JPH09257665A - Fluorescent x-ray spectrometer and method for evaluating cleanliness of metal - Google Patents

Fluorescent x-ray spectrometer and method for evaluating cleanliness of metal

Info

Publication number
JPH09257665A
JPH09257665A JP6681296A JP6681296A JPH09257665A JP H09257665 A JPH09257665 A JP H09257665A JP 6681296 A JP6681296 A JP 6681296A JP 6681296 A JP6681296 A JP 6681296A JP H09257665 A JPH09257665 A JP H09257665A
Authority
JP
Japan
Prior art keywords
sample
fluorescent
ray
inclusions
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6681296A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kondo
裕之 近藤
Akihiro Ono
昭紘 小野
Takehiko Fuji
健彦 藤
Eiichi Takeuchi
栄一 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6681296A priority Critical patent/JPH09257665A/en
Publication of JPH09257665A publication Critical patent/JPH09257665A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To rapidly carry out evaluation by providing a driver for rotating a sample on a base plate, a holder for transmitting the rotary drive force to a sample by a friction by holding the sample, a rotary shaft support plate, and a rotation control circuit board. SOLUTION: Components are mounted on a base plate 1, and installed in a sample chamber together with the plate 1. An X-ray emitting opening 7 is provided at the center of the plate 1, a cold crucible melting sample 5 is sandwiched between sample holders 10, and fixed by a retaining spring 9. When a switch 4 is closed and power is supplied from a power source 6, a driver 2 is operated, and the sample 5 is rotated by the rotary drive force maintained constant at the number of revolutions by a reduction gear 3 via the friction between the sample 5 and the holder 10. A rotary shaft support plate 8 supports the rotary shaft. A delay circuit is assembled on a circuit board 11 instead of continuous rotation, thereby making it possible to intermittently rotate at a predetermined angle at each predetermined set time. Thus, nonmetal inclusion in the metal can be rapidly analyzed and evaluated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属内の不純物粒
子の量、成分構成を迅速に評価する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for rapidly evaluating the amount and composition of impurity particles in a metal.

【0002】[0002]

【従来の技術】金属の例として鋼の場合を例にとり説明
する。鋼内に存在する不純物粒子、例えば、アルミキル
ド鋼の場合には、鋼中の酸素と添加したアルミニウムと
が反応して生成するアルミナ系介在物、製鋼スラグに起
因する石灰・シリカ等含むスラグ系介在物、連続鋳造時
の鋳型潤滑剤に起因するパウダー系介在物等は、薄板・
線材等々の材料に圧延成形する際の中間製品あるいは製
品においてキズや破損等の欠陥につながるため種々の方
法で評価が加えられ、不良材料は屑化するなどの対策が
とられている。
2. Description of the Related Art The case of steel will be described as an example of metal. Impurity particles present in the steel, for example, in the case of aluminum-killed steel, alumina-based inclusions generated by the reaction of oxygen in the steel with added aluminum, slag-based inclusions such as lime and silica resulting from steelmaking slag. Products, powder-type inclusions, etc. due to the mold lubricant during continuous casting are
Since the intermediate product or the product when rolled and formed into a material such as a wire rod leads to defects such as scratches and breakage, evaluation is added by various methods, and measures such as scrapping defective materials are taken.

【0003】一方、欠陥が製品において発見される場
合、材料は種々の工程を経ており、屑化されると製造コ
ストの悪化につながるため、品質作り込みの早期段階で
評価が加えられることが望ましい。特に、介在物の存在
は、金属の精練・凝固段階で決定されるために、従来よ
り種々の評価技術が試行されてきた。
On the other hand, if a defect is found in a product, the material has undergone various processes, and if the material is discarded, it leads to a deterioration in the manufacturing cost. . In particular, since the presence of inclusions is determined at the stage of refining and solidifying a metal, various evaluation techniques have been conventionally tried.

【0004】金属の中でも、鋼の介在物の評価技術とし
ては、鋼中の酸素濃度を調査するトータル酸素(T
[O])法、大型介在物を評価するために用いられる電
解抽出によるスライム法、金属の断面を拡大観察し、介
在物を評価する顕微鏡法、電子線溶解法(EB)等が公
知の技術として存在する。しかし、これらの技術は一般
にそれぞれの手法の特徴から調査対象となる介在物種類
や径等に制約がある、評価に時間がかかる、評価試料が
中間製品の品質を十分代表していない、あるいは試料調
製時に介在物が変質する等の問題があった。
Among metals, as a technique for evaluating inclusions in steel, total oxygen (T
[O]) method, a slime method by electrolytic extraction used for evaluating large inclusions, a microscope method for magnifying and observing a cross section of a metal to evaluate inclusions, an electron beam melting method (EB), etc. Exists as. However, these techniques are generally limited in the types of inclusions and diameters to be investigated due to the characteristics of each method, it takes time to evaluate, the evaluation sample does not sufficiently represent the quality of the intermediate product, or the sample There was a problem that the inclusions were altered during preparation.

【0005】前記した各技術に比較して、コールドクル
ーシブル浮揚溶解法で金属片を浮揚溶解し、一定時間保
持し金属片内介在物を溶融体表面に排出し、凝固した試
料(以下、コールドクルーシブル溶解試料と称す)表面
の介在物を測定する方法では、評価可能な介在物の種類
や径に対する制約が少なく、評価量も中間品質を代表す
るに十分な量であり、溶解時のオーバーヒートは小さい
ので介在物の変質等も少ないといった利点がある。例え
ば、“Evaluation of alloy cleanness in su-perclean
materials”K.C.Mills,P.N.Quested.R.F.Brooks,D.M.H
ayes,TURKDOGANSYMPSIUM PROCEEDINGS 105-11(1994)の
論文には、コールドクルーシブル溶解試料の表面介在物
をSEMで観察する方法が記載されている。しかしなが
ら、SEM観察は迅速性に劣るという問題があった。
Compared with the above-mentioned respective techniques, the metal fragments are floated and melted by the cold crucible flotation melting method, the inclusions in the metal fragments are discharged to the surface of the molten material for a certain period of time, and the solidified sample (hereinafter, cold crucible In the method of measuring inclusions on the surface (called dissolution sample), there are few restrictions on the type and diameter of inclusions that can be evaluated, the evaluation amount is sufficient to represent intermediate quality, and overheating during dissolution is small. Therefore, there is an advantage that the quality of inclusions is small. For example, “Evaluation of alloy cleanness in su-perclean
materials ”KCMills, PNQuested.RFBrooks, DMH
The article of ayes, TURKDOGANSYMPSIUM PROCEEDINGS 105-11 (1994) describes a method of observing surface inclusions of a cold crucible dissolution sample by SEM. However, there is a problem that the SEM observation is inferior in speed.

