JPH05325971A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH05325971A
JPH05325971A JP4269511A JP26951192A JPH05325971A JP H05325971 A JPH05325971 A JP H05325971A JP 4269511 A JP4269511 A JP 4269511A JP 26951192 A JP26951192 A JP 26951192A JP H05325971 A JPH05325971 A JP H05325971A
Authority
JP
Japan
Prior art keywords
boron
battery
positive electrode
lithium
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4269511A
Other languages
Japanese (ja)
Other versions
JP3125075B2 (en
Inventor
Minoru Mizutani
実 水谷
Takao Fukunaga
福永  孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
Japan Storage Battery Co Ltd
Original Assignee
Seimi Chemical Co Ltd
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co Ltd, Japan Storage Battery Co Ltd filed Critical Seimi Chemical Co Ltd
Priority to JP04269511A priority Critical patent/JP3125075B2/en
Publication of JPH05325971A publication Critical patent/JPH05325971A/en
Application granted granted Critical
Publication of JP3125075B2 publication Critical patent/JP3125075B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a nonaqueous electrolyte secondary battery of long life by using compound oxide, composed of lithium, boron and cobalt, as a positive electrode active material so as to improve a charge/discharge cycle characteristic. CONSTITUTION:As a positive electrode active material of a nonaqueous electrolyte secondary battery in which a positive electrode 1, negative electrode 2 and a separator 3 are arranged in a battery case 4, compound oxide composed of lithium, boron and cobalt, represented by LiBxCo(1-x)O2, is used. In the positive electrode active material composed of the lithium boron cobalt compound oxide, generation of gas in the battery can be suppressed with a long charge/ discharge cycle life, and the nonaqueous electrolyte secondary battery of long life can be obtained. Further, an alphabet (x) in the general formula LiBxCo(1-x) O2 is preferable in a relation where 0.001<=x<=0.25.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水電解液二次電池に関
するもので、利用率が高く安定な正極活物質の使用によ
り、充放電サイクル寿命の長い非水電解液二次電池を提
供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, which provides a non-aqueous electrolyte secondary battery having a long charge / discharge cycle life by using a stable positive electrode active material. It is a thing.

【0002】[0002]

【従来の技術】近年、各種電子機器の小型化にともな
い、より高エネルギー密度の二次電池が要望されてい
る。非水電解液を使用した二次電池は、従来の水溶液電
解液を使用した電池の数倍のエネルギー密度を有するこ
とから、その実用化が待たれている。 非水電解液は、
非プロトン性の有機溶媒に電解質となる金属塩を溶解さ
せたものである。例えば、リチウム塩に関しては、 LiC
lO4 、LiPF6 、LiBF4 、 LiAsF6 、LiCF3 SO3 等をプロ
ピレンカーボネート、エチレンカーボネート、1,2-ジメ
トキシエタン、γ- ブチロラクトン、ジオキソラン、2-
メチルテトラヒドロフラン、ジエチルカーボネート、ジ
メチルカーボネート、スルホラン等の単独溶媒、あるい
はこれらの混合溶媒に溶解させたものが使用されてい
る。これらの非水電解液は、電池容器に注入されて使用
されるが、多孔質のセパレータに含浸したり、高分子量
の樹脂を添加して高粘性にしたり、ゲル化させて流動性
をなくした状態で使用されることもある。また、ポリエ
チレンオキサイドに代表されるポリマー電解質も非水電
解液二次電池の電解質として検討が進められている。
2. Description of the Related Art In recent years, with the miniaturization of various electronic devices, there has been a demand for secondary batteries having higher energy density. A secondary battery using a non-aqueous electrolytic solution has an energy density several times higher than that of a battery using a conventional aqueous electrolytic solution, and thus its practical application is awaited. The non-aqueous electrolyte is
It is a solution of a metal salt serving as an electrolyte in an aprotic organic solvent. For example, for lithium salts, LiC
propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, γ-butyrolactone, dioxolane, 2-O 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3, etc.
A single solvent such as methyltetrahydrofuran, diethylcarbonate, dimethylcarbonate, sulfolane or the like, or a mixture of these dissolved in a solvent is used. These non-aqueous electrolytes are used by being injected into a battery container, but impregnated into a porous separator, added high molecular weight resin to make it highly viscous, or gelled to lose fluidity. It is sometimes used in the state. Further, a polymer electrolyte represented by polyethylene oxide is also being studied as an electrolyte for a non-aqueous electrolyte secondary battery.

【0003】非水電解液電池の負極活物質として、従来
より様々な物質が検討されてきたが、高エネルギー密度
が期待されるものとして、リチウム系の負極が最適であ
る。特に非水電解液二次電池の負極として、リチウム金
属、リチウム合金、リチウムイオンを保持させた炭素等
が検討されている。
Various materials have been studied as a negative electrode active material for a non-aqueous electrolyte battery, but a lithium-based negative electrode is most suitable because a high energy density is expected. Particularly, as a negative electrode of a non-aqueous electrolyte secondary battery, lithium metal, lithium alloy, carbon having lithium ions retained, and the like are being studied.

【0004】非水電解液二次電池の正極活物質として、
特開昭55-136131 号公報に示されるように、リチウムコ
バルト複合酸化物( LiCoO2 )の研究が近年活発に行わ
れている。この活物質を用いた電池は平均作動電圧が3.
6V程度と、ニッケル−カドミウム電池の1.2Vと比較して
約3 倍の高い電圧を持つことから、電池のより一層の高
エネルギー密度化及び小型化が可能である。
As a positive electrode active material for a non-aqueous electrolyte secondary battery,
As shown in JP-A-55-136131, research on lithium cobalt composite oxide (LiCoO 2 ) has been actively conducted in recent years. Batteries using this active material have an average operating voltage of 3.
Since it has a voltage of about 6V, which is about three times higher than 1.2V of nickel-cadmium batteries, it is possible to further increase energy density and downsize batteries.

【0005】本発明はこのような非水電解液二次電池の
改良に関するものである。
The present invention relates to an improvement of such a non-aqueous electrolyte secondary battery.

