JPH05320906A - Film forming method and device therefor - Google Patents
Film forming method and device thereforInfo
- Publication number
- JPH05320906A JPH05320906A JP12856792A JP12856792A JPH05320906A JP H05320906 A JPH05320906 A JP H05320906A JP 12856792 A JP12856792 A JP 12856792A JP 12856792 A JP12856792 A JP 12856792A JP H05320906 A JPH05320906 A JP H05320906A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- film
- mixed layer
- vacuum
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高分子材料、金属、ガ
ラス、セラミック等の材料からなる各種基体表面に所望
の膜を連続的に形成する成膜方法及びそれを実施する装
置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film forming method for continuously forming a desired film on the surface of various substrates made of a polymer material, metal, glass, ceramic or the like, and an apparatus for carrying out the method.
【0002】[0002]
【従来の技術】近年、高分子材料からなるプリント配線
基板上への配線前駆体である金属膜の形成、ステンレス
スチール板等の基材表面への耐腐食性膜の形成、液晶デ
ィスプレイガラス基板への半導体膜の形成等にあたり、
所定物質を基体表面に真空蒸着させ、成膜することが広
く行われている。2. Description of the Related Art In recent years, a metal film which is a wiring precursor is formed on a printed wiring board made of a polymer material, a corrosion resistant film is formed on the surface of a base material such as a stainless steel plate, and a glass substrate for a liquid crystal display. When forming the semiconductor film of
It is widely practiced to deposit a predetermined substance on the surface of a substrate by vacuum deposition to form a film.
【0003】かかる真空蒸着成膜はスパッタリング法に
よる成膜等に比べ成膜速度が大きいという利点を有す
る。しかし、真空蒸着による成膜では、基体表面とそれ
に形成された膜との界面における相互付着力が弱く、成
膜後における基体の加工等において該膜が基体から剥落
する等の問題がある。例えば、プリント配線基板として
ポリイミドフィルムを用い、その表面に配線形成用のA
l膜を成膜した場合、成膜後該フィルムが高温、低温に
さらされると、該Al膜が剥がれたり、ステンレススチ
ール板上にその腐食を防止するためのAl膜を成膜した
場合、成膜後該ステンレススチール板を折り曲げ加工、
プレス加工等すると該Al膜が折れたり、剥がれたりす
るという問題がある。Such vacuum evaporation film formation has an advantage that the film formation speed is higher than that of the film formation by the sputtering method. However, in film formation by vacuum vapor deposition, mutual adhesion at the interface between the surface of the substrate and the film formed thereon is weak, and there is a problem that the film may peel off from the substrate during processing of the substrate after film formation. For example, a polyimide film is used as a printed wiring board, and A for wiring is formed on the surface of the polyimide film.
In the case of forming an I film, the Al film peels off when the film is exposed to high temperature and low temperature after the film formation, and when the Al film is formed on the stainless steel plate to prevent its corrosion, After the film, the stainless steel plate is bent,
There is a problem that the Al film may be broken or peeled off by pressing or the like.
【0004】かかる問題を解決するため、従来提案され
ている有力な方法は、基体表面への所定物質の真空蒸着
にイオン照射を併用し、該イオン照射により、基体表面
部に基体材料構成原子と蒸着物質構成原子との密着混合
層(ミキシング層)を形成し、該混合層上に同様な材質
の所定厚さの蒸着膜を密着性良く形成するという方法で
ある。In order to solve such a problem, a powerful method that has been conventionally proposed is to use ion irradiation in combination with vacuum deposition of a predetermined substance on the surface of a substrate, and by this ion irradiation, atoms constituting the substrate material are formed on the surface of the substrate. This is a method of forming an adhesion mixed layer (mixing layer) with the atoms constituting the vapor deposition substance, and forming a vapor deposition film of a similar material with a predetermined thickness on the mixture layer with good adhesion.