【0006】安価かつ迅速な評価方法としてエネルギー
分散型蛍光X線分析法により直接分析する評価法が特願
平7−054810号に開示されている。この例では、
試料の上部の約13mm径の範囲に1次X線を照射し、こ
の照射面内に島状に分布した不純物粒子を一括して、数
分程度で迅速に分析する。エネルギー分散型蛍光X線分
析法の場合、測定面が少々弯曲していたり、非平滑であ
っても測定が可能である。しかしながら、このように限
られた範囲内に不純物粒子を全量集積させることは困難
であり、実際には側面にも相当量の分布がある。従っ
て、正確な評価のためには、一測定面のみではなく二つ
以上の測定面の分析が必要であり、結果的に迅速性が損
なわれるという問題があった。
As an inexpensive and rapid evaluation method, an evaluation method of directly analyzing by an energy dispersive X-ray fluorescence analysis method is disclosed in Japanese Patent Application No. 7-054810. In this example,
Primary X-rays are irradiated onto the area of about 13 mm in diameter on the upper part of the sample, and the impurity particles distributed in an island shape on this irradiation surface are collectively analyzed in a few minutes quickly. In the case of energy dispersive X-ray fluorescence analysis, measurement is possible even if the measurement surface is slightly curved or non-smooth. However, it is difficult to accumulate the entire amount of the impurity particles within such a limited range, and in reality, there is a considerable amount of distribution on the side surface. Therefore, for accurate evaluation, it is necessary to analyze not only one measurement surface but also two or more measurement surfaces, and as a result, there is a problem that speediness is impaired.

【0007】[0007]

【発明が解決しようとする課題】本発明は、前記したコ
ールドクルーシブル溶解試料表面をエネルギー分散型蛍
光X線分析法により直接分析する評価法における評価時
間および精度の問題点を解決し、製品品質に対応する中
間製品の品質を迅速に評価できる方法を提供することを
目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the problems of evaluation time and accuracy in the above-mentioned evaluation method of directly analyzing the surface of a cold crucible dissolved sample by energy dispersive X-ray fluorescence analysis, and improves product quality. It is intended to provide a method capable of quickly evaluating the quality of a corresponding intermediate product.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
本発明は、(1)閉じた試料室内で試料を一定回転速度
で連続的に回転させる。または一定時間間隔で一定角度
断続的に回転させる試料回転装置であって、台板上に試
料を回転させる駆動力を得るための駆動装置と、試料を
挟みこんで保持し、回転駆動力を摩擦によって試料に伝
達するための一対の試料保持具と、回転軸を支持するた
めの回転軸支持板、および回転動作を制御するための回
路基板を備えたことを特徴とする蛍光X線分析用試料回
転装置であることを第一の要旨とし、また、(2)試料
の表面にX線を照射し、発生した蛍光X線をエネルギー
分散型分光器で検出し、元素固有のエネルギーの蛍光X
線強度から試料表面の各元素存在量を測定するための蛍
光X線分析装置において、上記第一の要旨に説明した試
料回転装置が試料室内に収納され、回転軸のまわりの試
料周面に1次X線が照射されるよう配置されたことを特
徴とする前記蛍光X線分析用装置であることを第二の要
旨とし、また、(3)コールドクルーシブル浮揚溶解装
置により金属片を一定時間浮揚溶解し、この金属片内に
存在する不純物粒子を溶融体表面に排出させ、凝固後の
試料表面を、エネルギー分散型の分光器を用いる蛍光X
線分析法により直接分析することにより不純物粒子を構
成する元素量を測定し、不純物量を同定する金属の清浄
度評価方法において、蛍光X線分析装置の試料室内に設
置された試料回転装置に試料を保持し、試料室内で試料
を一定回転速度で連続回転させつつ蛍光X線を計測す
る、または、静止状態で一定時間計測後、試料を一定角
度回転させた後静止し、同一試料の異なる測定面を計測
する動作を任意の回数繰り返すことを特徴とする金属の
清浄度評価方法であることを第三の要旨とし、またさら
に、(4)コールドクルーシブル浮揚溶解装置により金
属片を一定時間浮揚溶解し、この金属片内に存在する不
純物粒子を溶融体表面に排出させた後、印可電圧を一定
の速さで低下させることにより、試料表面上一定の幅を
もつ帯状領域に不純物粒子を集積させ、この試料表面を
エネルギー分散型の分光器を用いる蛍光X線分析法によ
り直接分析する金属の清浄度評価方法であって、上記帯
状領域に1次X線が照射されるように試料を配置し、一
定回転速度で連続回転させつつ計測する、または、静止
状態で一定時間計測後、試料を一定角度回転させた後静
止し、同一試料の不純物粒子が集積した帯状領域の異な
る測定面を計測する動作を任意の回数繰り返すことによ
り不純物粒子を構成する元素量を測定し、不純物量を同
定することを特徴とする金属の清浄度評価方法であるこ
とを第四の要旨とするものである。
In order to achieve the above object, the present invention (1) continuously rotates a sample in a closed sample chamber at a constant rotation speed. Or it is a sample rotation device that rotates a fixed angle intermittently at a constant time interval, and a driving device for obtaining the driving force to rotate the sample on the base plate and the sample is sandwiched and held, and the rotational driving force is rubbed. Sample for fluorescent X-ray analysis, comprising a pair of sample holders for transmitting the sample to the sample by means of a rotary shaft, a rotary shaft support plate for supporting the rotary shaft, and a circuit board for controlling the rotary operation. The first gist is that it is a rotating device, and (2) the surface of the sample is irradiated with X-rays, and the generated fluorescent X-rays are detected by an energy dispersive spectroscope.
In a fluorescent X-ray analyzer for measuring the abundance of each element on the sample surface from the line intensity, the sample rotating device described in the first summary is housed in the sample chamber, and 1 The second gist is that the apparatus for fluorescent X-ray analysis is arranged so that the next X-ray is irradiated, and (3) the metal piece is levitated for a certain period of time by the cold crucible levitating and melting apparatus. The impurity particles present in the metal pieces that have been melted and are present in the metal piece are discharged to the surface of the melt, and the solidified sample surface is subjected to fluorescence X using an energy dispersive spectrometer
In the method for evaluating the cleanliness of metals, in which the amount of elements constituting impurity particles is measured by direct analysis by a line analysis method, and the amount of impurities is identified, in a sample rotation device installed in a sample chamber of an X-ray fluorescence analyzer. And measure the fluorescent X-ray while continuously rotating the sample at a constant rotation speed in the sample chamber, or after measuring for a certain period of time in a stationary state, rotating the sample at a certain angle and then standing still to measure different measurements of the same sample. The third gist is that it is a metal cleanliness evaluation method characterized by repeating the operation of measuring the surface any number of times. Furthermore, (4) levitation melting of metal pieces for a certain period of time using a cold crucible levitation melting device. After discharging the impurity particles present in the metal piece to the surface of the melt, the applied voltage is reduced at a constant rate to impure the band-shaped region with a constant width on the sample surface. A metal cleanliness evaluation method in which particles are accumulated and the sample surface is directly analyzed by a fluorescent X-ray analysis method using an energy dispersive spectroscope. Place a sample and measure it while continuously rotating it at a constant rotation speed, or after measuring for a certain time in a stationary state, rotate the sample by a certain angle and then stand still, and measure different bands of impurity particles in the same sample. The fourth gist is a metal cleanliness evaluation method characterized by measuring the amount of elements constituting impurity particles by repeating the operation of measuring the surface any number of times and identifying the amount of impurities. Is.