【0006】[0006]

【発明が解決しようとする課題】リチウムコバルト複合
酸化物 LiCoO2 は、そのままでは安定な物質であるが、
非水電解液電池の正極活物質として使用すると、充放電
サイクルにともなう容量劣化が大きいという欠点があっ
た。 LiCoO2 は、充電によってLiが抜けると結晶構造的
に不安定な状態になり、酸素を分離して徐々にCo2 O3
に変化するという性質がある。Co2 O3 は放電しても元
の LiCoO2 には戻らない。充放電を繰り返すと、容量が
低下し、充放電サイクルが短いという欠点があった。ま
た、ガス発生によって電池内圧の上昇も認められてい
る。
Lithium-cobalt composite oxide LiCoO 2 is a stable substance as it is,
When used as a positive electrode active material of a non-aqueous electrolyte battery, there was a drawback that the capacity was greatly deteriorated with charge / discharge cycles. LiCoO 2 becomes unstable in crystal structure when Li is removed by charging, and oxygen is separated to gradually separate Co 2 O 3
It has the property of changing to. Co 2 O 3 does not return to the original LiCoO 2 even when discharged. When charging and discharging are repeated, there is a drawback that the capacity decreases and the charging and discharging cycle is short. In addition, an increase in battery internal pressure due to gas generation is also recognized.

【0007】[0007]

【課題を解決するための手段】本発明はこのような課題
を解決するもので、 LiCoO2 中に少量のほう素B を添加
することにより、サイクル進行に伴う容量劣化の少ない
非水電解液二次電池が可能となった。すなわち、本発明
は非水電解液二次電池の正極活物質として一般式
LiBx Co(1-x) O2 (0.001 ≦x ≦0.25) で示されるリチウムほう素コバルト複合酸化物を用いる
ことを特徴とするものである。
The present invention solves such a problem by adding a small amount of boron B to LiCoO 2 so that the capacity of the non-aqueous electrolyte solution is less deteriorated as the cycle progresses. The next battery is available. That is, the present invention has a general formula as a positive electrode active material of a non-aqueous electrolyte secondary battery.
It is characterized by using a lithium boron cobalt complex oxide represented by LiB x Co (1-x) O 2 (0.001 ≤ x ≤ 0.25).

【0008】[0008]

【作用】リチウムほう素コバルト複合酸化物からなる正
極活物質は、充放電サイクル寿命が長く、電池内のガス
発生を抑えることが可能であり、長寿命の非水電解液二
次電池が可能となった。
[Function] A positive electrode active material composed of lithium boron cobalt composite oxide has a long charge / discharge cycle life, can suppress gas generation in the battery, and enables a long-life non-aqueous electrolyte secondary battery. became.

【0009】リチウムほう素コバルト複合酸化物は、従
来のリチウムコバルト複合酸化物と同様六方晶系の結晶
構造を有している。しかしながら、X 線回折図による結
晶の回折ピークが従来品より鋭いことから、高度に結晶
化が進んだ、格子欠陥の少ない結晶構造を有しているも
のと思われる。リチウムほう素コバルト複合酸化物は、
充電状態、すなわち結晶構造からリチウムイオンが一部
抜けた状態での安定性が高く、充放電を繰り返しても容
量の低下が少なく、分解による酸素ガスの発生が少な
い。
The lithium-boron-cobalt composite oxide has a hexagonal crystal structure like the conventional lithium-cobalt composite oxide. However, since the diffraction peak of the crystal according to the X-ray diffraction pattern is sharper than that of the conventional product, it is considered to have a crystal structure with a high degree of crystallization and with few lattice defects. Lithium boron cobalt composite oxide
The stability is high in a charged state, that is, a state in which a part of lithium ions is removed from the crystal structure, the capacity does not decrease much even if charging and discharging are repeated, and oxygen gas is less generated by decomposition.

【0010】また従来の LiCoO2 より、比較的低温で、
短時間の熱処理で製造することができるという特徴があ
る。従来、複合酸化物の合成には約900 ℃での熱処理が
必要であったが、ほう素を含有した複合酸化物は、約70
0 ℃でも合成が可能であった。理由は明かではないが、
加熱過程で低融点の混合物相を生じ、結晶の成長が容易
になるのではないかと思われる。
Further, at a relatively low temperature as compared with the conventional LiCoO 2 ,
It is characterized in that it can be manufactured by heat treatment for a short time. Conventionally, heat treatment at about 900 ° C was required for the synthesis of complex oxides.
The synthesis was possible even at 0 ° C. The reason is not clear,
It seems that a low melting point mixture phase is generated during the heating process, which facilitates crystal growth.

【0011】ほう素の効果は、ほう素原料の種類には影
響されないことが確認された。熱処理により酸化物とな
るものであれば、リチウムとコバルトとほう素の原料に
は制限がない。製造工程や原料コスト上最も有利な原料
を使用することができる。
It was confirmed that the effect of boron was not affected by the type of boron raw material. There is no limitation on the raw materials of lithium, cobalt, and boron as long as they can be converted into oxides by heat treatment. The most advantageous raw material can be used in terms of manufacturing process and raw material cost.

【0012】[0012]

【実施例】【Example】

実施例1 まず最初に LiBx Co(1-x) O2 を合成した。x は0 、0.
02、0.05、0.1 、0.2、0.25、0.3 である。なお、x=0
は、ほう素の未添加品であり、従来品の組成を示してい
る。合成は次のようにして行った。炭酸リチウムLiCO3
とほう酸 H3 BO3 と塩基性炭酸コバルト 2CoCO3 ・3Co(O
H)2 ・xH2 O (コバルト量47.2w %)を所定量のモル比
にて乳鉢で混合し、それを純水に分散させた。その分散
液にクエン酸を加え、常温にて複合クエン酸塩を生成さ
せ、120 ℃にて乾燥した。この粉体を500 ℃で6 時間仮
焼した後、900 ℃で24時間熱処理した。熱処理後、ボー
ルミルで粉砕した。得られたリチウムほう素コバルト複
合酸化物 LiBx Co(1-x) O2 を正極活物質に用いて非水
電解液二次電池を組立てた。
Example 1 First, LiB x Co (1-x) O 2 was synthesized. x is 0, 0.
It is 02, 0.05, 0.1, 0.2, 0.25, 0.3. Note that x = 0
Shows the composition of a conventional product, which is a product with no boron added. The synthesis was performed as follows. Lithium carbonate LiCO 3
And boric acid H 3 BO 3 and basic cobalt carbonate 2CoCO 3 · 3Co (O
H) 2 · xH 2 O (cobalt amount 47.2 w%) was mixed in a mortar at a predetermined molar ratio and dispersed in pure water. Citric acid was added to the dispersion to form a complex citrate salt at room temperature, and the mixture was dried at 120 ° C. This powder was calcined at 500 ° C for 6 hours and then heat-treated at 900 ° C for 24 hours. After the heat treatment, it was crushed with a ball mill. A non-aqueous electrolyte secondary battery was assembled using the obtained lithium boron cobalt composite oxide LiB x Co (1-x) O 2 as a positive electrode active material.