【0005】この密着性を高めるためのミキシング層の
形成は成膜する膜厚すべては必要とせず、基体と膜との
界面付近だけをイオン照射し、ミキシング層形成後、真
空蒸着により任意の膜厚まで成膜される。また、かかる
イオン照射併用の真空蒸着成膜において、成膜の能率化
のため、ストリップ状、板状等の基体を連続的に移動さ
せて成膜することも提案されている。The formation of the mixing layer for enhancing the adhesiveness does not require the entire film thickness to be formed. Only the vicinity of the interface between the substrate and the film is ion-irradiated, and after the mixing layer is formed, an arbitrary film is formed by vacuum vapor deposition. It is formed to a thickness. Further, in such vacuum evaporation film formation combined with ion irradiation, it has been proposed that the film is formed by continuously moving a strip-shaped or plate-shaped substrate in order to improve film formation efficiency.
【0006】図3はそのような連続成膜を実施する装置
例を示しており、この装置によると、図示しない排気装
置により所定成膜真空度に維持可能の真空容器9内が二
つの部分91、92に区画される。一方の部分91には
混合層形成用の所定物質蒸発源93及びイオン源94
が、他方の部分92には混合層上に所定厚さの蒸着膜を
形成するための所定物質蒸発源95が配置される。基体
96は一方の部分91から他方の部分92へ通され、部
分91で混合層形成後、部分92で所定厚さの蒸着膜が
形成される。FIG. 3 shows an example of an apparatus for carrying out such continuous film formation. According to this apparatus, there are two portions 91 in the vacuum container 9 which can be maintained at a predetermined film formation vacuum degree by an exhaust device (not shown). , 92. A predetermined material evaporation source 93 and an ion source 94 for forming a mixed layer are provided on one portion 91.
However, a predetermined material evaporation source 95 for forming a vapor deposition film having a predetermined thickness on the mixed layer is arranged in the other portion 92. The substrate 96 is passed from one portion 91 to the other portion 92, and after forming a mixed layer at the portion 91, a vapor deposition film having a predetermined thickness is formed at the portion 92.
【0007】このように、真空容器9内を二つの成膜部
分91、92に分ける理由は、基体の移動速度に合わせ
て成膜条件を定めると、混合層を形成する工程ではイオ
ン照射量に合わせて蒸着速度を小さく調整する必要があ
り、全体の成膜速度を向上させようとすると、混合層を
形成する工程と、その後の蒸着膜を形成する工程では蒸
着速度を大きく異ならせる必要があるからである。The reason why the inside of the vacuum chamber 9 is divided into the two film forming portions 91 and 92 is that the ion irradiation dose is set in the step of forming the mixed layer when the film forming conditions are determined according to the moving speed of the substrate. It is necessary to adjust the vapor deposition rate to a small value in order to improve the overall film deposition rate, and it is necessary to make the vapor deposition rate significantly different between the step of forming the mixed layer and the subsequent step of forming the vapor deposition film. Because.
【0008】このほか、特開昭60−141869号公
報に記載の方法及び装置も提案されている。この成膜方
法及び装置によると、基体の送り方向に沿って、真空容
器内に第1イオン源、第1蒸発源、第2イオン源、第2
蒸発源(イオンプレーティング手段を組み合わせること
もある)が配置され、第1イオン源によるイオン照射に
て基体表面の浄化、活性化といった前処理を行い、その
後、第1蒸発源にて、混合層形成用の蒸着膜を形成し、
次に第2イオン源によるイオン照射にて混合層を形成
し、さらに第2蒸発源にて混合層上に所定厚さの蒸着膜
を形成する。In addition to this, the method and apparatus described in JP-A-60-141869 are also proposed. According to this film forming method and apparatus, the first ion source, the first evaporation source, the second ion source, the second ion source, and the second ion source are provided in the vacuum container along the feeding direction of the substrate.
An evaporation source (which may be combined with an ion plating means) is arranged, and pretreatment such as cleaning and activation of the substrate surface is performed by ion irradiation from the first ion source, and then the mixed layer is formed in the first evaporation source. Form a vapor deposition film for formation,
Next, a mixed layer is formed by ion irradiation with a second ion source, and a vapor deposition film having a predetermined thickness is formed on the mixed layer with a second evaporation source.