【0009】コールドクルーシブル浮揚溶解装置におい
て、清浄度評価の対象となる金属試料を水冷坩堝内に置
き、コイルに電流を流すと、発生した電磁力により金属
試料は溶融すると共に水冷坩堝内で浮揚する。このた
め、坩堝との接触による汚染が無い。一般に、介在物は
溶融金属より比重が軽くかつ介在物と溶融金属間には界
面張力が存在するため、浮揚体表面に排出される。溶解
時の温度は、鋼試料の場合、融点十数十度程度と比較的
低いため、溶解による介在物の変質が少ない。従って、
アルミナ系介在物の他にもスラグ系やパウダー系といっ
た多種の介在物を母材に存在していたのと近い形で評価
することが可能である。
In a cold crucible levitation melting apparatus, a metal sample to be evaluated for cleanliness is placed in a water-cooled crucible, and when an electric current is applied to the coil, the electromagnetic force generated melts the metal sample and levitates in the water-cooled crucible. . Therefore, there is no contamination due to contact with the crucible. In general, inclusions have a lower specific gravity than molten metal and interfacial tension exists between inclusions and molten metal, so that inclusions are discharged to the surface of the float. In the case of a steel sample, the temperature during melting is relatively low, such as the melting point of about a dozen and a dozen degrees. Therefore,
In addition to alumina-based inclusions, various inclusions such as slag-based and powder-based inclusions can be evaluated in a form similar to that existing in the base material.

【0010】コールドクルーシブル溶解試料は坩堝形状
にもよるが、一般に中心鉛直軸のまわりにほぼ対称な回
転体として得られる。表面に排出された介在物をコイル
への印可電圧の制御により、例えば、試料の上部に一定
の範囲内で集積させることができれば、この部分に1次
X線を照射し一括して分析することができる。しかしな
がら、このような場合も実際には、側面にも相当量の介
在物が分析し、上部一カ所のみの分析では、介在物全体
量を正確に把握することはできないということがわかっ
てきた。
Although the cold crucible dissolution sample depends on the crucible shape, it is generally obtained as a rotating body substantially symmetrical about the central vertical axis. If the inclusions discharged to the surface can be accumulated on the upper part of the sample within a certain range by controlling the applied voltage to the coil, this part should be irradiated with primary X-rays and analyzed collectively. You can However, even in such a case, it has been found that, in reality, a considerable amount of inclusions is also analyzed on the side surface, and it is not possible to accurately grasp the total amount of inclusions by analyzing only one upper part.

【0011】特に、側面に分布した介在物の分析では、
試料の向きをどのように工夫しても必ず1次X線に対し
て影になる部分ができるため、試料の向きを変えて多点
の測定を行なう必要が生じてくる。蛍光X線分析装置の
試料室内はX線の空気吸収による減衰を防ぐため真空に
引く必要がある。このため、試料の向きを変える度に試
料室の真空を破り、再び真空に引くという行程を繰り返
さなければならず、手間と時間がかかってしまう。
In particular, in the analysis of inclusions distributed on the side surface,
No matter how the orientation of the sample is devised, there will always be a portion that is shaded by the primary X-rays, so it becomes necessary to change the orientation of the sample and perform multipoint measurement. It is necessary to draw a vacuum in the sample chamber of the X-ray fluorescence analyzer in order to prevent attenuation of X-rays due to air absorption. Therefore, every time the direction of the sample is changed, the vacuum in the sample chamber must be broken and the vacuum must be evacuated again, which requires time and effort.