【0013】図1は本発明の実施例における電池の構造
を示す断面図である。1は正極であり、次のようにして
作製した。まず、活物質である LiBx Co(1-x) O2 を85
重量部にグラファイト10重量部、ポリフッ化ビニリデン
5 重量部をN-メチル-2- ピロリドンを加えて混合してス
ラリー状合剤を作った。それを厚み1.02mm、空孔率95%
の発泡アルミニウムに塗布し、乾燥、圧延を施した後、
厚み約0.5mm 、幅14mm、長さ52mmの短冊状の極板を得
た。正極1 枚の活物質の放電電気量は約65mAh となるよ
う調整した。2は負極で厚み0.15mm、幅14mm、長さ52mm
のリチウム金属を用いた。正極と負極の電極構成は正極
が4 枚、負極が5 枚とした。
FIG. 1 is a sectional view showing the structure of a battery in an embodiment of the present invention. Reference numeral 1 is a positive electrode, which was manufactured as follows. First, the active material LiB x Co (1-x) O 2
10 parts by weight of graphite, polyvinylidene fluoride
5 parts by weight of N-methyl-2-pyrrolidone was added and mixed to prepare a slurry mixture. It has a thickness of 1.02 mm and a porosity of 95%.
After applying to the foam aluminum of, drying and rolling,
A strip-shaped electrode plate having a thickness of about 0.5 mm, a width of 14 mm and a length of 52 mm was obtained. The amount of electricity discharged from the active material on one positive electrode was adjusted to about 65 mAh. 2 is a negative electrode, thickness 0.15mm, width 14mm, length 52mm
Lithium metal was used. The positive and negative electrodes were composed of four positive electrodes and five negative electrodes.

【0014】3はセパレータで、厚み0.18mm、目付け50
g/m2 のポリプロピレン不織布を用い、1の正極を被覆
し、周囲をヒートシールして固定した。これらの電極群
は、鉄にニッケルメッキを施した電池ケース4に挿入し
た。5はチタン製の正極リードで、正極1と正極端子8
とを接続している。正極端子8は、ニッケルメッキを施
した鉄製の封口板6にガラスシール7を介して固定され
ている。9はニッケル製の負極リードで、封口板6にス
ポット溶接されている。
3 is a separator having a thickness of 0.18 mm and a basis weight of 50
Using g / m 2 of polypropylene non-woven fabric, the positive electrode of 1 was covered, and the periphery was heat-sealed and fixed. These electrode groups were inserted into a battery case 4 made of nickel plated with iron. Reference numeral 5 denotes a titanium positive electrode lead, which includes a positive electrode 1 and a positive electrode terminal 8.
And are connected. The positive electrode terminal 8 is fixed to a nickel-plated iron sealing plate 6 via a glass seal 7. Reference numeral 9 denotes a negative electrode lead made of nickel, which is spot-welded to the sealing plate 6.

【0015】電解液として、プロピレンカーボネートと
エチレンカーボネートの混合溶媒(容積比で1 :1 )に
LiPF6 を1 モル/リットルの割合で溶解したものを使用
した。電池は、封口板の周囲をレーザー溶接して密閉さ
れている。組立てた電池の寸法は、厚み6mm 、幅14mm、
長さ60mmである。
As an electrolytic solution, a mixed solvent of propylene carbonate and ethylene carbonate (volume ratio 1: 1) was used.
LiPF 6 dissolved at a rate of 1 mol / liter was used. The battery is sealed by laser welding around the sealing plate. The dimensions of the assembled battery are 6mm thick, 14mm wide,
The length is 60 mm.

【0016】このようにして作成した電池において、正
極活物質として使用した LiBx Co(1-x) O2 のx が0 、
0.02、0.05、0.1 、0.2 、0.25、0.3 、のものをそれぞ
れ、電池A 、B 、C 、D 、E 、F 、G とし、電流値58.2
4mA 、充電終止電圧4.1V、放電終止電圧2.75V の条件下
で充放電サイクル試験を行った。この時の電流値は正極
の電流密度に換算すると約1mA/cm2 である。
In the battery thus produced, x of LiB x Co (1-x) O 2 used as the positive electrode active material was 0,
0.02, 0.05, 0.1, 0.2, 0.25, and 0.3 are batteries A, B, C, D, E, F, and G, and the current value is 58.2.
A charge / discharge cycle test was conducted under the conditions of 4 mA, end-of-charge voltage 4.1V, and end-of-discharge voltage 2.75V. The current value at this time is about 1 mA / cm 2 when converted to the current density of the positive electrode.

【0017】図2に充放電サイクル試験の結果を示し
た。 LiBx Co(1-x) O2 中のほう素の含有量が増加する
につれて充放電サイクルにともなう放電容量の劣化が少
なくなっている。ほう素を含有するリチウムほう素コバ
ルト複合酸化物は充放電サイクルにおける安定性が高い
ものと思われる。
FIG. 2 shows the results of the charge / discharge cycle test. As the content of boron in LiB x Co (1-x) O 2 increases, the deterioration of the discharge capacity with charge and discharge cycles decreases. The lithium-boron-cobalt composite oxide containing boron is considered to have high stability during charge / discharge cycles.

【0018】ほう素を含有することにより複合酸化物の
分解が抑制されたものと考えられたため、充放電サイク
ル試験と同一構成の電池A 、B 、C 、D 、E 、F 、G
を、温度40℃、端子電圧4.1Vの充電状態で30日間保存し
た後、電池内のガス発生量を測定した。この時のガス量
の求め方は、水中で電池の一部を開封し、ガスを補集し
た。表1にガスの発生量を示した。
Since it is considered that the decomposition of the complex oxide was suppressed by containing boron, the batteries A, B, C, D, E, F, and G having the same structure as the charge / discharge cycle test were considered.
Was stored for 30 days in a charged state at a temperature of 40 ° C. and a terminal voltage of 4.1 V, and then the amount of gas generated in the battery was measured. The amount of gas at this time was determined by opening a part of the battery in water and collecting the gas. Table 1 shows the amount of gas generated.

