JPH05322720A - Dissolving method for specimen of inclusion - Google Patents

Dissolving method for specimen of inclusion

Info

Publication number
JPH05322720A
JPH05322720A JP4133610A JP13361092A JPH05322720A JP H05322720 A JPH05322720 A JP H05322720A JP 4133610 A JP4133610 A JP 4133610A JP 13361092 A JP13361092 A JP 13361092A JP H05322720 A JPH05322720 A JP H05322720A
Authority
JP
Japan
Prior art keywords
sample
temperature
electron beam
specimen
inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4133610A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ogawa
博之 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP4133610A priority Critical patent/JPH05322720A/en
Publication of JPH05322720A publication Critical patent/JPH05322720A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PURPOSE:To allow substantially all inclusions in a metal specimen to come up to the specimen surface by measuring the temp. of the specimen, and controlling an electron beam so that it is maintained at a predetermined melt temp. for a specified period of time. CONSTITUTION:Specimens 6a, 6b... are placed in recesses 5a, 5b... on a heath 3 provided in a vacuum vessel 2, and an electron beam EB is emitted by an electron gun 9. The beam EB is deflected 180deg. and cast onto the specimen 6a to heat it. A controller 12 reads the period information and temp. stored in a memory 13 in accordance with the material of the specimen 6a or inclusions, and a power supply 10 is accordingly controlled, and thus the output of the electron gun 9 is controlled. A temp. sensor 11 measures the temp. of the specimen at all times. In this manner heating is performed, and the inclusions are allowed to come up to the surface, and then the controller 12 controls a power supply 8 and drives a motor 7 to rotate a rotary shaft 4, and the specimen 6b accommodated in the next recess 5b on the herth 3 is placed in the irradiating position with electron beam EB.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属試料中に含まれて
いる少量の介在物を分析するための前処理として、試料
に電子ビームを照射して溶解し、介在物を試料表面に浮
上させるようにした介在物試料溶解方法に関する。
BACKGROUND OF THE INVENTION The present invention, as a pretreatment for analyzing a small amount of inclusions contained in a metal sample, irradiates the sample with an electron beam to melt the inclusions and floats the inclusions on the sample surface. And a method for dissolving inclusion samples.

【0002】[0002]

【従来の技術】金属中に含まれている微量の介在物(主
として金属酸化物,窒化物など)を定性,定量分析する
ために、分析の前に試料に電子ビームを照射して溶解さ
せ、介在物を試料表面に浮上させ、その後試料への電子
ビームの照射を停止して試料を冷却させ、介在物分析用
の試料を作成することが行われている。この介在物を表
面に浮上させて固化した試料は、例えば、EPMA(電
子ロープマイクロアナライザ)や走査電子顕微鏡などに
よって定性,定量分析が行われる。
2. Description of the Related Art In order to qualitatively and quantitatively analyze a small amount of inclusions (mainly metal oxides, nitrides, etc.) contained in a metal, the sample is irradiated with an electron beam and dissolved before analysis. It has been practiced to levitate the inclusions on the surface of the sample, then stop the irradiation of the sample with the electron beam, and cool the sample to prepare a sample for inclusion analysis. The sample in which the inclusions are floated on the surface and solidified is subjected to qualitative and quantitative analysis with, for example, an EPMA (electron rope microanalyzer) or a scanning electron microscope.

