
入し、全体をたて方向に加圧して、中空リベットの脚先
端を拡張してかしめる。次に、中空リベット穴部に液状
シール剤としてポリプテンを塗布した後ゴム弁体10を
乗せ、上よりキャップ9で加圧しながらキャップ9と中
空リベット11の座をスポット溶接する。以上の加工に
より、蓋体が得られる。本実施例では、上下のガスケッ
トはナイロン製としたが、ポリエチレン樹脂や、ポリプ
ロピレン樹脂、フッ素樹脂のいずれであっても問題な
い。また撥水材として、プロンアスファルト、ポリプテ
ンを用いたが、他の石油ピッチ類やフッ素樹脂でも何ら
問題はない。こうして得られた蓋体の正極集電用ワッシ
ャ15に先に作成した極板群から上方に伸び出た正極リ
ード7の先端をスポット溶接し、水酸化カリウム水溶液
に少量の水酸化リチウムを添加した電解液を1.5ml注
入し、蓋体と金属外装ケース1の口部をはめ合わせ、こ
の部分をレーザシーム溶接機で封口する。
Next, rubber is molded to obtain the valve body 10. Then, prone asphalt as a water-repellent material is applied to the top and bottom of the opening of the washer 13, and the upper gasket 12 and the lower gasket 14 are stacked from above and below. Further upper gasket 1
Pron asphalt is applied to the hole 2 and the hollow rivet 11 having a seat substantially corresponding to the recessed shape of the washer is inserted. Further, the positive electrode current collecting washer 15 is inserted from the lower part, and the whole is pressed in the vertical direction to expand and crimp the leg tips of the hollow rivet. Next, after applying polypten as a liquid sealant to the hollow rivet hole portion, the rubber valve body 10 is placed on the hollow rivet hole, and the cap 9 and the seat of the hollow rivet 11 are spot-welded while pressing the cap 9 from above. A lid is obtained by the above processing. In this embodiment, the upper and lower gaskets are made of nylon, but any of polyethylene resin, polypropylene resin, and fluororesin may be used. Further, as the water repellent material, pron asphalt and polypten were used, but other petroleum pitches and fluororesins can be used without any problem. The tip of the positive electrode lead 7 extending upward from the previously prepared electrode plate group was spot-welded to the positive electrode current collecting washer 15 of the lid thus obtained, and a small amount of lithium hydroxide was added to the potassium hydroxide aqueous solution. 1.5 ml of the electrolytic solution is injected, the lid and the mouth of the metal outer case 1 are fitted together, and this portion is sealed with a laser seam welder.

【0026】以上のようにして、図1の角型密閉アルカ
リ蓄電池は作製される。 実験例 次に、本発明の効果を確認するため以下に説明するよう
な実験を行なった。
The prismatic sealed alkaline storage battery of FIG. 1 is manufactured as described above. Experimental Example Next, in order to confirm the effect of the present invention, an experiment as described below was conducted.

【0027】正極としては、上記の構造であり、幅1
4.5、高さ37.5(充填部=36)、厚さ0.56
mm、容量180mAhとし、この正極を3枚用意し合計
の容量は540mAhとした。
The positive electrode has the above structure and a width of 1
4.5, height 37.5 (filling part = 36), thickness 0.56
mm, capacity 180 mAh, three positive electrodes were prepared, and total capacity was 540 mAh.

【0028】負極としては、上記の構造で、幅15mm、
高さ75mm、厚さ0.46mmとし、中央の非充填部分で
折りまげた物を2組用意した。合計の容量は1000m
Ahとした。負極の表面にはフッソ樹脂微粉末を塗布し
その量および塗布する部位の差によって、A〜Gまで7
種類の負極を作成した。
The negative electrode has the above structure and a width of 15 mm.
The height was 75 mm, the thickness was 0.46 mm, and two pairs of pieces folded at the central unfilled portion were prepared. Total capacity is 1000m
Ah. The surface of the negative electrode is coated with fluorine resin fine powder, and depending on the amount and the portion to be coated, A to G is applied.
A variety of negative electrodes were created.

【0029】セパレーターとしては、厚さ0.15mm、
目付重量66g/m2 のポリプロビレン製不織布で上記
の構造に構成したものを用いこれにより、上記したよう
に正極を袋状に包んだ。
The separator has a thickness of 0.15 mm,
A non-woven fabric made of polypropylene having a basis weight of 66 g / m 2 and having the above structure was used, whereby the positive electrode was wrapped in a bag as described above.

【0030】以上の極板群構成材料を所定の金属ケース
に挿入し、水酸化カリウムを主体とした電解液を注入
し、封口板を取り付け電池とした。また電池に挿入され
た負極の種類A〜Gに対応して、電池の分類もA〜Gと
した。電池の分類とその負極の内容を表1に示す。
The above electrode plate constituent materials were inserted into a predetermined metal case, an electrolytic solution containing potassium hydroxide as a main component was injected, and a sealing plate was attached to form a battery. Further, the batteries are classified into A to G corresponding to the types A to G of the negative electrodes inserted in the battery. Table 1 shows the classification of batteries and the contents of the negative electrodes.