【0019】[0019]

【表1】 複合酸化物中のほう素の量が多いほどガスの発生量は少
なくなっている。また、電池内のガスの発生量と充放電
サイクルにともなう放電容量の劣化との間にも明かな関
連が認められた。しかしながら、発生ガスを分析したと
ころ、酸素ガスとともに小量の水素ガスも検出された。
これは負極に使用したリチウム金属が、電池内に微量に
含まれる水分と反応し、水素ガスを発生したものと思わ
れる。図2における電池の容量の変化は、正極活物質の
分解による放電容量の低下と、発生ガスによる電極間の
接触不良の相乗効果によるものと考えられる。複合酸化
物中のほう素の含有量x が、0.02〜0.30の範囲で、ほう
素を含まない従来品より優れた特性を示した。
[Table 1] The larger the amount of boron in the composite oxide, the smaller the amount of gas generated. Also, a clear relationship was observed between the amount of gas generated in the battery and the deterioration of the discharge capacity with charge / discharge cycles. However, when the generated gas was analyzed, a small amount of hydrogen gas was detected together with oxygen gas.
It is considered that this is because the lithium metal used for the negative electrode reacted with a small amount of water contained in the battery to generate hydrogen gas. It is considered that the change in the capacity of the battery in FIG. 2 is due to the synergistic effect of the decrease in discharge capacity due to the decomposition of the positive electrode active material and the poor contact between the electrodes due to the generated gas. When the boron content x in the composite oxide was in the range of 0.02 to 0.30, it showed superior characteristics to the conventional product containing no boron.

【0020】実施例2 ほう素含有量の異なる各種組成の LiBx Co(1-x) O2
作製し、非水電解液中での放電特性を測定した。x の値
は0.001 から0.3 の範囲で変化させた。原料粉末とし
て、炭酸リチウムと、ほう酸と、酸化コバルトCoO を使
用した。各原料粉末の規定量を秤量し、自動乳鉢で混合
した後、500 ℃で6 時間仮焼し、さらに900 ℃で24時間
熱処理した。得られた焼成物をボールミルで粉砕し、 L
iBx Co(1-x ) O2 組成の複合酸化物を作製した。比較の
ためにほう素を含まない LiCoO2 も同様の行程、熱処理
条件で作製した。
Example 2 LiB x Co (1-x) O 2 having various compositions with different boron contents was prepared and the discharge characteristics in a non-aqueous electrolyte were measured. The value of x was changed in the range of 0.001 to 0.3. Lithium carbonate, boric acid, and cobalt oxide CoO 2 were used as raw material powders. A specified amount of each raw material powder was weighed, mixed in an automatic mortar, calcined at 500 ° C for 6 hours, and further heat-treated at 900 ° C for 24 hours. The fired product obtained is crushed with a ball mill and L
A composite oxide having a composition of iB x Co (1-x ) O 2 was prepared. For comparison, boron-free LiCoO 2 was prepared under the same process and heat treatment conditions.

【0021】各種組成の複合酸化物を85部と、導電剤の
アセチレンブラック8 部と結着剤のPTFEディスパージョ
ン水溶液(ポリ四フッ化エチレン樹脂15%含有)34部を
混練し、これを一対のロール間に通してシート状にした
後、アルミニウム製のエキスパンドメタルの芯材の両面
に圧着して、厚さ約0.6mm の正極基板を作製した。この
基板を打ち抜いて、幅14mm、長さ52mmの短冊状正極を得
た。
85 parts of composite oxides of various compositions, 8 parts of acetylene black as a conductive agent, and 34 parts of an aqueous solution of PTFE dispersion (containing 15% of polytetrafluoroethylene resin) as a binder were kneaded, and a pair of them were mixed. After being formed into a sheet shape by passing between the rolls, a positive electrode substrate having a thickness of about 0.6 mm was prepared by press-bonding to both surfaces of an expanded metal core material made of aluminum. This substrate was punched out to obtain a strip-shaped positive electrode having a width of 14 mm and a length of 52 mm.

【0022】発生ガスの影響を避けるために、ビーカー
試験セルで測定した。
The measurement was carried out in a beaker test cell in order to avoid the influence of generated gas.

【0023】図3にビーカー試験セルの構成を示した。
10はガラス容器のビーカーであり、電解液11を内部
に保持し、ポリプロピレン製の蓋12で開口部が覆われ
ている。13は試験極の正極であり、14、14’は対
極である。15は参照極であり、リチウムを使用した。
対極としてリチウムを使用し、1 モル濃度のLiPF6 を溶
解したエチレンカーボネートとジエチルカーボネートの
等量混合液中で、単極での充放電サイクル試験を行っ
た。試験はアルゴン雰囲気のドライボックス中でおこな
い水分や酸素の悪影響を防止した。電流20mAで、リチウ
ム電位に対して4.1Vまで充電した後、同じ20mAの電流
で、リチウム電位に対して2.75V まで放電し、複合酸化
物の単位重量当たりの放電容量の変化を求めた。
FIG. 3 shows the structure of the beaker test cell.
Reference numeral 10 is a beaker of a glass container, which holds an electrolytic solution 11 therein and whose opening is covered with a polypropylene lid 12. 13 is a positive electrode of the test electrode, and 14 and 14 'are counter electrodes. Reference numeral 15 is a reference electrode, and lithium was used.
Using lithium as a counter electrode, a single electrode charge / discharge cycle test was performed in an equal volume mixture of ethylene carbonate and diethyl carbonate in which 1 molar concentration of LiPF 6 was dissolved. The test was carried out in a dry box in an argon atmosphere to prevent adverse effects of water and oxygen. After charging to 4.1V against lithium potential with a current of 20mA, it was discharged up to 2.75V against lithium potential with the same current of 20mA, and the change in discharge capacity per unit weight of the composite oxide was obtained.