【0003】さて、試料を溶解するに当たっては、真空
ベッセル中にハースを設置してこのハース内に金属試料
を入れ、試料に電子ビームを照射するようにしている。
この電子ビームの照射に際しては、試料溶解の過程で微
少介在物の形状を変えずに試料中に含まれる介在物のほ
とんど全てを浮上させる必要があり、そのため、試料に
照射する電子ビーム出力を厳密にコントロールしなけれ
ばならない。図1に示したグラフは、従来から行われて
いる電子ビーム出力のコントロール曲線であり、横軸が
時間、縦軸が電子ビーム出力である。このグラフから明
らかなように、電子ビームの出力は、PとPの2段
階に変化させられている。つまり、試料をPの電子ビ
ーム出力によりTの期間予備加熱した後、電子ビーム
出力をP に変化させてT4の期間溶解し、試料を急激
に加熱しないようにしている。
When melting a sample, a vacuum is used.
Place a hearth in the vessel and place a metal sample in the hearth.
The sample is irradiated with an electron beam.
When irradiating with this electron beam, a small amount is
The inclusions contained in the sample are almost the same without changing the shape of the inclusions.
It is necessary to raise almost everything and therefore
Strictly control the irradiation electron beam output
I have to. The graph shown in FIG.
Is the control curve of the electron beam output, where the horizontal axis is
Time, the vertical axis is the electron beam output. Clear from this graph
As you can see, the output of the electron beam is P1And PTwo2 steps
It has been changed to the floor. In other words, the sample1E-bi
Output by TTwoElectron beam after preheating for a period of
Output P TwoTo dissolve the sample during the T4 period and rapidly
I try not to heat it.

【0004】また、予備加熱状態から溶解状態に移る際
にも、電子ビーム出力を急激に立ち上げると突沸現象が
生じて試料が飛散する恐れがあるため、立ち上げ期間T
で示すように徐々に上昇させている。更に、試料を溶
解する電子ビーム出力Pの値は、試料の蒸発が生じな
いぎりぎりのところに設定され、介在物を効率良く浮上
させるようにしている。この時、溶解期間Tが長くな
ると、浮上した介在物が溶けるため、介在物が溶ける手
前で溶解を停止する必要がある。この試料溶解の停止に
当たっても、瞬時に電子ビームの照射を止めると、試料
の温度が急激に低下し、それによってクラックが生じて
浮上した介在物の形状が崩れる恐れがあり、Tの期間
は、徐々に電子ビームの出力を弱めてオフにするように
している。なお、試料の予備加熱に当たり、瞬時に電子
ビーム出力Pによって試料を照射すると、試料に電流
が流れ、それによって試料が移動する恐れがあるため、
立ち上げ期間Tで示したように、電子ビームの出力を
徐々に上昇させるようにしている。
Even when the preheating state is changed to the melting state, if the electron beam output is suddenly raised, a bumping phenomenon may occur and the sample may scatter.
As shown in 3 , it is gradually increased. Further, the value of the electron beam output P 2 that dissolves the sample is set to a position where evaporation of the sample does not occur, so that the inclusions are efficiently levitated. At this time, if the dissolution period T 4 becomes long, the floating inclusions are melted, so it is necessary to stop the dissolution before the inclusions are melted. Even against the stop of the sample dissolution, the stops irradiation of the instantaneous electron beam, the temperature of the sample is rapidly reduced, whereby there is a risk that the shape collapses inclusions cracks surfaced occurred, the period of T 5 is , The electron beam output is gradually weakened and turned off. When the sample is irradiated with the electron beam output P 1 instantaneously during the preheating of the sample, a current may flow in the sample, which may move the sample.
As indicated by the start-up period T 1 , the output of the electron beam is gradually increased.

【0005】[0005]