【0009】[0009]
【発明が解決しようとする課題】しかしながら、図3や
特開昭60−141869号公報に記載の成膜方法及び
装置によると、混合層形成のために最低1台のイオン源
及び1台の蒸発源を要し、さらに、別途蒸着膜形成のた
めの最低1台の蒸発源を要するので、蒸発源数が多くな
り、それだけ成膜コストが高くつくという問題がある。However, according to the film forming method and apparatus shown in FIG. 3 and Japanese Patent Laid-Open No. 60-141869, at least one ion source and one evaporation for forming a mixed layer. The number of evaporation sources is large, and the film forming cost is accordingly high.
【0010】また、特開昭60−141869号公報の
方法及び装置によると、混合層形成にあたり、第1蒸発
源にて先に蒸着膜を形成し、そのあとで第2イオン源に
てこれにイオン注入を行うので、該第2イオン源による
イオンエネルギーをそれだけ大きくしなければならな
い。或いは基体の送り速度を大幅に低下させることも考
えられるが、それでは生産性が低下する。Further, according to the method and apparatus disclosed in Japanese Patent Laid-Open No. 60-141869, in forming a mixed layer, a vapor deposition film is formed first by a first evaporation source and then by a second ion source. Since the ion implantation is performed, the ion energy by the second ion source must be increased by that much. Alternatively, it is conceivable that the feeding speed of the substrate is significantly reduced, but this lowers the productivity.
【0011】そこで本発明は、従来に比べ簡単、安価
に、また、著しく生産性を低下させることなく、基体上
に連続的に密着性良好な膜を形成できる成膜方法及び成
膜装置を提供することを課題とする。Therefore, the present invention provides a film forming method and a film forming apparatus which are simpler, cheaper than conventional ones, and which can continuously form a film having good adhesion on a substrate without significantly lowering productivity. The task is to do.
【0012】[0012]
【課題を解決するための手段】前記課題を解決する本発
明方法は、成膜すべき基体を一定方向に連続的に移動さ
せつつ該基体表面に蒸発源から所定物質を真空蒸着させ
るとともにイオン源からイオンを照射して該基体表面に
基体材料原子と蒸着物質原子との混合層を形成する工程
と、前記工程により基体表面の所定部分に一通り混合層
を形成したのち、前記基体を前記一定方向と同方向又は
反対方向に連続的に移動させつつ前記形成された混合層
上に前記蒸発源にて所定厚さの膜を真空蒸着形成する工
程とを含むことを特徴とする。According to the method of the present invention for solving the above-mentioned problems, a substrate to be film-formed is continuously moved in a fixed direction while a predetermined substance is vacuum-deposited from an evaporation source on the surface of the substrate, and an ion source is also used. From the substrate to form a mixed layer of substrate material atoms and vapor-deposited substance atoms on the surface of the substrate, and after forming a mixed layer over a predetermined portion of the substrate surface by the above-mentioned step, And vacuum-depositing a film having a predetermined thickness on the formed mixed layer by the evaporation source while continuously moving in the same direction or in the opposite direction.
【0013】また、前記課題を解決する本発明装置は、
成膜すべき基体を連続的に移動させるための手段と、移
動する該基体の表面に所定物質の真空蒸着を行うための
一台の蒸発源と、移動する該基体の表面に向けイオンを
照射するための一台のイオン源とを備え、前記基体の連
続移動手段は、前記蒸発源とイオン源による基体材料原
子と蒸着物質原子との混合層形成工程において該基体を
一定の方向に移動させ、該混合層上に前記蒸発源にて所
定厚さの真空蒸着膜を形成する工程において該基体を前
記混合層形成時における基体移動方向と同一又は反対方
向に移動させるものであることを特徴とする。The device of the present invention for solving the above-mentioned problems is
Means for continuously moving the substrate to be film-formed, one evaporation source for performing vacuum deposition of a predetermined substance on the surface of the moving substrate, and irradiating the surface of the moving substrate with ions And one means for continuously moving the substrate to move the substrate in a fixed direction in a step of forming a mixed layer of substrate material atoms and vapor deposition substance atoms by the evaporation source and the ion source. In the step of forming a vacuum-deposited film having a predetermined thickness on the mixed layer with the evaporation source, the substrate is moved in the same or opposite direction as the moving direction of the substrate when the mixed layer is formed. To do.