【0024】図4に複合酸化物中のほう素の含有量x と
1 サイクル目の放電容量の関係を示した。従来のほう素
を含まない LiCoO2 に対して、x=0.001 〜0.05の微量の
ほう素を含有する複合酸化物は高い放電容量を示した。
ほう素の含有量はx=0.001 という極微量でも効果があ
り、x=0.03付近で放電容量は最高になり、X=0.1 以上で
はほう素の量が増加するにつれて1 サイクル目の放電容
量は徐々に減少した。
FIG. 4 shows the boron content x in the composite oxide.
The relationship of the discharge capacity at the first cycle is shown. Compared to the conventional boron-free LiCoO 2 , the composite oxide containing a small amount of boron at x = 0.001 to 0.05 showed high discharge capacity.
Even if the content of boron is as small as x = 0.001, it is effective, and the discharge capacity becomes the highest at around x = 0.03, and when X = 0.1 or more, the discharge capacity at the first cycle gradually increases as the amount of boron increases. Decreased to.

【0025】図5は充放電サイクルにともなう複合酸化
物の単位重量当たりの放電容量の変化を示したものであ
る。ほう素を含有する複合酸化物は充放電サイクルにお
ける劣化が少ないことが判明した。ほう素の含有量がX=
0.25と多い複合酸化物でも200 サイクル以上の充放電で
は未添加の場合より放電容量は多くなっている。すなわ
ち、200 サイクル以上の充放電サイクルを行う場合、x
の値が0.001 〜0.25の複合酸化物は、従来の LiCoO2
り優れた特性を有している。
FIG. 5 shows the change in discharge capacity per unit weight of the composite oxide with charge / discharge cycles. It was found that the boron-containing composite oxide was less deteriorated during charge / discharge cycles. Boron content is X =
Even with a complex oxide as high as 0.25, the discharge capacity is higher at 200 cycles or more than when it is not added. In other words, when performing a charge / discharge cycle of 200 cycles or more, x
The composite oxide having a value of 0.001 to 0.25 has superior properties to conventional LiCoO 2 .

【0026】図6、図7、図8、図9、図10に作製し
た複合酸化物の粉末X 線回折図の一部を示した。ほう素
を含有するx=0.001 〜0.25の LiBx Co(1-x) O2 の回折
ピークは LiCoO2 のピークと一致した。しかし、いずれ
もd003面のピークが鋭く、ほう素を含有することにより
結晶化がより進んでいることが予想される。x の値が0.
3 の組成については、未知のピークが一部観察されが、
その組成については同定できなかった。ほう素の化合物
が混合して生成しているものと思われる。
Some of the powder X-ray diffraction patterns of the composite oxides produced are shown in FIGS. 6, 7, 8, 9, and 10. The diffraction peak of LiB x Co (1-x) O 2 containing x = 0.001 to 0.25 containing boron coincided with that of LiCoO 2 . However, in all cases, the peak on the d003 plane is sharp, and it is expected that crystallization will be more advanced due to the inclusion of boron. The value of x is 0.
For the composition of 3, some unknown peaks were observed,
The composition could not be identified. It seems that boron compounds are formed as a mixture.

【0027】実施例3 実施例2で作製した短冊状電極を使用して、実施例1と
同様の電池を組み立て、充放電試験を行った。ほう素の
含有量はx=0 の従来電池と、x=0.03の本発明実施電池で
ある。
Example 3 Using the strip-shaped electrode produced in Example 2, a battery similar to that of Example 1 was assembled and a charge / discharge test was conducted. The content of boron is the conventional battery with x = 0 and the battery of the present invention with x = 0.03.

【0028】図1の電池構造図において、1の正極の製
法は次の通りである。正極活物質の複合酸化物を85部
と、導電剤のアセチレンブラック8 部と結着剤のPTFEデ
ィスパージョン水溶液(ポリ四フッ化エチレン樹脂15%
含有)34部を混練し、これを一対のロール間に通してシ
ート状にした後、アルミニウム製のエキスパンドメタル
の芯材の両面に圧着して、厚さ約0.6mm の正極基板を作
製した。この基板を打ち抜いて、幅14mm、長さ52mmの短
冊状正極を得た。
In the battery structure diagram of FIG. 1, the method for producing the positive electrode 1 is as follows. 85 parts of the composite oxide of the positive electrode active material, 8 parts of acetylene black as the conductive agent and an aqueous solution of PTFE dispersion as the binder (polytetrafluoroethylene resin 15%
34 parts) were kneaded, passed through a pair of rolls to form a sheet, and then pressure-bonded to both surfaces of an expanded metal core material made of aluminum to produce a positive electrode substrate having a thickness of about 0.6 mm. This substrate was punched out to obtain a strip-shaped positive electrode having a width of 14 mm and a length of 52 mm.

【0029】負極2として、リチウムの代わりにリチウ
ムイオンのホストとして作用する炭素負極を使用した。
図1における実施例3の負極2は次のようにして作製し
た。負極活物質である炭素材料98部と、結着剤のポリフ
ッ化ビニリデン2 部と溶剤のN-メチル-2- ピロリドン30
部を混練してペースト状にし、厚さ1.0mm 、多孔度98%
のニッケル発泡体に塗布した後、乾燥、圧延を施して、
厚さ0.5mm の電極基板を作成した。この電極基板を打ち
抜いて、幅14mm、長さ52mmの短冊状の負極板を得た。負
極1枚当りの活物質炭素合剤の重量は0.40g であった。
ここで用いた炭素材料は、気相成長法により作製した炭
素繊維で、X線回折法により求めた物性値は、結晶層間
距離( dOO2 )が3.36オングストローム、結晶子の長さ
(Lc)が39オングストロームであり、185mAh/gの放電容
量を有している。電解液として、1 モル濃度のLiPF6
溶解したエチレンカーボネートとジエチルカーボネート
の等量混合液を使用した。その他の構成は実施例1と同
じであるが、電池の公称容量は350mAhとなっている。。
As the negative electrode 2, a carbon negative electrode acting as a host for lithium ions was used instead of lithium.
The negative electrode 2 of Example 3 in FIG. 1 was manufactured as follows. 98 parts of carbon material which is the negative electrode active material, 2 parts of polyvinylidene fluoride as a binder and N-methyl-2-pyrrolidone 30 as a solvent
Part is kneaded into a paste, thickness 1.0mm, porosity 98%
After applying it to the nickel foam, it is dried and rolled,
An electrode substrate with a thickness of 0.5 mm was created. This electrode substrate was punched out to obtain a strip-shaped negative electrode plate having a width of 14 mm and a length of 52 mm. The weight of the active material carbon mixture per one negative electrode was 0.40 g.
The carbon material used here is a carbon fiber produced by a vapor phase epitaxy method, and the physical property values obtained by an X-ray diffraction method are as follows: the distance between crystal layers (d OO2 ) is 3.36 Å, and the length of the crystallite (Lc) is It is 39 angstrom and has a discharge capacity of 185 mAh / g. As an electrolytic solution, an equal volume mixture of ethylene carbonate and diethyl carbonate in which 1 molar concentration of LiPF 6 was dissolved was used. The other configurations are the same as in Example 1, but the nominal capacity of the battery is 350 mAh. ..