【発明が解決しようとする課題】ところで、試料からハ
ースを介して、あるいは、輻射によって逃げる熱量と、
電子ビーム投入による熱量とがバランスするまで試料の
温度は上昇する。このため、試料の溶解温度は、試料の
重量,寸法,ハースと試料との接触状態などにより異な
り、上述した時間による電子ビームの出力コントロール
で試料の溶解温度の制御を行うことは非常に困難とな
る。微小介在物がアルミナ(Al)のように高融
点で熱による再溶解や、凝縮することの少ない物質であ
れば、試料の大きさなどの条件が多少変わっても介在物
は比較的正確な量と、本来の形状で試料表面に浮上し、
その結果、正確な観察や分析を行うことができる。しか
しながら、溶融金属の融点に比較的近い融点のMgOや
SiOが介在物の場合などでは、わずかな溶解条件の
違いで介在物が浮上してこないか、または、介在物が浮
上しても、早く凝縮してしまい、本来の形状を確認でき
ない場合が多い。
By the way, the amount of heat that escapes from the sample through the hearth or by radiation,
The temperature of the sample rises until it balances with the amount of heat generated by the electron beam. Therefore, the melting temperature of the sample varies depending on the weight and size of the sample, the contact state between the hearth and the sample, and it is very difficult to control the melting temperature of the sample by controlling the output of the electron beam depending on the time described above. Become. If the minute inclusions are substances such as alumina (Al 2 O 3 ) that have a high melting point and are less likely to be redissolved or condensed by heat, the inclusions will be relatively small even if conditions such as the size of the sample change to some extent. Floating on the sample surface with accurate amount and original shape,
As a result, accurate observation and analysis can be performed. However, when MgO or SiO 2 having a melting point relatively close to the melting point of the molten metal is an inclusion, the inclusion does not come up due to a slight difference in melting conditions, or even if the inclusion comes up, In many cases, it condenses quickly and the original shape cannot be confirmed.

【0006】本発明は、このような点に鑑みてなされた
もので、その目的は、金属試料中の介在物のほとんど全
部を試料表面に浮上させることができる介在物試料溶解
方法を実現するにある。
The present invention has been made in view of the above circumstances, and an object thereof is to realize a method for dissolving inclusion samples in which almost all the inclusions in a metal sample can be floated on the surface of the sample. is there.

【0007】[0007]

【課題を解決するための手段】本発明に基づく介在物試
料溶解方法は、真空ベッセル中に設けたハース上の試料
に電子ビームを照射して試料を溶解し、該試料中に含ま
れる介在物をその表面に浮上させる介在物試料溶解方法
において、該試料を溶解するに際し、試料の温度を測定
し、所定期間試料温度が予め定められた溶融温度に維持
されるように、測定温度に基づいて試料に照射する電子
ビームを制御するようにしたことを特徴とする。
The method for dissolving inclusion samples according to the present invention is directed to irradiating an electron beam to a sample on a hearth provided in a vacuum vessel to dissolve the sample, and to include inclusions contained in the sample. In the method of dissolving an inclusion sample, which floats on the surface of the sample, when melting the sample, the temperature of the sample is measured, and the sample temperature is maintained at a predetermined melting temperature for a predetermined period, based on the measured temperature. It is characterized in that the electron beam with which the sample is irradiated is controlled.

【0008】[0008]

【作用】本発明に基づく介在物試料溶解方法は、試料の
温度を測定し、所定期間試料温度が予め定められた溶融
温度に維持されるように、測定温度に基づいて試料に照
射する電子ビームを制御する。
The inclusion sample melting method according to the present invention measures the temperature of the sample, and irradiates the sample on the basis of the measured temperature so that the sample temperature is maintained at a predetermined melting temperature for a predetermined period. To control.

【0009】[0009]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図2は、本発明に基づく介在物試料溶解方
法を実施するための溶解装置の一例を示しており、1は
装置本体である。2は本体1の上面に気密を保って着脱
可能に載置された真空ベッセルで、この真空ベッセル内
は図示していない真空ポンプによって排気されている。
この真空ベッセル2内には、銅性の円形ハースが設けら
れている。ハース3は、本体1を気密を保って貫通した
回転軸4により回転可能に保持されており、また、この
ハースの上面には、多数の凹部5a,5b,…が回転中
心を中心とした同一円周上に等間隔に形成されている。
この各凹部に試料6a,6b,…が収容される。7は回
転軸4を回転させるためのモータ、8はその駆動電源で
ある。なお、ハース3は、図示していないが水冷されて
いる。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 2 shows an example of a dissolution apparatus for carrying out the method for dissolving inclusion samples according to the present invention, in which 1 is a main body of the apparatus. A vacuum vessel 2 is detachably mounted on the upper surface of the main body 1 in an airtight manner, and the inside of the vacuum vessel is evacuated by a vacuum pump (not shown).
In the vacuum vessel 2, a circular copper hearth is provided. The hearth 3 is rotatably held by a rotary shaft 4 that penetrates the main body 1 in an airtight manner, and a large number of recesses 5a, 5b, ... Are centered on the rotation center on the upper surface of the hearth 3. It is formed at equal intervals on the circumference.
The samples 6a, 6b, ... Are accommodated in the respective recesses. Reference numeral 7 is a motor for rotating the rotary shaft 4, and 8 is a drive power source thereof. The hearth 3 is water-cooled (not shown).