【0012】本発明では、エネルギー分散型蛍光X線分
析装置の試料室内に試料を回転させる装置を収めたの
で、試料室の真空を破ることなく、試料の側面全周を連
続的に分析することが可能であり、評価時間を飛躍的に
短縮することができる。上記した手段により、試料の側
面に分布した介在物評価は大幅に迅速化することができ
る。しかし、さらなる迅速化のために本発明者等は、試
料内の全介在物を試料表面の側面に集積することを試み
た。その結果、コールドクレーシブル浮揚溶解後凝固さ
せる際にコイルに印可する電圧を一定の速さで低下させ
ることにより、試料側面に帯状に介在物を集積させた試
料を作製することができた。このようにして作製した試
料では、介在物の試料上部への分布はなく、ほとんどの
介在物は試料側面に集積している。従って、この試料を
蛍光X線分析装置の試料室内で回転させながら側面全周
を分析することにより、試料中に存在していた介在物の
全体量をより短時間で評価することが可能となったので
ある。
In the present invention, since the apparatus for rotating the sample is housed in the sample chamber of the energy dispersive X-ray fluorescence analyzer, it is possible to continuously analyze the entire circumference of the side surface of the sample without breaking the vacuum of the sample chamber. The evaluation time can be dramatically reduced. By the means described above, the evaluation of inclusions distributed on the side surface of the sample can be significantly accelerated. However, for further speeding up, the present inventors tried to collect all the inclusions in the sample on the side surface of the sample surface. As a result, it was possible to prepare a sample in which inclusions were accumulated in a strip shape on the side surface of the sample by lowering the voltage applied to the coil at a constant rate when solidifying after cold-creasable levitation melting. In the sample manufactured in this manner, there is no distribution of inclusions on the upper part of the sample, and most of the inclusions are accumulated on the side surface of the sample. Therefore, by analyzing the entire side surface while rotating this sample in the sample chamber of the X-ray fluorescence analyzer, the total amount of inclusions existing in the sample can be evaluated in a shorter time. It was.

【0013】[0013]

【発明の実施の形態】本発明に用いられる蛍光X線分析
装置の試料室内における試料回転装置の一例を図1およ
び図2をもとに説明する。図1は、試料回転装置を上か
らみた平面図であり、図2は側面図である。各構成部は
台板1上に取り付けられており、この台板ごと試料室内
に設置される。台板1の中央部にはX線を試料に照射す
るための開口部7が設けられている。コールドクルーシ
ブル溶解試料5を試料保持具10の間に挟む。このと
き、押さえバネ9によって試料は固定される。スイッチ
4を入れると電源6より電力が供給され、駆動装置2が
動作し、減速機3により一定回転数とした回転駆動力
は、試料保持具10と試料5との摩擦をとおして試料に
伝達され、試料を回転させる。この回転の軸は、回転軸
支持板8により支持され、一定の回転軸のまわりの回転
が確保される。本回転装置のもうひとつの動作形態は、
回路基板11上に組み込まれたディレイ回路を通して実
現される。すなわち、試料固定後、スイッチ4をこの動
作モードに入れると、あらかじめ設定した時間、例えば
100秒後に試料を一定の角度、例えば90°回転させ
て停止し、再び100秒後に同一の動作を繰り返す。
BEST MODE FOR CARRYING OUT THE INVENTION An example of a sample rotating device in a sample chamber of a fluorescent X-ray analyzer used in the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a plan view of the sample rotator seen from above, and FIG. 2 is a side view. Each component is mounted on the base plate 1 and is installed in the sample chamber together with the base plate. An opening 7 for irradiating the sample with X-rays is provided in the center of the base plate 1. The cold crucible dissolution sample 5 is sandwiched between the sample holders 10. At this time, the sample is fixed by the pressing spring 9. When the switch 4 is turned on, electric power is supplied from the power source 6, the driving device 2 operates, and the rotational driving force at a constant rotation speed by the speed reducer 3 is transmitted to the sample through friction between the sample holder 10 and the sample 5. And rotate the sample. The rotation shaft is supported by the rotation shaft support plate 8 to ensure rotation around a constant rotation shaft. Another operation mode of this rotating device is
It is realized through a delay circuit incorporated on the circuit board 11. That is, when the switch 4 is put into this operation mode after fixing the sample, the sample is rotated by a predetermined angle, for example, 90 ° and stopped after a preset time, for example, 100 seconds, and the same operation is repeated 100 seconds later.

【0014】本試料回転装置において、試料保持具10
は、試料との十分な摩擦を確保するため、ゴム等の素材
で形成することが望ましい。さらに摩擦を高めるため、
このゴムに溝を設ける等の加工を施してもよい。このよ
うな試料保持および回転駆動力伝達方式をとることによ
って、重量約100gで約300mm径の球状試料を試料
に加工を施すことなく保持しかつ、試料側面の測定面を
X線に対して遮蔽することなく回転させることが可能で
ある。
In this sample rotating device, the sample holder 10
Is preferably made of a material such as rubber in order to ensure sufficient friction with the sample. To further increase friction,
This rubber may be processed such as having a groove. By adopting such a sample holding and rotary drive force transmission method, a spherical sample weighing about 100 g and having a diameter of about 300 mm can be held without processing the sample, and the measurement surface on the side surface of the sample can be shielded against X-rays. It is possible to rotate without doing.