【0030】図11に本発明実施例電池Hと比較例であ
る従来電池Iの充放電サイクル試験の結果を示した。実
施例1と異なり、負極にリチウムを使用しなかったため
に、発生ガスの影響が少なくなり、従来品の容量もやや
改善が認められたが、ほう素を含む正極活物質を使用し
た電池は、放電容量の低下が更に少なくなった。
FIG. 11 shows the results of the charge / discharge cycle test of the inventive battery H of the present invention and the comparative battery I of the comparative example. Unlike Example 1, since lithium was not used for the negative electrode, the influence of the generated gas was reduced, and the capacity of the conventional product was slightly improved, but the battery using the positive electrode active material containing boron was The decrease in discharge capacity was further reduced.

【0031】実施例4 熱処理温度を下げて LiBx Co(1-x) O2 を合成した。Example 4 LiB x Co (1-x) O 2 was synthesized by lowering the heat treatment temperature.

【0032】ほう素含量の異なる各種組成の LiBx Co
(1-x) O2 を作製し、非水電解液中での放電特性を測定
した。原料粉末として、炭酸リチウムと、ほう酸と、酸
化コバルトを使用した。x の値は0.001 から0.3 の範囲
で変化させた。各原料粉末の規定量を秤量し、自動乳鉢
で混合した後、700 ℃で10時間熱処理した。得られた焼
成物をボールミルで粉砕し、 LiBx Co(1-x) O2 組成の
複合酸化物を作製した。比較のためにほう素を含まない
X=0 に相当する LiCoO2 も同様の行程、熱処理条件で作
製した。
LiB x Co of various compositions with different boron contents
(1-x) O 2 was prepared and the discharge characteristics in the non-aqueous electrolyte were measured. Lithium carbonate, boric acid, and cobalt oxide were used as raw material powders. The value of x was changed in the range of 0.001 to 0.3. A prescribed amount of each raw material powder was weighed, mixed in an automatic mortar, and then heat-treated at 700 ° C. for 10 hours. The obtained calcined product was crushed with a ball mill to prepare a composite oxide having a LiB x Co (1-x) O 2 composition. Does not contain boron for comparison
LiCoO 2 corresponding to X = 0 was prepared under the same process and heat treatment conditions.

【0033】得られた複合酸化物を用いて、実施例2と
同様の短冊状正極を作製し、図3に示したビーカー試験
セルにより、実施例2と同じ条件で充放電サイクル試験
を行った。
Using the obtained composite oxide, a strip-shaped positive electrode similar to that in Example 2 was prepared, and a charge / discharge cycle test was conducted under the same conditions as in Example 2 using the beaker test cell shown in FIG. ..

【0034】図12にほう素の含有量x と複合酸化物の
1 サイクル目の単位重量当たりの放電容量の関係を示し
た。従来のほう素を含まない LiCoO2 の放電容量は極め
て悪く、一方、ほう素を含む複合酸化物の放電容量は実
施例1とほぼ同様の値を示した。x=0.001 〜0.25のほう
素を含有する複合酸化物は1 サイクル目からほう素を含
まない場合より高い放電容量を示した。ほう素を含まな
い従来の LiCoO2 は、ここでの製造条件である700 ℃で
10時間の熱処理では、合成反応が不十分であるためと思
われる。
FIG. 12 shows the boron content x and the composite oxide.
The relationship of discharge capacity per unit weight in the first cycle is shown. The discharge capacity of the conventional LiCoO 2 containing no boron was extremely poor, while the discharge capacity of the boron-containing composite oxide showed almost the same value as in Example 1. The complex oxide containing boron at x = 0.001 to 0.25 showed higher discharge capacity than that without boron at the first cycle. Conventional boron-free LiCoO 2 is produced at 700 ° C, which is the manufacturing condition here.
The heat treatment for 10 hours seems to be due to insufficient synthesis reaction.

【0035】実施例5 各種ほう素原料を用いて LiBx Co(1-x) O2 を合成し
た。ここではx=0.03のほう素含有量に限定し、ほう素原
料として、ほう酸 H3 BO3 、酸化ほう素 B2 O3、ほう
酸リチウムLiBO2 ・2H2 O 、ほう酸アンモニウム (N
H4 2 ・5B2 O3 ・8H2 O を使用した。原料粉末とし
て、炭酸リチウムと酸化コバルトを使用した。原料粉末
の規定量を秤量し、自動乳鉢で混合した後、700 ℃で10
時間熱処理した。得られた焼成物をボールミルで粉砕
し、 LiB0.03Co0.97 O2 組成の複合酸化物を作製した。
Example 5 LiB x Co (1-x) O 2 was synthesized using various boron raw materials. This limits the oxygen content towards the x = 0.03, boron as raw materials, boric acid H 3 BO 3, boric oxide-containing B 2 O 3, lithium borate LiBO 2 · 2H 2 O, ammonium borate (N
H 4) using 2 · 5B 2 O 3 · 8H 2 O. Lithium carbonate and cobalt oxide were used as raw material powders. Weigh the specified amount of raw material powder, mix in an automatic mortar, and
Heat treated for hours. The obtained fired product was crushed by a ball mill to prepare a composite oxide having a LiB 0.03 Co 0.97 O 2 composition.