【0014】前記本発明の方法及び装置において基体を
連続的に移動させる手段は種々考えられる。例えば基体
が無端ベルト形態のもののときは、これを回動させる複
数のプーリを含む移動手段が、また、基体が可撓性の帯
状のもののときは、これを往復動させる繰出しリールや
ドラム等と巻取りリールやドラム等を含む移動手段が、
基体が板状のときは、これを往復動させるローラコンベ
ア等の各種コンベアが考えられる。Various means for continuously moving the substrate in the method and apparatus of the present invention can be considered. For example, when the base body is in the form of an endless belt, a moving means including a plurality of pulleys for rotating the base body is used, and when the base body is in the form of a flexible belt, a feeding reel, a drum or the like for reciprocating the base body is used. Moving means including take-up reel and drum,
When the substrate is plate-shaped, various conveyors such as a roller conveyor that reciprocates the substrate can be considered.
【0015】前記本発明の方法及び装置において、混合
層上に所定厚さの蒸着膜を形成する工程における基体の
送り方向は、基体が例えば無端ベルト状のもので回動送
りされる場合は、混合層形成工程における送り方向と同
一でも、反対でもよく、基体が帯状、板状等のもので、
リール装置やコンベア装置等により送られる場合は、混
合層形成時とは反対の方向とすることが考えられる。In the method and apparatus of the present invention, the substrate is fed in the step of forming the vapor deposition film having a predetermined thickness on the mixed layer, when the substrate is, for example, an endless belt and is rotated and fed. The feeding direction in the mixed layer forming step may be the same or opposite, and the substrate has a strip shape, a plate shape, or the like,
When it is sent by a reel device, a conveyor device, or the like, it may be considered that the direction is opposite to that when the mixed layer is formed.
【0016】[0016]
【作用】本発明方法及び装置によると、成膜すべき基体
は一定方向に連続的に移動せしめられ、該基体表面に蒸
発源から所定物質が真空蒸着されるとともにイオン源か
らイオンが照射されて該基体表面に基体材料原子と蒸着
物質原子との混合層が形成される。かくして基体表面の
所定部分に一通り混合層を形成されたのち、基体は前記
一定方向と同方向又は反対方向に連続的に移動せしめら
れ、前記形成された混合層上に前記と同じ蒸発源にて所
定厚さの膜が真空蒸着形成される。According to the method and apparatus of the present invention, the substrate to be film-formed is continuously moved in a fixed direction, and a predetermined substance is vacuum-deposited from the evaporation source on the surface of the substrate and ions are irradiated from the ion source. A mixed layer of substrate material atoms and vapor deposition substance atoms is formed on the surface of the substrate. Thus, after a mixed layer is formed on a predetermined portion of the surface of the substrate, the substrate is continuously moved in the same direction or in the opposite direction to the same evaporation source as the above on the formed mixed layer. As a result, a film having a predetermined thickness is formed by vacuum vapor deposition.
【0017】[0017]
【実施例】以下、本発明に係る成膜方法の1例及びそれ
を実施する成膜装置例を図面を参照して説明する。図1
はかかる成膜装置例の概略構成を示している。図1の成
膜装置は、中央部に成膜真空容器1を備えている。容器
1の一側部には補助真空室11及び12が順次接続さ
れ、さらにそれらの外側にリール2が配置されている。
また、容器1の他側部には補助真空室13、14が順次
接続され、さらにそれらの外側にリール3が配置されて
いる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of a film forming method according to the present invention and an example of a film forming apparatus for carrying out the method will be described below with reference to the drawings. Figure 1
Shows a schematic configuration of an example of such a film forming apparatus. The film forming apparatus of FIG. 1 is provided with a film forming vacuum container 1 in the center. Auxiliary vacuum chambers 11 and 12 are sequentially connected to one side of the container 1, and a reel 2 is arranged outside them.