【0015】図3は、図1の試料回転装置を試料室内に
収納した蛍光X線分析装置の構成図である。コールドク
ルーシブル溶解試料5を試料室13に収納した試料回転
装置の試料保持具10の間に保持し、試料室の扉14を
閉め、一定時間試料室内を真空に排気後、蛍光X線分析
を開始する。ここで、X線管球15より発生した1次X
線は、台板1に設けられた開口部7より試料面に照射さ
れる。回転軸の回りの試料周面が、試料の回転に伴い順
次測定される。尚、X線管球15と検出器16は、図3
において、紙面と垂直な方向に配置することも可能であ
る。
FIG. 3 is a block diagram of an X-ray fluorescence analyzer in which the sample rotating device of FIG. 1 is housed in a sample chamber. The cold crucible dissolution sample 5 is held between the sample holders 10 of the sample rotation device housed in the sample chamber 13, the door 14 of the sample chamber is closed, the sample chamber is evacuated to a vacuum for a certain time, and then the fluorescent X-ray analysis is started. To do. Here, the primary X generated from the X-ray tube 15.
The line is irradiated on the sample surface through the opening 7 provided in the base plate 1. The sample peripheral surface around the rotation axis is sequentially measured as the sample rotates. The X-ray tube 15 and the detector 16 are shown in FIG.
In, it is also possible to arrange in the direction perpendicular to the paper surface.

【0016】次に、試料回転装置を用いて、金属試料の
清浄度を評価する方法について詳述する。試料を連続回
転させる場合は、一定分析時間計測された各元素の蛍光
X線強度を積分し、これらの数値をもとに試料表面にお
ける各介在物の濃度を算出する。また、試料を断続回転
させる場合、試料が静止した状態で一定時間分析し、各
元素の蛍光X線強度を積分し、これらの数値をもとに試
料表面のうちひとつの測定面における各介在物の濃度を
算出し、次に試料が一定角度回転し静止後、同様に分析
を開始して試料表面中他の測定面における各介在物濃度
を算出する。このような動作を繰り返し、介在物集積帯
全域を分析し、各測定面の分析で得られた介在物濃度を
平均化する等の数値処理により各介在物の濃度を算出す
る。
Next, a method for evaluating the cleanliness of a metal sample using a sample rotating device will be described in detail. When the sample is continuously rotated, the fluorescent X-ray intensity of each element measured for a fixed analysis time is integrated, and the concentration of each inclusion on the sample surface is calculated based on these numerical values. Also, when the sample is rotated intermittently, the sample is analyzed for a certain period of time in a stationary state, the fluorescent X-ray intensity of each element is integrated, and based on these values, each inclusion on one measurement surface of the sample surface Then, after the sample is rotated by a certain angle and stands still, the analysis is similarly started to calculate the concentration of each inclusion on the other measurement surface in the sample surface. By repeating this operation, the entire inclusion accumulation zone is analyzed, and the concentration of each inclusion is calculated by numerical processing such as averaging the concentration of the inclusions obtained by the analysis of each measurement surface.

【0017】以上のようにして、各々の場合に得られた
介在物濃度は、電解して介在物を抽出し化学分析によっ
て得た元の試料内に存在していた介在物量と一定の相関
があることを確認した。従って、蛍光X線分析で直接得
られる介在物濃度は、この相関関係を検量線とすること
により、金属試料に含まれる各介在物の存在量の指標と
なる。介在物の存在量指標が少ないほど金属の清浄度が
高い。即ち、介在物の存在量指標が金属の清浄度を表わ
している。
As described above, the concentration of inclusions obtained in each case has a certain correlation with the amount of inclusions present in the original sample obtained by the chemical analysis by extracting the inclusions by electrolysis. I confirmed that there is. Therefore, the concentration of inclusions directly obtained by the fluorescent X-ray analysis is an index of the amount of each inclusion contained in the metal sample by using this correlation as a calibration curve. The smaller the abundance index of inclusions, the higher the cleanliness of the metal. That is, the abundance index of the inclusions represents the cleanliness of the metal.

【0018】[0018]

【実施例】【Example】

[実施例1]低炭素鋼を連続鋳造中に、ターンディッシ
ュ内溶鋼より鋳込み試料を採取し、重量約100gの直
方体形試料を切り出し、コールドクルーシブル装置を用
い、大気圧Ar雰囲気下で溶解し、溶解後5分間保持
し、介在物を排出後、凝固させた。コールドクルーシブ
ル溶解試料表面を蛍光X線分析した。1次X線強度を1
μA×50kV、照射径を20mm、照射時間を90秒と
して測定を行った。Al、Si、Ca等の蛍光X線強度
から試料中のアルミナ、シリケイト、カルシア等の存在
量指標を求めた。
[Example 1] During continuous casting of low-carbon steel, a cast sample was taken from the molten steel in the turn dish, and a rectangular parallelepiped sample having a weight of about 100 g was cut out and melted under an atmospheric pressure Ar atmosphere using a cold crucible device. After the dissolution, the mixture was held for 5 minutes, the inclusions were discharged, and then solidified. The surface of the cold crucible dissolved sample was analyzed by X-ray fluorescence analysis. Primary X-ray intensity is 1
The measurement was performed with μA × 50 kV, irradiation diameter of 20 mm and irradiation time of 90 seconds. The abundance index of alumina, silicate, calcia, etc. in the sample was determined from the fluorescent X-ray intensity of Al, Si, Ca, etc.