【0036】複合酸化物を85部と、導電剤のアセチレン
ブラック8 部と結着剤のPTFEディスパージョン水溶液
(ポリ四フッ化エチレン樹脂15%含有)34部を混練し、
これを一対のロール間に通してシート状にした後、アル
ミニウム製のエキスパンドメタルの芯材の両面に圧着し
て、厚さ約0.6mm の正極基板を作製した。この基板を打
ち抜いて、幅14mm、長さ52mmの短冊状正極を得た。この
ようにして製造した4 種類の正極を用いて、実施例2と
同様に図3のビーカー試験セルで単極特性を測定した。
4 種類の電極の1 サイクル目の放電容量はいずれも154m
Ah/gであった。ほう素原料が異なっても複合酸化物の単
位重量当たりの放電容量に差はなく、ほう素の効果が認
められた。各種ほう素の化合物は、空気中での加熱によ
り容易に酸化物に変化するために熱処理後の複合酸化物
に差はないものと考えられる。
85 parts of the composite oxide, 8 parts of acetylene black as a conductive agent and 34 parts of an aqueous solution of PTFE dispersion (containing 15% of polytetrafluoroethylene resin) as a binder were kneaded.
This was passed between a pair of rolls to form a sheet, and then pressure-bonded to both surfaces of an expanded metal core material made of aluminum to produce a positive electrode substrate having a thickness of about 0.6 mm. This substrate was punched out to obtain a strip-shaped positive electrode having a width of 14 mm and a length of 52 mm. Using the four types of positive electrodes thus manufactured, the unipolar characteristics were measured by the beaker test cell of FIG. 3 in the same manner as in Example 2.
The discharge capacity in the first cycle of all four types of electrodes is 154m.
It was Ah / g. There was no difference in the discharge capacity per unit weight of the composite oxide even if the boron raw materials were different, and the effect of boron was confirmed. It is considered that there is no difference in the complex oxides after the heat treatment because the various boron compounds are easily transformed into oxides by heating in air.

【0037】複合酸化物中のほう素がどのような作用を
及ぼしているのか明らかではないが、電子顕微鏡での観
察によると、ほう素を含有する複合酸化物は、いずれも
熱処理行程での結晶の成長が早く、700 ℃程度の温度
で、10μm 以上の結晶が容易に成長した。従来の LiCoO
2 の場合、900 ℃程度の温度で20時間以上の熱処理条件
が必要であった。ほう素を含有する複合酸化物は、従来
より低温度で、かつ短時間の熱処理で合成が可能であ
る。
Although it is not clear what action boron has in the complex oxide, observation by an electron microscope shows that all the complex oxides containing boron are crystallized in the heat treatment process. The growth rate was fast, and crystals of 10 μm or more easily grew at a temperature of about 700 ° C. Conventional LiCoO
In the case of 2 , a heat treatment condition of at least 900 ° C for 20 hours or more was required. The boron-containing composite oxide can be synthesized by a heat treatment at a lower temperature and a shorter time than ever before.

【0038】[0038]

【発明の効果】以上のことから、非水電解液二次電池に
おいて、正極活物質にほう素を含有する LiBx Co(1-x)
O2 組成の複合酸化物を用いることにより、非水電解液
二次電池の充放電サイクル特性が向上し、長寿命の二次
電池を提供することが可能となった。x の値は、0.001
という極微量でも効果があった。x の値が0.25を越える
と、充放電サイクル初期の放電容量が少なくなり、X線
回折図の結果からも異物の生成が認められるようになっ
た。x の値は0.001 ≦x ≦0.25が好ましい。
As described above, in the non-aqueous electrolyte secondary battery, LiB x Co (1-x) containing boron as the positive electrode active material
By using the composite oxide having the O 2 composition, the charge / discharge cycle characteristics of the non-aqueous electrolyte secondary battery were improved and it became possible to provide a secondary battery with a long life. The value of x is 0.001
It was effective even with a very small amount. When the value of x exceeds 0.25, the discharge capacity at the beginning of the charging / discharging cycle becomes small, and the generation of foreign matter can be recognized from the results of the X-ray diffraction pattern. The value of x is preferably 0.001 ≤ x ≤ 0.25.

【0039】本発明電池は、充放電サイクルにおける劣
化が少なく、分解によるガスの発生も少ないために、電
池の密閉化が可能であり、各種電解質や、各種負極との
組み合わせにより、小型のボタン電池から電気自動車用
の大型の電池まで適用が可能であり、非水電解液二次電
池の実用化に大きな役割を果たすものである。
The battery of the present invention has little deterioration during charge and discharge cycles and generates little gas due to decomposition, so that the battery can be hermetically sealed, and by combining with various electrolytes and various negative electrodes, a small button battery can be obtained. Can be applied to large batteries for electric vehicles, and plays a major role in the practical application of non-aqueous electrolyte secondary batteries.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例および比較例における電池の構
造を示す断面図。
FIG. 1 is a cross-sectional view showing a structure of a battery in an example of the present invention and a comparative example.

【図2】本発明の実施例電池および比較例電池のサイク
ル数と放電容量の関係を示す図。
FIG. 2 is a graph showing the relationship between the number of cycles and the discharge capacity of an example battery and a comparative example battery of the present invention.

【図3】ビーカー試験セルの構成図。FIG. 3 is a configuration diagram of a beaker test cell.

【図4】ほう素の含有量x と1 サイクル目の放電容量の
関係を示す図。
FIG. 4 is a diagram showing the relationship between the boron content x and the discharge capacity at the first cycle.

【図5】充放電サイクルにともなう複合酸化物の放電容
量の変化を示す図。
FIG. 5 is a diagram showing a change in discharge capacity of a composite oxide with charge / discharge cycles.

【図6】複合酸化物 LiCoO2 の粉末X 線回折図。FIG. 6 is a powder X-ray diffraction pattern of a composite oxide LiCoO 2 .

【図7】複合酸化物LiBxCo(1-x)O2 (x=0.002)の粉末X
線回折図。
FIG. 7: Powder X of complex oxide LiBxCo (1-x) O 2 (x = 0.002)
Line diffraction diagram.

【図8】複合酸化物LiBxCo(1-x)O2 (x=0.01) の粉末X
線回折図。
FIG. 8: Powder X of complex oxide LiBxCo (1-x) O 2 (x = 0.01)
Line diffraction diagram.

【図9】複合酸化物LiBxCo(1-x)O2 (x=0.25) の粉末X
線回折図。
FIG. 9: Powder X of complex oxide LiBxCo (1-x) O 2 (x = 0.25)
Line diffraction diagram.

【図10】複合酸化物LiBxCo(1-x)O2 (x=0.30) の粉末
X 線回折図。
FIG. 10: Powder of complex oxide LiBxCo (1-x) O 2 (x = 0.30)
X-ray diffraction diagram.