Further, auxiliary vacuum chambers 13 and 14 are sequentially connected to the other side portion of the container 1, and a reel 3 is arranged outside them.
【0018】リール2には電磁クラッチ等の係脱可能の
継手装置21を介してモータ22が連結され、リール3
には電磁クラッチ等の継手装置31を介してモータ32
が連結されている。リール2は継手装置21を係合さ
せ、モータ22をオンすることで図上時計方向回りに回
転駆動可能であり、リール3は継手装置31を係合さ
せ、モータ32をオンすることで図上反時計方向回りに
回転駆動可能である。A motor 22 is connected to the reel 2 via a coupling device 21 such as an electromagnetic clutch which can be engaged and disengaged.
To the motor 32 via a coupling device 31 such as an electromagnetic clutch.
Are connected. The reel 2 can be driven to rotate clockwise in the figure by engaging the joint device 21 and turning on the motor 22, and the reel 3 can engage the joint device 31 and turning on the motor 32 in the figure. It can be driven to rotate counterclockwise.
【0019】端部の補助真空室12、14と外部との各
隔壁、補助真空室(11と12)及び(13と14)間
の各隔壁、補助真空室11、13と真空容器1との各隔
壁のそれぞれには、リール2、3間に支持されるストリ
ップ状の基体Tを通過させ得るできるだけ小さい通孔1
2a、11a、1a、1b、13a、14aが設けてあ
る。なお、図中、15、16はそれぞれ基体を案内する
ために容器1内に設けた案内ローラ対である。The partition walls between the auxiliary vacuum chambers 12 and 14 at the ends and the outside, the partition walls between the auxiliary vacuum chambers (11 and 12) and (13 and 14), the auxiliary vacuum chambers 11 and 13 and the vacuum container 1. Each partition wall has a through hole 1 which is as small as possible and allows a strip-shaped substrate T supported between reels 2 and 3 to pass therethrough.
2a, 11a, 1a, 1b, 13a, 14a are provided. In the figure, 15 and 16 are a pair of guide rollers provided in the container 1 for guiding the base body.
【0020】また、真空容器1、補助真空室11、1
2、13、14にはそれぞれ真空ポンプ接続部1c、1
1b、12b、13b、14bを設け、これに図示しな
い真空ポンプを接続してあり、これにより容器及び各室
内を真空引きして容器1内を所定の成膜真空度に維持で
きる。真空容器1内には、リール2に近い方にイオン源
4が、リール3に近い方に蒸発源5が配置してあり、こ
れらは、リール2、3に支持されて移動する基体Tの表
面移動路に下方から臨んでいる。Further, the vacuum container 1, the auxiliary vacuum chambers 11, 1
Vacuum pump connection portions 1c, 1 are provided for 2, 13, and 14 respectively.
1b, 12b, 13b, 14b are provided, and a vacuum pump (not shown) is connected to them, whereby the inside of the container and each chamber can be evacuated to maintain the inside of the container 1 at a predetermined film forming vacuum degree. In the vacuum container 1, an ion source 4 is arranged nearer to the reel 2 and an evaporation source 5 is arranged nearer to the reel 3, which are the surfaces of the substrate T which is supported and moved by the reels 2 and 3. It faces the moving path from below.
【0021】イオン源4は、ここでは面イオンビームを
基体T表面に照射できるものである。また、蒸発源5
は、それには限定されないが、ここではエレクトロビー
ムによる蒸発源(EB蒸発源)である。イオン源4と蒸
発源5は、基体T表面におけるイオン源4からのイオン
ビーム到達領域の中心と、蒸発源5からの蒸発粒子到達
領域の中心とが略一致するように配置してある。The ion source 4 is capable of irradiating the surface of the substrate T with a surface ion beam. Also, the evaporation source 5
Is, but is not limited to, an electron beam evaporation source (EB evaporation source). The ion source 4 and the evaporation source 5 are arranged so that the center of the ion beam arrival region from the ion source 4 on the surface of the substrate T and the center of the evaporated particle arrival region from the evaporation source 5 are substantially coincident with each other.