【0031】こうして得た電池A〜Gを500mAの電
流にて、5時間充電をしその時の電池内部の圧力上昇を
測定し、そのあと500mAの電流で終止電圧1.0V
まで放電した。
The batteries A to G thus obtained were charged at a current of 500 mA for 5 hours, the pressure rise inside the batteries at that time was measured, and then the final voltage of 1.0 V was applied at a current of 500 mA.
Discharged up to.

【0032】また放電終了後電池内部抵抗を測定した。
その結果を表2に示す。図6、図7および表2の結果に
明らかなように、負極板全表面に均一にフッソ樹脂を塗
布した電池は、塗布量の増加に対応して電池内部圧力は
低くなるものの、反対に内部抵抗は上昇し特に負極板表
面に1.2mg/cm2 塗布したものは内部抵抗が58mΩ
まで上昇し、放電電圧は1.191Vまで低下した。一
方、ケース接触面を除く負極板表面に均一にフッソ樹脂
を塗布した電池は、負極板全表面に均一にフッソ樹脂を
塗布した電池と同様塗布量の増加とともに内部圧力が低
下するとともに、内部抵抗の上昇が少なく、抑えられて
いる。これは、ケース接触する負極板表面へのフッソ樹
脂塗布をしなかったことにより、負極と金属ケース間の
電気伝導性が良好に保たれた効果によると推測される。
After the discharge was completed, the internal resistance of the battery was measured.
The results are shown in Table 2. As is clear from the results shown in FIGS. 6 and 7 and Table 2, in the battery in which the fluorine resin is uniformly applied to the entire surface of the negative electrode plate, the internal pressure of the battery decreases as the amount of application increases, but the internal pressure of the battery decreases. The resistance rises, especially when the negative electrode plate surface is coated with 1.2 mg / cm 2 and the internal resistance is 58 mΩ.
And the discharge voltage dropped to 1.191V. On the other hand, a battery in which the surface of the negative electrode plate, excluding the case contact surface, is uniformly coated with fluorine resin is similar to a battery in which the entire surface of the negative electrode plate is coated with fluorine resin. The rise of is small and suppressed. It is presumed that this is due to the effect of keeping good electrical conductivity between the negative electrode and the metal case because the fluorine resin was not applied to the surface of the negative electrode plate in contact with the case.

【0033】また、急速充電性能については、電解液量
を適切にすることにより、セパレータ中および負極表面
に適度の気−液−固の三相界面を確保し、負極表面を撥
水処理することにより、その効果をより向上させ、ま
た、遊離水素と正極から発生する酸素を反応させる触媒
を設けることにより、ガスを良好に消失させてケースの
変形を防止することができた。
Regarding the rapid charging performance, by appropriately adjusting the amount of the electrolytic solution, a proper gas-liquid-solid three-phase interface is secured in the separator and on the surface of the negative electrode, and the negative electrode surface is treated to be water repellent. As a result, the effect was further improved, and by providing a catalyst for reacting free hydrogen with oxygen generated from the positive electrode, it was possible to satisfactorily eliminate the gas and prevent the deformation of the case.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1A、B、Cは本発明の実施例における電池
の斜視図およびAのB−B’線とC−C’線に沿った断
面図である。
1A, 1B, 1C are perspective views of a battery according to an embodiment of the present invention and cross-sectional views taken along line BB ′ and line CC ′ of FIG.

【図2】図2は上記実施例における極板群の構成を示す
拡大斜視図である。
FIG. 2 is an enlarged perspective view showing a configuration of an electrode plate group in the above embodiment.

【図3】図3はそのセパレータで包まれた正極を示す図
である。
FIG. 3 is a view showing a positive electrode wrapped with the separator.

【図4】図4は二つ折りする以前の負極を示す図であ
る。
FIG. 4 is a diagram showing a negative electrode before being folded in two.

【図5】図5A、B、Cは実施例における蓋体の斜視図
と断面図および部品図である。
5A, 5B, and 5C are a perspective view, a cross-sectional view, and a component diagram of a lid body according to an embodiment.

【図6】負極の電極面へのフッ素樹脂の塗布状態と電池
内部抵抗の関係を示すグラフ図である。
FIG. 6 is a graph showing the relationship between the coating state of fluororesin on the electrode surface of the negative electrode and the internal resistance of the battery.

【図7】負極の電極面へのフッ素樹脂の塗布状態と電池
内部圧力の関係を示すグラフ図である。
FIG. 7 is a graph showing the relationship between the coating state of fluororesin on the electrode surface of the negative electrode and the internal pressure of the battery.