【0019】コールドクルーシブル溶解試料を、中心軸
の回りに回転可能なように図1に示した試料回転装置の
試料保持具10の間に固定し、回転速度6rpmで回転
させながら、上記の条件で蛍光X線分析した結果を表1
に掲げた。表1には、比較例として試料回転装置を用い
ず、静止状態での測定を試料の向きを変えて逐一行なっ
た結果も同時に示した。この比較例にみられるように介
在物の分布には測定面によって有意のバラツキがあり、
試料の側面全周を評価しなければ正しい結果は得られな
いということが分かる。本発明による結果は、比較例の
4面の測定値の平均値にほぼ一致しており、介在物量の
指標として適用可能であるということを示している。一
方で、本発明による−試料当たりの評価時間は、約3分
で比較例の場合のおよそ1/4の速さを達成できる。比
較例の4面測定を、本発明の試料回転装置の断続回転モ
ードを用いて行なった場合でも、評価時間は約4割短縮
可能である。
The cold crucible dissolution sample was fixed between the sample holders 10 of the sample rotating device shown in FIG. 1 so as to be rotatable about the central axis, and was rotated at a rotation speed of 6 rpm under the above conditions. The results of fluorescent X-ray analysis are shown in Table 1.
Raised. Table 1 also shows, as a comparative example, the results of performing measurements in a stationary state one by one by changing the orientation of the sample without using the sample rotating device. As seen in this comparative example, the distribution of inclusions varies significantly depending on the measurement surface,
It can be seen that correct results cannot be obtained unless the entire circumference of the side surface of the sample is evaluated. The results according to the present invention substantially match the average values of the measured values on the four surfaces of the comparative example, indicating that they are applicable as an index of the amount of inclusions. On the other hand, according to the present invention, the evaluation time per sample can be about 3 minutes, and about 1/4 of the speed of the comparative example can be achieved. Even when the four-sided measurement of the comparative example is performed using the intermittent rotation mode of the sample rotation device of the present invention, the evaluation time can be shortened by about 40%.

【0020】[0020]

【表1】 [Table 1]

【0021】[実施例2]次に、前述と同様の方法でタ
ーンディッシュより採取した試料をコールドクルーシブ
ルで溶解し、溶解後5分間保持し、その後印可電圧を4
分間にわたり徐々に低下させて凝固した試料を試料回転
装置を用いて、回転速度6rpmで回転させながら蛍光
X線分析した。また、鋳込み試料中コールドクルーシブ
ル用試料を切り出した直近から採取した試料を用いてト
ータル酸素(T[O])分析、およびスライム法によっ
て球状介在物(カルシア系介在物)の量を測定した。蛍
光X線分析によって得られたアルミナ量指標とT[O]
との関係を図4に、また蛍光X線分析によって得られた
カルシア量指標とスライム法による球状介在物量との関
係を図5に示す。本実施例に用いた鋼種の場合、T
[O]は、アルミナ系介在物量と相関のある量である。
また、スライム法による球状介在物量はカルシア系介在
物量を表す。
[Embodiment 2] Next, a sample collected from a turn dish was dissolved in a cold crucible in the same manner as described above, and after the dissolution, it was held for 5 minutes, and then the applied voltage was set to 4
The sample coagulated by gradually lowering over a period of time was subjected to fluorescent X-ray analysis using a sample rotating device while rotating at a rotation speed of 6 rpm. Moreover, the amount of spherical inclusions (calcia inclusions) was measured by a total oxygen (T [O]) analysis and a slime method using a sample taken from the latest cut-out sample for cold crucible in a cast sample. Alumina content index and T [O] obtained by fluorescent X-ray analysis
4 and the relationship between the calcia amount index obtained by X-ray fluorescence analysis and the amount of spherical inclusions by the slime method are shown in FIG. In the case of the steel type used in this example, T
[O] is an amount that correlates with the amount of alumina-based inclusions.
The amount of spherical inclusions by the slime method represents the amount of calcia-based inclusions.

【0022】図4からわかるように本発明で得られたア
ルミナ量指標とT[O]との間には、良好な相関が認め
られた。また、図5から本発明で得られたカルシア量指
標は、スライム法による球状介在物量と良好な相関関係
にあることがわかる。以上のことから、本発明によれ
ば、アルミナ系やカルシア系(スラグ系)等のように種
類別介在物量の存在量を表す指標が得られるということ
がわかる。本発明の評価方法によれば、コールドクルー
シブル浮揚溶解と蛍光X線分析を合わせて約12分で介
在物評価が可能である。
As can be seen from FIG. 4, a good correlation was observed between the alumina content index obtained in the present invention and T [O]. Further, it can be seen from FIG. 5 that the calcia amount index obtained in the present invention has a good correlation with the amount of spherical inclusions by the slime method. From the above, it can be seen that according to the present invention, an index indicating the amount of inclusions classified by type, such as alumina-based or calcia-based (slag-based), can be obtained. According to the evaluation method of the present invention, inclusions can be evaluated in about 12 minutes by combining cold crucible flotation dissolution and fluorescent X-ray analysis.

【0023】[実施例3]鍋からターンディッシュに溶
鋼が流入するノズル近傍で一定時間間隔で試料を採取
し、上記した本発明の評価方法によって得られたアルミ
ナおよびカルシア量指標の時間推移を図6に示す。図6
にみられるように本発明によれば、鍋の残湯量が少なく
なった際の鍋スラグの流出をはじめとして、溶鋼の汚染
度を迅速に検知することができることから、これをもと
にして鋳片の清浄度を予測し、的確な操業管理を実施で
きる。
[Embodiment 3] Samples were taken at a constant time interval in the vicinity of a nozzle where molten steel flows into a turn dish from a pan, and the time transition of alumina and calcia content indexes obtained by the above-described evaluation method of the present invention is shown. 6 shows. FIG.
According to the present invention, as can be seen in, it is possible to quickly detect the degree of contamination of molten steel, including the outflow of ladle slag when the amount of residual hot water in the pot is low, and therefore casting based on this can be performed. It can predict the cleanliness of a piece and implement proper operation management.

【0024】[0024]

【発明の効果】以上説明したように、本発明の方法を用
いれば、良好な代表性と製品との相関性を保持しなが
ら、迅速かつ安価な金属中の非金属介在物の分析・評価
が可能となる。本発明による介在物の迅速評価は、例え
ば、製鋼操業の管理指標として、中間製品を下工程へ送
る際の品質保証として、あるいは新プロセスを開発・導
入する際の評価指標として適用することが可能である。
As described above, the use of the method of the present invention makes it possible to quickly and inexpensively analyze and evaluate nonmetallic inclusions in metals while maintaining good representativeness and correlation with products. It becomes possible. The rapid evaluation of inclusions according to the present invention can be applied, for example, as a management index for steelmaking operations, as a quality assurance when an intermediate product is sent to a lower process, or as an evaluation index when developing / introducing a new process. Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】試料回転装置を上から見た平面図。FIG. 1 is a plan view of a sample rotation device as viewed from above.

