JPH05325924A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH05325924A
JPH05325924A JP4160444A JP16044492A JPH05325924A JP H05325924 A JPH05325924 A JP H05325924A JP 4160444 A JP4160444 A JP 4160444A JP 16044492 A JP16044492 A JP 16044492A JP H05325924 A JPH05325924 A JP H05325924A
Authority
JP
Japan
Prior art keywords
negative electrode
polyacene
positive electrode
gasket
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4160444A
Other languages
Japanese (ja)
Inventor
Eiji Okamoto
英治 岡本
Hidekazu Kubota
英一 窪田
Shizukuni Yada
静邦 矢田
Toyoro Harada
豊郎 原田
Toyoo Hayasaka
豊夫 早坂
Harumitsu Hirama
春光 平間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP4160444A priority Critical patent/JPH05325924A/en
Publication of JPH05325924A publication Critical patent/JPH05325924A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve heat resistance while allowing reflow soldering by making an organic semiconductor containing the polyacene skeletal structure a positive electrode or a negative electrode and constituting a gasket of polyamide resin. CONSTITUTION:A gasket 4 injection-molded out of nylon 46 of polyamide resin is vacuum-dried at 100 deg.C for being kept in a jam pot. Next, after applying conductive paste 3 to the inside bottom of a positive electrode can 1 consisting of stainless steel and placing a polyacene sheet 2 for being press-adhered from above, it is dried at 100 deg.C. Similarly, conductive paste 3' is applied to the inside bottom of a negative electrode can 6 consisting of stainless steel and a polyacene sheet 2' is placed to be press-adhered for being dried. A propylene carbonate (1mol/l) solution of boron fluoride tetraethyl ammonium is injected into a positive electrode as an electrolyte 7 and a separator is placed thereon. Similarly, an electrolyte is injected also into a negative electrode in order to assemle a coin type organic electrolyte battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非プロトン性の有機溶
媒液を電解液とするコイン型乃至ボタン型有機電解質電
池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coin-type or button-type organic electrolyte battery using an aprotic organic solvent solution as an electrolytic solution.

【0002】[0002]

【従来の技術】本願出願は先に特開昭60−17016
3号公報としてポリアセン系骨格構造を有する有機半導
体を正極及び負極とし、非プロトン性の有機溶媒液を電
解液とする有機電解質電池を提案したが、該電池におい
ては、電池の気密,液密,および正・負極缶の絶縁を保
持するガスケットの材質が極めて重要である。従来ガス
ケット材質としては、耐薬品性,弾力性,耐クリープ性
にすぐれ、成形性がよく、射出成形可能で安価なポリプ
ロピレンが用いられてきた。該電池の正・負極缶,セパ
レータ,ポリアセン系骨格構造を有する有機半導体およ
び電解液は、融点あるいは沸点がいずれも高く耐熱性が
優れている。しかし、ガスケットに用いているポリプロ
ピレンは耐熱温度が低く、そのため従来の電池は耐熱性
が劣るという欠点を有していた。
2. Description of the Related Art The present application was previously disclosed in JP-A-60-17016.
No. 3, there is proposed an organic electrolyte battery in which an organic semiconductor having a polyacene skeleton structure is used as a positive electrode and a negative electrode, and an aprotic organic solvent solution is used as an electrolytic solution. Also, the material of the gasket that holds the insulation of the positive and negative electrode cans is extremely important. Conventionally, as a gasket material, polypropylene has been used, which has excellent chemical resistance, elasticity, and creep resistance, has good moldability, and is injection-moldable and inexpensive. The positive and negative electrode cans, separators, organic semiconductors having a polyacene-based skeleton structure and electrolytic solution of the battery have high melting points or boiling points and excellent heat resistance. However, the polypropylene used for the gasket has a low heat resistance temperature, and thus the conventional battery has a drawback that the heat resistance is inferior.