【0022】また、蒸発物質が到達できる領域の一部に
蒸着量を計測する膜厚モニター6が配置してあり、イオ
ンが到達できる領域の一部にイオン照射量を計測するビ
ームモニター7が配置してある。イオン源4及び蒸発源
5は、イオン照射量及び蒸着量の制御部51に接続され
ており、モニター6、7の出力は図示しないラインでこ
こへ入力される。この制御部からの指示により、イオン
源4は混合層形成時、必要適切なイオン照射を行い、蒸
発源5は混合層形成時と混合層上への蒸着膜形成時のそ
れぞれにおいて蒸着量を異ならせる。 以上説明した成
膜装置によると、本発明方法は次のように実施される。Further, a film thickness monitor 6 for measuring the amount of vapor deposition is arranged in a part of the area where the evaporated substance can reach, and a beam monitor 7 for measuring the amount of ion irradiation is arranged in a part of the area where the ions can reach. I am doing it. The ion source 4 and the evaporation source 5 are connected to the control unit 51 for controlling the ion irradiation amount and the vapor deposition amount, and the outputs of the monitors 6 and 7 are input to them through lines (not shown). According to the instruction from the control unit, the ion source 4 performs necessary and appropriate ion irradiation when forming the mixed layer, and the evaporation source 5 has different vapor deposition amounts when the mixed layer is formed and when the vapor deposition film is formed on the mixed layer. Let According to the film forming apparatus described above, the method of the present invention is carried out as follows.
【0023】リール2には成膜すべきストリップ状の基
体Tを予め巻き納めておき、この基体のリード端を前記
補助真空室11、12、13、14及び真空容器1にお
ける通孔11a、12a、13a、14a、1a、1b
に通し、もう一つのリール3に連結する。この状態でリ
ール2側の継手装置21は脱離させておき、リール3側
の継手装置31は係合させておく。かくして補助真空室
11、12、13、14及び真空容器1内を図示しない
真空ポンプにて真空引きし、真空容器1内を約1×10
-6〜1×10-4(Torr)の成膜真空度に維持する。A strip-shaped substrate T to be film-formed is wound in advance on the reel 2, and the lead ends of the substrate are passed through the auxiliary vacuum chambers 11, 12, 13, 14 and the through holes 11a, 12a in the vacuum container 1. , 13a, 14a, 1a, 1b
, And connect to another reel 3. In this state, the coupling device 21 on the reel 2 side is detached, and the coupling device 31 on the reel 3 side is engaged. Thus, the auxiliary vacuum chambers 11, 12, 13, 14 and the vacuum container 1 are evacuated by a vacuum pump (not shown), and the inside of the vacuum container 1 is reduced to about 1 × 10.
-6 to 1 × 10 -4 (Torr) film formation vacuum is maintained.
【0024】かくして、蒸発源5より予めそこへ収容し
た目的の金属の如き物質を蒸発させ、基体T表面に真空
蒸着させると同時にイオン源4から該表面にアルゴンガ
ス等の不活性ガスのイオンビームを照射する一方、リー
ル3側のモータ3を運転し、基体Tをリール2からリー
ル3へ巻き取るようにして基体Tを所定速度で連続的に
一定方向に移動させる。Thus, the evaporation source 5 evaporates a substance such as a target metal previously stored in the evaporation source 5 and vacuum-deposits it on the surface of the substrate T, and at the same time, from the ion source 4 to the surface of the ion beam of an inert gas such as argon gas. On the other hand, the motor 3 on the reel 3 side is operated to wind the substrate T from the reel 2 to the reel 3, and the substrate T is continuously moved in a fixed direction at a predetermined speed.