【図11】本発明の実施例電池および比較例電池のサイ
クル数と放電容量の関係を示す図。
FIG. 11 is a graph showing the relationship between the number of cycles and the discharge capacity of the example battery of the present invention and the comparative example battery.

【図12】ほう素の含有量x と1 サイクル目の放電容量
の関係を示す図。
FIG. 12 is a graph showing the relationship between the boron content x and the discharge capacity at the first cycle.

【符号の説明】 1 正極 2 負極 3 セパレータ 4 電池ケース 5 正極リード 6 封口板 7 ガラスシール 8 ハーメチック端子 9 負極リード 10 ビーカー 11 非水電解液 12 蓋 13 正極 14、14’ 対極 15 参照極 H 本発明実施例電池 I 従来電池[Explanation of symbols] 1 positive electrode 2 negative electrode 3 separator 4 battery case 5 positive electrode lead 6 sealing plate 7 glass seal 8 hermetic terminal 9 negative electrode lead 10 beaker 11 non-aqueous electrolyte 12 lid 13 positive electrode 14, 14 'counter electrode 15 reference electrode H book Invention Example Battery I Conventional Battery

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】リチウムとほう素とコバルトからなる、一
般式 LiBx Co(1-x) O2 で表される複合酸化物を正極
活物質として用いたことを特徴とする非水電解液二次電
池。
1. A non-aqueous electrolyte solution characterized in that a composite oxide of the general formula LiB x Co (1-x) O 2 composed of lithium, boron and cobalt is used as a positive electrode active material. Next battery.
【請求項2】x は、0.001 ≦x ≦ 0.25 であることを特
徴とする請求項1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein x is 0.001 ≤ x ≤ 0.25.
JP04269511A 1992-02-03 1992-09-10 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3125075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04269511A JP3125075B2 (en) 1992-02-03 1992-09-10 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4794292 1992-02-03
JP4-47942 1992-02-03
JP04269511A JP3125075B2 (en) 1992-02-03 1992-09-10 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH05325971A true JPH05325971A (en) 1993-12-10
JP3125075B2 JP3125075B2 (en) 2001-01-15

Family

ID=12789424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04269511A Expired - Lifetime JP3125075B2 (en) 1992-02-03 1992-09-10 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3125075B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000113884A (en) * 1998-10-01 2000-04-21 Ngk Insulators Ltd Lithium secondary battery
US7378189B2 (en) 2003-05-30 2008-05-27 Canon Kabushiki Kaisha Electrode material for lithium secondary battery, electrode structure employing electrode material, and lithium secondary battery having electrode structure
WO2008078695A1 (en) 2006-12-26 2008-07-03 Mitsubishi Chemical Corporation Lithium transition metal compound powder, process for production thereof, spray-dried product useful as firing precursor, and positive electrode for lithium secondary battery and lithium secondary battery made by using the same
US7842268B2 (en) 2005-02-14 2010-11-30 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode for lithium secondary battery
JP2022510983A (en) * 2018-11-30 2022-01-28 ポスコ Positive electrode additive for lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery including it and lithium secondary battery containing it

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000113884A (en) * 1998-10-01 2000-04-21 Ngk Insulators Ltd Lithium secondary battery
US7378189B2 (en) 2003-05-30 2008-05-27 Canon Kabushiki Kaisha Electrode material for lithium secondary battery, electrode structure employing electrode material, and lithium secondary battery having electrode structure
US7842268B2 (en) 2005-02-14 2010-11-30 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode for lithium secondary battery
WO2008078695A1 (en) 2006-12-26 2008-07-03 Mitsubishi Chemical Corporation Lithium transition metal compound powder, process for production thereof, spray-dried product useful as firing precursor, and positive electrode for lithium secondary battery and lithium secondary battery made by using the same
EP2337125A1 (en) 2006-12-26 2011-06-22 Mitsubishi Chemical Corporation Lithium transition metal based compound powder and method for manufacturing the same
EP2341570A1 (en) 2006-12-26 2011-07-06 Mitsubishi Chemical Corporation Lithium transition metal based compound powder and method for manufacturing the same
JP2022510983A (en) * 2018-11-30 2022-01-28 ポスコ Positive electrode additive for lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery including it and lithium secondary battery containing it

Also Published As

Publication number Publication date
JP3125075B2 (en) 2001-01-15

Similar Documents

Publication Publication Date Title
JP5430920B2 (en) Nonaqueous electrolyte secondary battery
EP2985822B1 (en) Positive electrode active material and non-aqueous elecrolyte cell
JP3024636B2 (en) Non-aqueous electrolyte secondary battery
JP7215004B2 (en) Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, positive electrode mixture paste for lithium ion secondary battery, and lithium ion secondary battery
JPH0732017B2 (en) Non-aqueous electrolyte secondary battery
JP2004139743A (en) Nonaqueous electrolyte secondary battery
WO2013119571A1 (en) Mixed phase lithium metal oxide compositions with desirable battery performance
JP5036121B2 (en) Nonaqueous electrolyte secondary battery
EP4280303A1 (en) Cathode for lithium secondary battery, lithium secondary battery and method of preparing cathode active material for lithium secondary battery
JP2006024415A (en) Cathode material and battery
JP2996234B1 (en) Non-aqueous electrolyte secondary battery
KR101676687B1 (en) Positive active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
WO2019142744A1 (en) Non-aqueous electrolyte secondary battery
JP3125075B2 (en) Non-aqueous electrolyte secondary battery
TW201932419A (en) Manganese phosphate coated lithium nickel oxide materials
JP5196718B2 (en) Nonaqueous electrolyte secondary battery
JPH04328258A (en) Nonaqueous electrolyte secondary battery
JP5019892B2 (en) Nonaqueous electrolyte secondary battery
JP2006156234A (en) Nonaqueous electrolyte secondary battery and its charging method
JP2000215895A (en) Nonaqueous secondary battery
JPH10241685A (en) Nonaqueous electrolytic secondary battery
JPH06163046A (en) Manufacture of positive electrode active material for nonaqueous electrolyte battery
JP5949199B2 (en) Lithium manganese-containing oxide and method for producing the same, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
EP4318643A1 (en) Method of preparing cathode active material, cathode for lithium secondary battery and lithium secondary battery
WO2023120670A1 (en) Positive electrode active material for secondary batteries, and secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 12

EXPY Cancellation because of completion of term