【符号の説明】[Explanation of symbols]

1 外装金属ケース 2 蓋体 3 正極端子 4 正極 5 セパレータ 6 負極 7 正極リード 8 負極リード 1 Exterior Metal Case 2 Lid 3 Positive Electrode Terminal 4 Positive Electrode 5 Separator 6 Negative Electrode 7 Positive Electrode Lead 8 Negative Electrode Lead

───────────────────────────────────────────────────── フロントページの続き (72)発明者 津田 信吾 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shingo Tsuda 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 角形の金属ケースに発電要素を収納し、
安全弁を備えた金属製蓋体で前記ケースを封口した密閉
アルカリ蓄電池であって、金属酸化物を主とする活物質
から成る矩形の正極板と、水素貯蔵合金粉末と導電性を
有する支持体とを主構成材料とする矩形の負極板と、ア
ルカリ電解液と、前記正極と負極とを電気的に絶縁し、
充放電反応に必要な上記電解液と適切な空間部を内部に
有し、アルカリに対し化学的に安定なセパレータとから
成る発電要素を備え、この発電要素における電極群の左
右の最両外側が上記負極板で構成されているとともに、
前記負極板には、前記左右の最両外側の負極板の外側の
電極面を除いては、電極面に撥水層が形成されており、
前記左右の最両外側の負極板の外側の電極面が金属ケー
スと直接接触し、正極板はリードを介して、金属製蓋体
とは絶縁して設けられた端子に接続されていることを特
徴とする角形密閉アルカリ蓄電池。
1. A power generating element is housed in a rectangular metal case,
A sealed alkaline storage battery in which the case is sealed with a metal lid provided with a safety valve, a rectangular positive electrode plate made of an active material mainly containing a metal oxide, a hydrogen storage alloy powder, and a support having conductivity. A rectangular negative electrode plate having as a main constituent material, an alkaline electrolyte, and electrically insulates the positive electrode and the negative electrode,
It has a power generation element consisting of a separator that is chemically stable against alkali and has the above-mentioned electrolytic solution necessary for charge / discharge reaction and an appropriate space inside, and the left and right outermost sides of the electrode group in this power generation element are Along with the negative electrode plate,
In the negative electrode plate, a water repellent layer is formed on the electrode surfaces except for the outer electrode surfaces of the left and right outermost negative electrode plates,
The outer electrode surfaces of the left and right outermost negative electrode plates are in direct contact with the metal case, and the positive electrode plate is connected via leads to terminals provided so as to be insulated from the metal lid. The feature is a prismatic sealed alkaline storage battery.
【請求項2】 撥水性材料は、フッ素樹脂系、石油ピッ
チおよびポリブテンからなる群より選択されたものであ
る請求項1の角形密閉アルカリ蓄電池。
2. The prismatic sealed alkaline storage battery according to claim 1, wherein the water repellent material is selected from the group consisting of fluororesin, petroleum pitch, and polybutene.
JP4127068A 1992-05-20 1992-05-20 Sealed square alkaline storage battery Pending JPH05326014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4127068A JPH05326014A (en) 1992-05-20 1992-05-20 Sealed square alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4127068A JPH05326014A (en) 1992-05-20 1992-05-20 Sealed square alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH05326014A true JPH05326014A (en) 1993-12-10

Family

ID=14950794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4127068A Pending JPH05326014A (en) 1992-05-20 1992-05-20 Sealed square alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH05326014A (en)

Similar Documents

Publication Publication Date Title
JP2936604B2 (en) Square sealed alkaline storage battery using hydrogen storage alloy negative electrode
WO2007004703A1 (en) Nickel-hydrogen battery
JPH09283133A (en) Nickel electrodefor alkaline storage battery and manufacture thereof
JP3695978B2 (en) Alkaline storage battery with spiral electrode body
JPH09161806A (en) Secondary battery electrode, or secondary battery
JP2002298906A (en) Nickel-hydrogen secondary battery
JP3102002B2 (en) Hydrogen storage electrode and method for producing the same
JPH1021897A (en) Secondary battery electrode
JP2003045480A (en) ThIN NICKEL - HYDROGEN SECONDARY BATTERY, HYBRID CAR AND ELECTRIC VEHICLE
JPH05326014A (en) Sealed square alkaline storage battery
JP3524744B2 (en) Sealed alkaline storage battery
JP3567021B2 (en) Alkaline secondary battery
JP2808679B2 (en) Formation method of sealed alkaline storage battery using hydrogen storage alloy negative electrode
JP2000082491A (en) Nickel-hydrogen secondary battery
JPH06349461A (en) Alkaline storage battery
JP3952489B2 (en) Alkaline storage battery
JP2000200612A (en) Rectangular alkaline secondary battery
JP2001223000A (en) Alkaline secondary battery
JP2002280057A (en) Alkaline secondary battery
JP3316687B2 (en) Nickel-metal hydride storage battery
JP2001068145A (en) Rectangular alkaline secondary battery
JP2000277101A (en) Positive electrode for alkaline secondary battery and alkaline secondary battery
JPH10106587A (en) Storage battery
JPH10106586A (en) Storage battery
JP2000299123A (en) Nickel-hydrogen secondary battery