【図2】試料回転装置の側面図。FIG. 2 is a side view of a sample rotation device.

【図3】試料回転装置を試料室内に収納したエネルギー
分散型蛍光X線分析装置。
FIG. 3 is an energy dispersive X-ray fluorescence analyzer in which a sample rotating device is housed in a sample chamber.

【図4】本発明によるアルミナ分析結果とトータル酸素
濃度の相関を示す図。
FIG. 4 is a diagram showing a correlation between an alumina analysis result and a total oxygen concentration according to the present invention.

【図5】本発明によるカルシア分析結果とスライム法に
よる分析結果の相関を示す図。
FIG. 5 is a diagram showing a correlation between the results of calcia analysis according to the present invention and the results of slime analysis.

【図6】本発明によって得られたターンディッシュ内溶
鋼中の介在物量の時間推移を示す図。
FIG. 6 is a diagram showing the time course of the amount of inclusions in the molten steel in the turn dish obtained by the present invention.

【符号の説明】[Explanation of symbols]

1:台板 2:駆動装置 3:減速機 4:スイッチ 5:コールドクルーシブル溶解試料 6:電源 7:開口部 8:回転軸支持板 9:押さえバネ 10:試料保持具 11:回路基板 12:不純物粒子集積部 13:試料室 14:試料室扉 15:X線管球 16:検出器 17:データ処理装置 1: Base plate 2: Drive device 3: Reducer 4: Switch 5: Cold crucible melting sample 6: Power supply 7: Opening 8: Rotating shaft support plate 9: Pressing spring 10: Sample holder 11: Circuit board 12: Impurity Particle accumulation unit 13: Sample chamber 14: Sample chamber door 15: X-ray tube 16: Detector 17: Data processing device

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年10月1日[Submission date] October 1, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0014】本試料回転装置において、試料保持具10
は、試料との十分な摩擦を確保するため、ゴム等の素材
で形成することが望ましい。さらに摩擦を高めるため、
このゴムに溝を設ける等の加工を施してもよい。このよ
うな試料保持および回転駆動力伝達方式をとることによ
って、重量約100gで約30mm径の球状試料を試料に
加工を施すことなく保持しかつ、試料側面の測定面をX
線に対して遮蔽することなく回転させることが可能であ
る。
In this sample rotating device, the sample holder 10
Is preferably made of a material such as rubber in order to ensure sufficient friction with the sample. To further increase friction,
This rubber may be processed such as having a groove. By adopting such a sample holding and rotational driving force transmission method, a spherical sample weighing about 100 g and having a diameter of about 30 mm can be held without processing the sample, and the measurement surface on the side surface of the sample can be kept on X-axis.
It is possible to rotate without blocking the line.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 栄一 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Eiichi Takeuchi 20-1 Shintomi, Futtsu City, Chiba Shin Nippon Steel Co., Ltd. Technology Development Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 閉じた試料室内で試料を一定回転速度で
連続的に回転させる、または一定時間間隔で一定角度断
続的に回転させる試料回転装置であって、台板上に試料
を回転させる駆動力を得るための駆動装置と、試料を挟
みこんで保持し、回転駆動力を摩擦によって試料に伝達
するための一対の試料保持具と、回転軸を支持するため
の回転軸支持板、および回転動作を制御するための回路
基板を備えたことを特徴とする蛍光X線分析用試料回転
装置。
1. A sample rotation device for continuously rotating a sample in a closed sample chamber at a constant rotation speed or intermittently rotating at a constant time interval for a constant angle, which drive the sample to rotate on a base plate. A driving device for obtaining a force, a pair of sample holders for sandwiching and holding the sample and transmitting the rotational driving force to the sample by friction, a rotating shaft support plate for supporting the rotating shaft, and a rotation A sample rotating device for X-ray fluorescence analysis, comprising a circuit board for controlling the operation.
【請求項2】 試料の表面にX線を照射し、発生した蛍
光X線をエネルギー分散型分光器で検出し、元素固有の
エネルギーの蛍光X線強度から試料表面の各元素存在量
を測定するための蛍光X線分析装置において、請求項1
に記載の試料回転装置が試料室内に収納され、回転軸の
まわりの試料周面に1次X線が照射されるよう配置され
たことを特徴とする蛍光X線分析用装置。
2. The surface of the sample is irradiated with X-rays, the generated fluorescent X-rays are detected by an energy dispersive spectroscope, and the abundance of each element on the sample surface is measured from the fluorescent X-ray intensity of the energy peculiar to the element. An X-ray fluorescence analyzer for use in
An apparatus for fluorescent X-ray analysis, characterized in that the sample rotating device according to (1) is housed in a sample chamber and is arranged so that the sample peripheral surface around the rotation axis is irradiated with primary X-rays.
【請求項3】 コールドクルーシブル浮揚溶解装置によ
り金属片を一定時間浮揚溶解し、この金属片内に存在す
る不純物粒子を溶融体表面に排出させ、凝固後の試料表
面を、エネルギー分散型の分光器を用いる蛍光X線分析
法により直接分析することにより不純物粒子を構成する
元素量を測定し、不純物量を同定する金属の清浄度評価
方法において、蛍光X線分析装置の試料室内に設置され
た試料回転装置に試料を保持し、試料室内で試料を一定
回転速度で連続回転させつつ蛍光X線を計測する、また
は、静止状態で一定時間計測後、試料を一定角度回転さ
せた後静止し、同一試料の異なる測定面を計測する動作
を任意の回数繰り返すことを特徴とする金属の清浄度評
価方法。
3. A cold crucible flotation / melting apparatus float-melts a metal piece for a certain period of time, discharges impurity particles present in the metal piece to the surface of the melt, and solidifies the sample surface to an energy dispersive spectroscope. In a method for evaluating the cleanliness of metals, in which the amount of elements constituting impurity particles is measured by direct analysis by a fluorescent X-ray analysis method using, a sample installed in a sample chamber of an X-ray fluorescence analyzer Hold the sample in a rotating device and measure the fluorescent X-ray while continuously rotating the sample at a constant rotation speed in the sample chamber, or after measuring for a certain period of time in a stationary state, rotate the sample by a certain angle and then stand still A method for evaluating the cleanliness of a metal, which comprises repeating an operation of measuring different measurement surfaces of a sample any number of times.
【請求項4】 コールドクルーシブル浮揚溶解装置によ
り金属片を一定時間浮揚溶解し、この金属片内に存在す
る不純物粒子を溶融体表面に排出させた後、印可電圧を
一定の速さで低下させることにより、試料表面上一定の
幅をもつ帯状領域に不純物粒子を集積させ、この試料表
面をエネルギー分散型の分光器を用いる蛍光X線分析法
により直接分析する金属の清浄度評価方法であって、上
記帯状領域に1次X線が照射されるように試料を配置
し、一定回転速度で連続回転させつつ計測する、また
は、静止状態で一定時間計測後、試料を一定角度回転さ
せた後静止し、同一試料の不純物粒子が集積した帯状領
域の異なる測定面を計測する動作を任意の回数繰り返す
ことにより不純物粒子を構成する元素量を測定し、不純
物量を同定することを特徴とする金属の清浄度評価方
法。
4. A cold crucible levitation melting apparatus is used to float and melt a metal piece for a certain period of time, discharge impurity particles present in the metal piece to the surface of the melt, and then reduce the applied voltage at a constant speed. A method for evaluating the cleanliness of metals, in which impurity particles are accumulated in a band-shaped region having a certain width on the sample surface, and the sample surface is directly analyzed by a fluorescent X-ray analysis method using an energy dispersive spectrometer, The sample is arranged so that the band-shaped region is irradiated with the primary X-ray, and the measurement is performed while continuously rotating at a constant rotation speed, or after the measurement is performed in a stationary state for a certain period of time, the sample is rotated by a certain angle and then stopped. The feature is that the amount of elements that make up the impurity particles is measured and the amount of impurities is identified by repeating the operation of measuring different measurement planes in strip-shaped regions where the impurity particles of the same sample are accumulated. Method for assessing cleanliness of metals to be collected.
JP6681296A 1996-03-22 1996-03-22 Fluorescent x-ray spectrometer and method for evaluating cleanliness of metal Withdrawn JPH09257665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6681296A JPH09257665A (en) 1996-03-22 1996-03-22 Fluorescent x-ray spectrometer and method for evaluating cleanliness of metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6681296A JPH09257665A (en) 1996-03-22 1996-03-22 Fluorescent x-ray spectrometer and method for evaluating cleanliness of metal