【0003】コイン型(ボタン型)有機電解質電池は、
主にメモリーバックアップ電源として用いられている。
その場合、電池にハンダ付用の端子を溶接した後、メモ
リー素子と共にプリント基板上にハンダ付されることが
多い。従来、プリント基板上へのハンダ付は、ハンダこ
てを用いて行なわれていたが、機器の小型化あるいは高
機能化に伴い、プリント基板の同一面積内に搭載される
電子部品を多くする必要が生じハンダ付のためにハンダ
こてを挿入する隙間を確保することが困難となってき
た。そこで予めプリント基板上のハンダ付を行なう部分
にハンダを塗布しておきその部分に部品を載置するか、
あるいは、部品を載置後ハンダ小球をハンダ付部分に供
給し、ハンダ付部分がハンダの融点以上、例えば、20
0〜230℃となるように設定された高温雰囲気の炉内
に部品を搭載したプリント基板を通過させることによ
り、ハンダを溶融させてハンダ付を行なう方法が用いら
れている(以下リフローハンダ付という)。従来のポリ
プロピレンからなるガスケットを用いたコイン型(ボタ
ン型)有機電解質電池では、リフローハンダ付時にポリ
プロピレンが融解あるいは変形し、ステンレス鋼あるい
はアルミニウムからなる正・負極缶が接して短絡すると
いう問題点があった。
The coin type (button type) organic electrolyte battery is
Mainly used as a memory backup power supply.
In that case, after soldering the terminals for soldering to the battery, it is often soldered on the printed circuit board together with the memory element. Conventionally, soldering on a printed circuit board has been performed using a soldering iron, but with the downsizing and higher functionality of equipment, it is necessary to increase the number of electronic components mounted on the same area of the printed circuit board. It has become difficult to secure a gap for inserting a soldering iron because of soldering. Therefore, apply solder to the part to be soldered on the printed circuit board in advance and place parts on that part,
Alternatively, after the parts are placed, the solder globules are supplied to the soldered portion, and the soldered portion is equal to or higher than the melting point of the solder, for example, 20
A method is used in which a solder is melted by melting a solder by passing a printed circuit board on which components are mounted in a furnace in a high temperature atmosphere set to 0 to 230 ° C. (hereinafter referred to as reflow soldering). ). In the conventional coin-type (button-type) organic electrolyte battery using a gasket made of polypropylene, polypropylene is melted or deformed during reflow soldering, and the positive and negative electrode cans made of stainless steel or aluminum come into contact with each other to cause a short circuit. there were.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは、既存の
電池の有する上述の諸問題点に鑑み、鋭意研究を続けた
結果、本発明を完成したものであって、その目的とする
ところは、耐熱性が向上し、リフローハンダ付が可能な
有機電解質電池を提供するにある。他の目的及び効果は
以下の説明から明らかにされよう。
DISCLOSURE OF THE INVENTION The inventors of the present invention have completed the present invention as a result of continuing earnest research in view of the above-mentioned problems of the existing battery, Is to provide an organic electrolyte battery having improved heat resistance and capable of being reflow-soldered. Other objects and effects will be apparent from the following description.

【0005】[0005]

【課題を解決するための手段】上述の目的は、正極缶,
負極缶,正極,負極,セパレータ,ガスケットを備えた
有機電解質電池であって、ポリアセン系骨格構造を含む
有機半導体を正極又は負極とし、前記ガスケットがポリ
アミド系樹脂により構成されていることを特徴とする有
機電解質電池により達成される。
[Means for Solving the Problems]
An organic electrolyte battery including a negative electrode can, a positive electrode, a negative electrode, a separator, and a gasket, wherein an organic semiconductor including a polyacene-based skeleton is used as a positive electrode or a negative electrode, and the gasket is made of a polyamide resin. This is accomplished with an organic electrolyte battery.