【0010】9はハース近傍に設けられた電子銃で、こ
の電子銃9から発生した電子ビームEBは、図示外の偏
向手段により約180°偏向されてハース3上の溶解位
置にセットされた試料を照射する。10はこの電子銃の
電源である。なお、この電子銃9には、図示していない
が電子ビームを試料上で2次元的に走査するための偏向
系が組み込まれている。
Reference numeral 9 denotes an electron gun provided in the vicinity of the hearth. An electron beam EB generated from the electron gun 9 is deflected by about 180 ° by a deflecting means (not shown) and is set at a melting position on the hearth 3. Irradiate. 10 is a power source of this electron gun. The electron gun 9 includes a deflection system (not shown) for two-dimensionally scanning the electron beam on the sample.

【0011】11は真空ベッセル2内のハース3上方に
置かれた温度センサーであり、電子ビームが照射される
位置の試料6の温度の測定を行う。12はこの温度セン
サー11によって測定された温度信号が供給されるコン
トローラで、このコントローラ12は、前記モータ電源
8と電子銃電源9を制御する。13はコントローラ12
に接続されたメモリーであり、このメモリー13には試
料,介在物の材質ごとの最適な溶解温度が記憶されてい
る。このような構成における動作は次の通りである。
Reference numeral 11 denotes a temperature sensor placed above the hearth 3 in the vacuum vessel 2 to measure the temperature of the sample 6 at the position irradiated with the electron beam. A controller 12 is supplied with a temperature signal measured by the temperature sensor 11. The controller 12 controls the motor power source 8 and the electron gun power source 9. 13 is a controller 12
The memory 13 stores the optimum melting temperature for each material of the sample and the inclusions. The operation in such a configuration is as follows.

【0012】まず、真空ベッセル2中のハース3上の各
凹部5a,5b,…に試料6a,6b,…が配置され、
その後、真空ベッセル2内部が排気され、適宜な真空度
に維持される。その後、電子銃電源10がオンされ、電
子銃9から電子ビームEBが発生される。電子ビームE
Bは、180°偏向され、凹部5a中の試料6aに照射
され、試料の加熱が行われる。さて、図3は、本発明に
基づく方法により制御される試料の温度と時間との関係
を示すグラフである。最初の期間Tにおいて、試料の
温度は徐々に上昇させられる。この温度を徐々に上昇さ
せる理由は、前に述べたように、試料の移動を防止する
ためである。次に、温度がtとなったとき、一定期間
の間、試料はこの温度tに維持される。この期間
が試料予備加熱期間である。
First, the samples 6a, 6b, ... Are placed in the respective recesses 5a, 5b ,.
Then, the inside of the vacuum vessel 2 is evacuated and maintained at an appropriate degree of vacuum. Then, the electron gun power supply 10 is turned on, and the electron beam EB is emitted from the electron gun 9. Electron beam E
B is deflected by 180 ° and is irradiated on the sample 6a in the recess 5a to heat the sample. Now, FIG. 3 is a graph showing the relationship between temperature and time of the sample controlled by the method according to the present invention. In the first period T 1 , the temperature of the sample is gradually increased. The reason for gradually raising the temperature is to prevent the sample from moving as described above. Then, when the temperature reaches t 1 , the sample is maintained at this temperature t 1 for a certain period T 2 . This period T 2 is the sample preheating period.