Publications (1)

Publication Number Publication Date
JPH09257665A true JPH09257665A (en) 1997-10-03

Family

ID=13326650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6681296A Withdrawn JPH09257665A (en) 1996-03-22 1996-03-22 Fluorescent x-ray spectrometer and method for evaluating cleanliness of metal

Country Status (1)

Country Link
JP (1) JPH09257665A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194655A (en) * 2019-05-27 2020-12-03 Jfeスチール株式会社 Sample installation jig
CN112198149A (en) * 2020-10-19 2021-01-08 温州大学 Portable LIBS composition analyzer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194655A (en) * 2019-05-27 2020-12-03 Jfeスチール株式会社 Sample installation jig
CN112198149A (en) * 2020-10-19 2021-01-08 温州大学 Portable LIBS composition analyzer
CN112198149B (en) * 2020-10-19 2023-11-07 温州大学 Portable LIBS component analyzer

Similar Documents

Publication Publication Date Title
KR100229096B1 (en) Device for evaluating cleanliness of metal and method therfor
JPH09257665A (en) Fluorescent x-ray spectrometer and method for evaluating cleanliness of metal
JP4901590B2 (en) Method for evaluating non-metallic inclusions in stainless steel
JP3943488B2 (en) Analytical method of composition and / or particle size of nonmetallic inclusions in steel samples
Rundquist et al. Ultrasonic Degassing and Processing of Aluminum
CN115420743A (en) Analysis method for inclusions in steel
EP2426479B1 (en) Method for analyzing oxygen in steel
US6432718B1 (en) Evaluation apparatus for cleanliness of metal and method thereof
JP2001242144A (en) Non-metallic foreign matter composition in metal sample and/or particle diameter analysis method
JP2000221184A (en) Molten metal sampling device, method and member therefor
JP3900713B2 (en) Method for adjusting slag sample for fluorescent X-ray analysis and sampler
JPH1026618A (en) Quick evaluating method of material present in metal
JPH10318947A (en) Method for analyzing non-metal inclusion in metal
JPH11271195A (en) Method for adjusting non-metal inclusion analysis sample in steel
JPH07239327A (en) Evaluation of cleanliness of metal
JP3628516B2 (en) X-ray fluorescence analysis sample mask, sample holder, and slag fluorescence X-ray analysis method
WO2022064973A1 (en) Method for evaluating cleanliness of slab to become material of high endurance strength steel and method for manufacturing high endurance strength steel
JP3358134B2 (en) Method for evaluating inclusions in wires
JPH09159629A (en) Method and system for evaluating inclusion in steel quickly
JP3308275B2 (en) Apparatus and method for evaluating metal cleanliness
JPH03170393A (en) Quartz crucible for pulling up silicon single crystal and method for detecting its impurity
JP2006250737A (en) Grain size measuring method of inclusion in steel, and calibration curve sample used for it
JP2002340885A (en) ANALYSIS METHOD FOR CaO-CONTAINING INCLUSION IN STEEL
JPH11304673A (en) Method for evaluating cleanliness of metal
JPH09206905A (en) Surface defect estimation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030603