【0006】本発明の電池は、図1に示すように、正極
缶1と負極缶6の内底部に導電性ペースト3,3´が塗
布され、ポリアセン系有機半導体からなるシート2,2
´が該導電性ペースト3,3´と接触するように正極缶
1と負極缶6に挿入されセパレータ5を介して相対向し
ている。ガスケット4は正極缶1と負極缶6とにより圧
縮され、気密性,液密性および正・負極缶の絶縁を保持
し、電解液は一部は、ポリアセン系有機半導体からなる
シート2,2´中の空隙にあり、一部は空間7にあって
もよい。正極缶及び負極缶は慣用のものであり、例え
ば、ステンレス又はアルミニウム製である。セパレータ
は電池あるいはコンデンサーにおいて慣用のもので、例
えば多孔性合成樹脂フィルム,無機繊維を樹脂で固めた
もの、紙などであり、好ましくはガラス繊維不織布から
なる。有機電解液は、非プロトン性の有機溶媒によって
イオンを生成する塩を溶解させた溶液である。通常この
種の有機電解質電池の電解液としては、溶媒として、プ
ロピレンカーボネート,γ−ブチロラクトン等の非プロ
トン性有機溶媒が好ましく用いられまた塩としてテトラ
アルキルアンモニウム塩、例えば、下記式(1)で示さ
れるものが好ましく用いられる。
In the battery of the present invention, as shown in FIG. 1, the conductive pastes 3, 3'are applied to the inner bottom portions of the positive electrode can 1 and the negative electrode can 6, and the sheets 2, 2 made of a polyacene organic semiconductor are applied.
The positive electrode can 1 and the negative electrode can 6 are inserted in such a manner that “′” comes into contact with the conductive pastes 3, 3 ′ and face each other via the separator 5. The gasket 4 is compressed by the positive electrode can 1 and the negative electrode can 6 to maintain airtightness, liquid tightness, and insulation of the positive and negative electrode cans, and the electrolytic solution is a sheet 2, 2 ′ partially made of a polyacene-based organic semiconductor. It may be in the void inside, and a part may be in the space 7. The positive electrode can and the negative electrode can are conventional ones, for example, stainless steel or aluminum. The separator is commonly used in batteries or capacitors, and is, for example, a porous synthetic resin film, an inorganic fiber hardened with a resin, paper, or the like, and is preferably made of glass fiber nonwoven fabric. The organic electrolytic solution is a solution in which a salt that produces ions is dissolved in an aprotic organic solvent. Usually, as an electrolytic solution of this type of organic electrolyte battery, an aprotic organic solvent such as propylene carbonate or γ-butyrolactone is preferably used as a solvent, and a tetraalkylammonium salt as a salt, for example, represented by the following formula (1): Those that are used are preferably used.

【化1】 (但し、式中R1 ,R2 ,R3 及びR4 はアルキル基を
表わし、R1 〜R4 は同一であっても異なっていてもよ
い。またXはClO4 又はBF4 を表わす。)塩は通常
0.5〜1.5モル/lの濃度範囲で上記した溶媒に溶
解し、電解液として供される。本発明で用いるポリアセ
ン系骨格構造を有する有機半導体自体は公知であり、例
えば特開昭61−218060号公報に記載されてい
る。該有機半導体を、ボールミル等を用いて粉砕して粉
末とし、この粉末に結着材と導電材を加え、混合した
後、加圧成形してポリアセンシートとし正極あるいは/
かつ負極とする。ガスケットは、正・負極缶の間にあ
り、正・負極缶の絶縁を保つとともに、電池の気密,液
密を保持するために用いられている。その材質として
は、非プロトン性の有機溶媒液に対する耐薬品性がある
こと、および正・負極缶の間に載置されて圧縮されるた
めに、弾力性,耐クリープ性がすぐれている必要があ
る。さらに、成形性がよく大量生産に適する射出成形可
能であることがより好ましい。
[Chemical 1] (However, in the formula, R 1 , R 2 , R 3 and R 4 represent an alkyl group, and R 1 to R 4 may be the same or different. X represents ClO 4 or BF 4 . ) The salt is usually dissolved in the above-mentioned solvent in a concentration range of 0.5 to 1.5 mol / l and provided as an electrolytic solution. The organic semiconductor itself having a polyacene skeleton structure used in the present invention is known and is described in, for example, JP-A-61-218060. The organic semiconductor is pulverized using a ball mill or the like to obtain a powder, and a binder and a conductive material are added to the powder, mixed, and then pressure-molded to form a polyacene sheet.
And it is the negative electrode. The gasket is located between the positive and negative electrode cans and is used to maintain the insulation of the positive and negative electrode cans as well as the airtightness and liquid tightness of the battery. As its material, it must have chemical resistance to an aprotic organic solvent liquid, and it must be excellent in elasticity and creep resistance because it is placed between the positive and negative electrode cans and compressed. is there. Furthermore, it is more preferable that injection molding is possible, which has good moldability and is suitable for mass production.