【0013】予備加熱期間Tが終了すると、電子ビー
ムの出力を上昇させることによって期間Tの間、試料
温度は再び徐々に大きくされる。この理由も前に述べた
が、電子ビーム出力を急激に立ち上げ、試料温度を急激
に立ち上げると、突沸現象が生じて試料が飛散するため
である。試料温度がtとなると、期間Tの間、試料
はその温度tに維持される。この期間Tが溶解期間
であり、数secの短時間に試料は溶解される。溶解期
間T後、電子ビーム出力は徐々に下げて試料温度を下
げ、試料温度がtとなったとき、試料温度はこの値t
に固定される。この期間Tが溶解状態保持期間であ
り、温度tは溶解時の温度tと予備加熱のときの温
度tとの間で、金属試料を湯の状態に保持できる温度
である。また、この温度は、試料表面に浮上した介在物
が再溶解して凝縮し、介在物の形状が崩れたり、湯の中
に再溶融しない値にセットされる。このような溶解状態
保持期間Tの間に、試料内部の介在物のほとんどが試
料表面に浮上する。この期間Tが終了した後のT
間に、電子ビーム出力は徐々に下げて試料温度を低く
し、T終了後試料への電子ビームの照射は停止され
る。
When the preheating period T 2 ends, the sample temperature is gradually increased again during the period T 3 by increasing the output of the electron beam. The reason for this is also described above, but when the electron beam output is rapidly raised and the sample temperature is rapidly raised, the bumping phenomenon occurs and the sample is scattered. When the sample temperature reaches t 2 , the sample is maintained at the temperature t 2 for the period T 4 . This period T 4 is the dissolution period, and the sample is dissolved in a short time of several seconds. After the melting period T 4 , the electron beam output was gradually decreased to lower the sample temperature, and when the sample temperature became t 3 , the sample temperature was this value t.
It is fixed at 3 . This period T 6 is a molten state holding period, and the temperature t 3 is a temperature at which the metal sample can be held in a molten state between the melting temperature t 2 and the preheating temperature t 1 . In addition, this temperature is set to a value at which inclusions floating on the surface of the sample are redissolved and condensed, the shape of the inclusions is not destroyed, and the inclusions are not remelted in hot water. During such a dissolution state holding period T 6 , most of the inclusions inside the sample float to the sample surface. During T 7 after the end of this period T 6 , the electron beam output is gradually reduced to lower the sample temperature, and after the end of T 7 , irradiation of the electron beam to the sample is stopped.

【0014】さて、特定の試料に対して上記した図3の
制御を行う場合に、まず、コントローラ12はその試料
や介在物の材質に応じてメモリー13に記憶されている
各温度(t,t,t)および期間(T〜T
情報を読み出す。そして、この期間に応じて電子銃の電
源10を制御し、電子銃の出力のコントロールを行う。
温度センサー11は常に試料温度を測定しており、試料
温度がtとなったとき、試料温度が期間Tの間t
に維持されるように、コントローラ11は電子銃電源1
0を制御する。期間T経過後、電源10は制御され、
電子ビーム出力は上昇されるので、試料温度も上昇す
る。試料温度がtとなった以降、期間T の間、試料
温度がtに維持されるようにコントローラ12は電源
10を制御する。期間T経過後、電源10は制御さ
れ、電子ビーム出力は低くされるので、試料温度も低下
する。試料温度がtとなった以降、期間Tの間、試
料温度がtに維持されるようにコントローラ12は電
源10を制御する。
Now for the particular sample of FIG.
When performing control, the controller 12 first determines the sample
It is stored in the memory 13 according to the material of the inclusions
Each temperature (t1, TTwo, TThree) And period (T1~ T7)
Read information. Then, depending on this period,
The source 10 is controlled to control the output of the electron gun.
The temperature sensor 11 constantly measures the sample temperature,
Temperature is t1When the sample temperature becomes TTwoBetween t1
So that the controller 11 maintains the electron gun power source 1
Control 0. Period TTwoAfter a lapse of time, the power supply 10 is controlled,
Since the electron beam output is increased, the sample temperature also increases.
It Sample temperature is tTwoAfter that, period T FourDuring the sample
Temperature is tTwoController 12 powers so that
Control 10 Period TFourAfter that, the power supply 10 will be controlled.
As the electron beam output is lowered, the sample temperature also drops.
To do. Sample temperature is tThreeAfter that, period T6During the trial
Temperature is tThreeThe controller 12 keeps the
Control the source 10.