【0007】本発明におけるポリアミド系樹脂とは、一
般にナイロン樹脂といわれる主鎖中にアミド結合−CO
−NH−をもつ高分子である。代表的には、ジカルボン
酸とジアミンの重縮合,ω−アミノカルボン酸の重縮
合,またはラクタムの開環重合によって合成される樹脂
であり、該樹脂は、耐熱性に優れるだけでなく、耐薬品
性,耐クリープ性,弾力性に優れ、成形性がよく射出成
形可能でかつ安価であり、電池のガスケットに適してい
る。なかでも、ナイロン46が耐熱性の点でより好まし
い。正極あるいは/かつ負極に用いるポリアセン系骨格
構造を有する有機半導体は、熱縮合重合反応により製造
され耐熱性にすぐれている。正極缶あるいは負極缶に用
いるステンレスあるいはアルミニウムは耐熱性にすぐれ
た金属である。セパレータに好ましく用いられるガラス
繊維不織布はガラスの融点が高く、耐熱性にすぐれてい
る。電解液は、電解液の溶媒として用いられる非プロト
ン性の有機溶媒、たとえばプロピレンカーボネイトは沸
点が高く、水溶液系電池に用いられる電解液に比べて大
幅に耐熱性にすぐれている。したがって、もっとも耐熱
性に劣るガスケットに耐熱性にすぐれたポリアミド系樹
脂を用いることにより、本発明電池の耐熱性が改善され
た。他の電池、例えば水溶液系電池では電解液の耐熱性
が劣っているため、ガスケットの耐熱性を改善しても電
池の耐熱性は改善されない。
The polyamide resin in the present invention is generally referred to as a nylon resin, and has an amide bond --CO in the main chain.
It is a polymer having —NH—. Typically, it is a resin synthesized by polycondensation of dicarboxylic acid and diamine, polycondensation of ω-aminocarboxylic acid, or ring-opening polymerization of lactam, and the resin not only has excellent heat resistance but also chemical resistance. Excellent in moldability, creep resistance and elasticity, good in moldability, injection moldable and inexpensive, and suitable for battery gaskets. Of these, nylon 46 is more preferable in terms of heat resistance. The organic semiconductor having a polyacene skeleton structure used for the positive electrode and / or the negative electrode is manufactured by a thermal condensation polymerization reaction and has excellent heat resistance. Stainless steel or aluminum used for the positive electrode can or the negative electrode can is a metal having excellent heat resistance. The glass fiber nonwoven fabric preferably used for the separator has a high melting point of glass and is excellent in heat resistance. An aprotic organic solvent used as a solvent for the electrolytic solution, for example, propylene carbonate, has a high boiling point, and is significantly superior in heat resistance to the electrolytic solution used for an aqueous battery. Therefore, the heat resistance of the battery of the present invention was improved by using a polyamide resin having excellent heat resistance for the gasket having the lowest heat resistance. In other batteries, for example, an aqueous battery, the heat resistance of the electrolytic solution is inferior, so even if the heat resistance of the gasket is improved, the heat resistance of the battery is not improved.

【0008】[0008]

【発明の効果】上述した、ポリアミド系樹脂からなるガ
スケットを、従来のポリプロピレンからなるガスケット
のかわりに、正極あるいは/かつ負極にポリアセン系骨
格構造を有する有機半導体を用いた有機電解質電池に用
いることにより、該電池の耐熱性が向上し、リフローハ
ンダ付が可能となる。
EFFECTS OF THE INVENTION By using the above-mentioned gasket made of polyamide resin in an organic electrolyte battery using an organic semiconductor having a polyacene skeleton structure in the positive electrode and / or the negative electrode instead of the conventional gasket made of polypropylene, The heat resistance of the battery is improved, and reflow soldering is possible.

【0009】[0009]

【実施例】まず、ポリアセンシートを次のようにして製
造した。本発明の出願人に係る特開昭61−21806
0号公報の実施例1に記載している製造方法により、不
溶不融性のポリアセンのフィルムを合成した。該物質の
電気伝導度を室温で直流4端子法で測定したところ、1
-4Ω-1・cm-1であった。元素分析によると、水素原
子/炭素原子の原子比は0.27であった。BET法に
よる比表面積は、2100m2 /gと極めて大きな値で
あった。次に該ポリアセンフィルムを、ボールミルを用
いて3時間粉砕し粉末とした。この粉末にポリ四フッ化
エチレン5重量%,カーボンブラック10重量%を加
え、混合した後、加圧成形して厚さ0.2mmのポリア
センシートを得た。次に、このポリアセンシート及び硼
珪酸塩のガラス繊維不織布からなるセパレータをディス
ク状に打ち抜き200℃で3時間真空乾燥した後に、ジ
ャムポットに入れて保管した。
EXAMPLES First, a polyacene sheet was manufactured as follows. Japanese Patent Application Laid-Open No. 61-21806 filed by the applicant of the present invention
An insoluble and infusible polyacene film was synthesized by the production method described in Example 1 of JP-A-0. When the electric conductivity of the substance was measured at room temperature by a direct current 4-terminal method, 1
It was 0 −4 Ω −1 · cm −1 . According to elemental analysis, the atomic ratio of hydrogen atoms / carbon atoms was 0.27. The specific surface area by the BET method was an extremely large value of 2100 m 2 / g. Next, the polyacene film was pulverized with a ball mill for 3 hours to obtain a powder. To this powder, 5% by weight of polytetrafluoroethylene and 10% by weight of carbon black were added, mixed and pressure-molded to obtain a 0.2 mm thick polyacene sheet. Next, the separator made of the polyacene sheet and the borosilicate glass fiber non-woven fabric was punched into a disk shape, vacuum dried at 200 ° C. for 3 hours, and then placed in a jam pot and stored.

【0010】本発明のポリアミド系樹脂であるナイロン
46を射出成形したガスケットを、100℃3時間の真
空乾燥で乾燥させジャムポットに保管した。次に、ステ
ンレスからなる正極缶内底部に導電性ペーストを塗布し
た後、前述したポリアセンシートを載置して、上部より
圧着した後、100℃で30分間乾燥した。同様に、ス
テンレスからなる負極缶内底面に導電性ペーストを塗布
し、ポリアセンシートを載置し圧着後100℃で30分
間乾燥した。このようにして得た正極に、電解液として
ホウフッ化テトラエチルアンモニウムのプロピレンカー
ボネート(1mol/l )溶液を注入して、セパレータを載
置した。また、負極にも同様にして電解液の所定量を注
入した後、図1に示すような直径6.8mm高さ0.9
6mmのコイン型(ボタン型)有機電解質電池を組み立
てた。尚、上述した組立作業は全て除湿ルーム内で行な
った。以上のようにして作製した本発明有機電解質電池
を、正・負極缶表面が図2に示す温度推移となるような
リフローハンダ付を行なった時の交流内部抵抗(1kH
z,1mA)の変化を表1に示す。
A gasket formed by injection molding nylon 46, which is a polyamide resin of the present invention, was dried by vacuum drying at 100 ° C. for 3 hours and stored in a jam pot. Next, a conductive paste was applied to the bottom of the positive electrode can made of stainless steel, the above-mentioned polyacene sheet was placed on the bottom, pressure-bonded from above, and then dried at 100 ° C. for 30 minutes. Similarly, a conductive paste was applied to the inner bottom surface of a negative electrode can made of stainless steel, a polyacene sheet was placed thereon, pressure-bonded, and dried at 100 ° C. for 30 minutes. A propylene carbonate (1 mol / l) solution of tetraethylammonium borofluoride was injected as an electrolytic solution into the positive electrode thus obtained, and a separator was placed. In addition, after injecting a predetermined amount of the electrolytic solution into the negative electrode in the same manner, a diameter of 6.8 mm and a height of 0.9 as shown in FIG.
A 6 mm coin type (button type) organic electrolyte battery was assembled. All the above-mentioned assembling work was performed in the dehumidifying room. The organic electrolyte battery of the present invention produced as described above was subjected to reflow soldering such that the surface of the positive and negative electrode cans showed the temperature transition shown in FIG.
The change in z, 1 mA) is shown in Table 1.

【0011】[0011]

【表1】 [Table 1]

【0012】比較例 ポリプロピレンを射出成形したガスケットを用いて、実
施例と同様のコイン型有機電解質電池を組み立て、リフ
ローハンダ付を行なった時の交流内部抵抗変化を表1に
示す。表1において、本発明と従来品とを比較すると本
発明品は短絡することがなく交流内部抵抗の変化もみら
れず、耐熱性が改善されて、リフローハンダ付が可能で
あることがわかる。
Comparative Example Table 1 shows a change in AC internal resistance when a coin-type organic electrolyte battery similar to that of the example was assembled using a gasket formed by injection molding of polypropylene and reflow soldering was performed. In Table 1, comparing the present invention with the conventional product, it is understood that the product of the present invention does not cause a short circuit, no change in AC internal resistance is observed, heat resistance is improved, and reflow soldering is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例によるコイン型(ボタン型)
電池の断面図。
FIG. 1 is a coin type (button type) according to an embodiment of the present invention.
Sectional drawing of a battery.