【0015】このようにしてハース3の凹部5aに入れ
られた試料の加熱を行い、介在物を試料表面に浮上させ
た後、コントローラ12はモータ電源8を制御し、モー
タ7を駆動して回転軸4を回転させ、ハース3上の次の
凹部に入れられた試料を電子ビームの照射位置に配置さ
せる。そして、上述したと同じステップで試料の加熱溶
解処理が行われる。全ての試料の加熱溶解処理が終了し
た後、真空ベッセルが開けられ、各試料が取り出され、
EPMAや走査電子顕微鏡によってそれらの分析が行わ
れる。
In this way, the sample placed in the concave portion 5a of the hearth 3 is heated and the inclusions are levitated on the sample surface, and then the controller 12 controls the motor power source 8 to drive the motor 7 to rotate it. The shaft 4 is rotated, and the sample placed in the next concave portion on the hearth 3 is placed at the electron beam irradiation position. Then, the sample is heated and dissolved in the same steps as described above. After the heating and melting process of all the samples was completed, the vacuum vessel was opened and each sample was taken out.
Those analyzes are performed by EPMA or a scanning electron microscope.

【0016】以上本発明の実施例を説明したが、本発明
はこの実施例に限定されない。例えば、溶解状態保持期
間を2段階以上に変化させても良いし、試料予備加熱期
間なども試料によっては一定温度に維持する必要はな
い。
Although the embodiment of the present invention has been described above, the present invention is not limited to this embodiment. For example, the dissolution state holding period may be changed in two or more steps, and the sample preheating period may not be maintained at a constant temperature depending on the sample.

【0017】[0017]

【発明の効果】以上説明したように、本発明に基づく介
在物試料溶解方法においては、試料の温度を測定し、所
定期間試料温度が予め定められた溶融温度に維持される
ように、測定温度に基づいて試料に照射する電子ビーム
を制御するようにしたので、試料の溶解状態の制御が理
想的にできるようになり、金属試料中の介在物のほとん
ど全部を試料表面に浮上させることができる。特に、従
来効率よく浮上させることができなかったMgOやSi
などの介在物も、本発明により適切に試料表面に浮
上させることができるようになった。また、試料の加熱
制御の全自動化を行うことが可能となった。
As described above, in the method of dissolving inclusion sample according to the present invention, the temperature of the sample is measured, and the measurement temperature is maintained so that the sample temperature is maintained at the predetermined melting temperature for a predetermined period. Since the electron beam irradiating the sample is controlled based on the above, it becomes possible to ideally control the dissolved state of the sample, and almost all the inclusions in the metal sample can be levitated to the sample surface. . In particular, MgO and Si that could not be levitated efficiently in the past
Inclusions such as O 2 can also be appropriately floated on the sample surface by the present invention. In addition, it became possible to fully automate the heating control of the sample.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来方法における電子ビームの出力と時間との
関係を示す図である。
FIG. 1 is a diagram showing a relationship between an electron beam output and time in a conventional method.

【図2】本発明に基づく介在物試料溶解方法を実施する
ための装置の一例を示した図である。
FIG. 2 is a diagram showing an example of an apparatus for carrying out the method for dissolving inclusion samples according to the present invention.

【図3】本発明の一実施例における試料の温度と時間と
の関係を示す図である。
FIG. 3 is a diagram showing a relationship between temperature and time of a sample in one example of the present invention.