【図2】リフローハンダ付時の正・負極缶表面温度変
化。
[Fig.2] Surface temperature change of positive and negative electrode cans with reflow soldering.

【符合の説明】 1 正極缶 2,2´ ポリアセン系有機半導体からなるシート 3,3´ 導電性ペースト 4 ポリアミド系樹脂からなるガスケット 5 セパレータ 6 負極缶 7 電解液[Explanation of Reference Signs] 1 positive electrode can 2,2 ′ sheet made of polyacene organic semiconductor 3,3 ′ conductive paste 4 gasket made of polyamide resin 5 separator 6 negative electrode can 7 electrolytic solution

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平間 春光 宮城県柴田郡大河原町大谷字下川原4−14 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Harumitsu Hirama 4-14 Shimokawara, Otani, Ogawara Town, Shibata District, Miyagi Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極缶,負極缶,正極,負極,セパレー
タ,ガスケットを備えた有機電解質電池であって、ポリ
アセン系骨格構造を含む有機半導体を正極又は負極と
し、前記ガスケットがポリアミド系樹脂により構成され
ていることを特徴とする有機電解質電池。
1. An organic electrolyte battery comprising a positive electrode can, a negative electrode can, a positive electrode, a negative electrode, a separator, and a gasket, wherein an organic semiconductor having a polyacene skeleton structure is used as a positive electrode or a negative electrode, and the gasket is made of a polyamide resin. An organic electrolyte battery characterized in that
JP4160444A 1992-05-26 1992-05-26 Organic electrolyte battery Pending JPH05325924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4160444A JPH05325924A (en) 1992-05-26 1992-05-26 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4160444A JPH05325924A (en) 1992-05-26 1992-05-26 Organic electrolyte battery

Publications (1)

Publication Number Publication Date
JPH05325924A true JPH05325924A (en) 1993-12-10

Family

ID=15715067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4160444A Pending JPH05325924A (en) 1992-05-26 1992-05-26 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPH05325924A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173944A (en) * 1983-03-23 1984-10-02 Hitachi Ltd Secondary battery
JPS6151762A (en) * 1984-08-20 1986-03-14 Dainippon Ink & Chem Inc Thin type battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173944A (en) * 1983-03-23 1984-10-02 Hitachi Ltd Secondary battery
JPS6151762A (en) * 1984-08-20 1986-03-14 Dainippon Ink & Chem Inc Thin type battery

Similar Documents

Publication Publication Date Title
US7167353B2 (en) Ionic liquid, method of dehydration, electrical double layer capacitor, and secondary battery
JP4773133B2 (en) Electric double layer capacitor or secondary battery
US8668838B2 (en) Electrical double layer capacitor
EP1970990A1 (en) Nonaqueous electrolyte solution for battery, nonaqueous electrolyte battery comprising same, electrolyte solution for electric double layer capacitor and electric double layer capacitor comprising same
EP2511923A1 (en) Electric double layer capacitor
US20100118469A1 (en) Electrolyte solution for electric double layer capacitor
US20040219424A1 (en) Non-aqueous electrolyte secondary battery
JP2000150319A (en) Manufacture of electric double layer capacitor and using method therefor
JPH05325924A (en) Organic electrolyte battery
KR960705378A (en) ORGANIC ELECTROLYTE CELL
JPH05325926A (en) Organic electrolyte battery
JP4976623B2 (en) Reflow solderable electrochemical cell
JP2942451B2 (en) Manufacturing method of organic electrolyte battery
JPH08306384A (en) Organic electrolyte battery
JPH05325925A (en) Organic electrolyte battery
JPH08162128A (en) Organic electrolyte battery
JP3174804B2 (en) Organic electrolyte battery
JP2003077432A (en) Organic electrolyte cell
JPH0817470A (en) Organic electrolytic battery
JP3618714B2 (en) Organic electrolyte battery
JPH08153500A (en) Terminal-attached battery and battery holder
JPH07114911A (en) Organic electrolytic battery
WO2013172223A1 (en) Dual-mode electricity storage device
CN115775689B (en) Solid polymer electrolyte, preparation method and solid-liquid mixed capacitor
JP3262785B2 (en) Method for producing wet capacitor using organic semiconductor