【符号の説明】[Explanation of symbols]

1 装置本体 2 真空ベッセル 3 ハース 4 回転軸 5 凹部 6 試料 7 モータ 8 モータ電源 9 電子銃 10 電子銃電源 11 温度センサー 12 コントローラ 13 メモリー 1 Device Main Body 2 Vacuum Vessel 3 Hearth 4 Rotating Shaft 5 Recess 6 Sample 7 Motor 8 Motor Power 9 Electron Gun 10 Electron Gun Power 11 Temperature Sensor 12 Controller 13 Memory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空ベッセル中に設けたハース上の試料
に電子ビームを照射して試料を溶解し、該試料中に含ま
れる介在物をその表面に浮上させる介在物試料溶解方法
において、該試料を溶解するに際し、試料の温度を測定
し、所定期間試料温度が予め定められた溶融温度に維持
されるように、測定温度に基づいて試料に照射する電子
ビームを制御するようにした介在物試料溶解方法。
1. A method for dissolving an inclusion sample in which a sample on a hearth provided in a vacuum vessel is irradiated with an electron beam to dissolve the sample, and inclusions contained in the sample are floated on the surface thereof. When melting the sample, the temperature of the sample is measured, and the inclusion sample is designed to control the electron beam irradiating the sample based on the measured temperature so that the sample temperature is maintained at a predetermined melting temperature for a predetermined period. Dissolution method.
【請求項2】 試料が溶融温度に維持される期間の前の
試料予備加熱期間において、試料温度が予め定められた
試料の予備加熱温度に維持されるように、測定温度に基
づいて試料に照射する電子ビームを制御するようにした
請求項1記載の介在物試料溶解方法。
2. Irradiating the sample based on the measured temperature so that the sample temperature is maintained at a predetermined sample preheating temperature during the sample preheating period before the period when the sample is maintained at the melting temperature. The method for dissolving inclusion sample according to claim 1, wherein the electron beam to be controlled is controlled.
JP4133610A 1992-05-26 1992-05-26 Dissolving method for specimen of inclusion Withdrawn JPH05322720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4133610A JPH05322720A (en) 1992-05-26 1992-05-26 Dissolving method for specimen of inclusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4133610A JPH05322720A (en) 1992-05-26 1992-05-26 Dissolving method for specimen of inclusion

Publications (1)

Publication Number Publication Date
JPH05322720A true JPH05322720A (en) 1993-12-07

Family

ID=15108835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4133610A Withdrawn JPH05322720A (en) 1992-05-26 1992-05-26 Dissolving method for specimen of inclusion

Country Status (1)

Country Link
JP (1) JPH05322720A (en)

Similar Documents

Publication Publication Date Title
JP3288554B2 (en) Ion implantation apparatus and ion implantation method
KR100225775B1 (en) Method for analyzing solid specimen and apparatus therefor
Le Harzic et al. Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy
US8071960B2 (en) Method and apparatus for producing samples for transmission electron microscopy
JP2006510490A (en) Laser spot welding method and apparatus
JP4209082B2 (en) Single crystal pulling apparatus and pulling method
JPH05322720A (en) Dissolving method for specimen of inclusion
JPH0639574A (en) Laser device and particularly robot with focusing head having sensor means for process quality monitoring in automatic production device
JP2790372B2 (en) Inclusion analysis sample dissolution method
JP2000306865A (en) Wafer-cutting method and apparatus
KR20210009346A (en) Ion milling device
JPH105959A (en) Continuous casting equipment and continuous casting method
JP2790361B2 (en) Inclusion analysis sample dissolution method
JP2559947B2 (en) Dimple processing apparatus and processing method for cooling drum for casting thin wall slab
JPS62224688A (en) Processing device combinedly using laser
JPS6136912Y2 (en)
JPS6227532B2 (en)
US6051844A (en) Scanning system for rapid thermal cycle stress/curvature measurement
EP0103554A1 (en) A method and apparatus for varying the refractive index for a surface of an optical lens
JP3106948B2 (en) Refractory corrosion test equipment
JP2002328091A (en) Probe for laser emission spectrometry device for hot sample, and method for laser emission spectrometry for hot sample
JPH09302410A (en) Laser beam hardening apparatus
JPH09159629A (en) Method and system for evaluating inclusion in steel quickly
JPH0460436A (en) Melting method of sample for analysis of inclusion
JPH09257665A (en) Fluorescent x-ray spectrometer and method for evaluating cleanliness of metal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803