【0025】かくして、連続的に移動する基体Tの表面
に目的物質を真空蒸着させると同時にこれにイオンを照
射し、基体表面上に基体材料構成原子と目的物質構成原
子との混合層を連続的に形成する。この混合層の形成で
は、目的物質の蒸発量及びイオン照射は、イオン源4の
電流密度に対し良好な密着力が得られるような輸送比
(単位時間、単位面積当りに基体表面に到達する蒸着物
質原子の数Mとイオンの数Nの比M/N)を示すように
制御部51にて調整する。なお、イオン照射時のイオン
種やエネルギー、輸送比、混合層厚は蒸着する物質や基
体の種類によって異なるが、イオンエネルギーは500
eV〜20KeV程度、輸送比(M/N)は約10〜1
000程度、混合層厚100〜3000Å程度が好まし
い。この工程により基体上には密着性を高める混合層が
形成される。なお、輸送比(M/N)が10より小さい
と(換言すればイオン照射の割合が大きいと)、基体の
ダメージが大きくなり、密着力が低下するし、1000
より大きいと(換言すればイオン照射の割合が小さい
と)十分な混合層が形成されない。Thus, the target substance is vacuum-deposited on the continuously moving surface of the substrate T, and at the same time, the target substance is irradiated with ions to continuously form a mixed layer of the atoms constituting the substrate material and the atoms constituting the target substance on the surface of the substrate. To form. In the formation of this mixed layer, the evaporation amount of the target substance and the ion irradiation are such that the transport ratio (the vapor deposition reaching the surface of the substrate per unit time and unit area) is such that good adhesion can be obtained with respect to the current density of the ion source 4. The control unit 51 adjusts so as to show the ratio M / N of the number M of substance atoms and the number N of ions. Although the ion species and energy during ion irradiation, the transport ratio, and the mixed layer thickness differ depending on the material to be deposited and the type of substrate, the ion energy is 500.
eV to 20 KeV, transport ratio (M / N) is about 10 to 1
000, and a mixed layer thickness of 100 to 3000Å is preferable. By this step, a mixed layer that enhances adhesion is formed on the substrate. If the transport ratio (M / N) is smaller than 10 (in other words, if the ratio of ion irradiation is large), the damage to the substrate becomes large, and the adhesion is lowered.
If it is larger (in other words, if the proportion of ion irradiation is smaller), a sufficient mixed layer cannot be formed.
【0026】このようにして基体Tの所定部分に一通り
混合層が形成されると、次は、リール3側の継手装置3
1を脱離させ、リール2側の継手装置21を係合させ、
モータ22の運転により基体Tをリール3からリール2
へ巻き戻し、これにより、基体Tを混合層形成工程時と
は反対方向に連続的に移動させる。また、この反対方向
の移動とともに、イオン源4を停止する一方、蒸発源5
を制御部51からの指示により、前記混合層上に所定厚
さの真空蒸着膜を形成させる蒸発量で運転する。When the mixed layer is formed on the predetermined portion of the base T in this way, the joint device 3 on the reel 3 side is next.
1 is disengaged, the coupling device 21 on the reel 2 side is engaged,
The base T is moved from the reel 3 to the reel 2 by the operation of the motor 22.
The substrate T is continuously rewound in the direction opposite to that in the mixed layer forming step. Further, with the movement in the opposite direction, the ion source 4 is stopped while the evaporation source 5
In accordance with an instruction from the control unit 51, the operation is performed with an evaporation amount for forming a vacuum deposition film having a predetermined thickness on the mixed layer.
【0027】かくして、最初の工程で形成された混合層
上に所定厚さの真空蒸着膜を連続的に形成し、成膜を終
了する。かくして基体T上に得られた膜は、基体T材料
との界面に密着性の良い混合層が形成されているので、
全体として、基体Tに対し密着性が良い。また、この密
着性良好な膜は、前述のように1台のイオン源と1台の
蒸発源により簡単、安価に得られている。Thus, a vacuum-deposited film having a predetermined thickness is continuously formed on the mixed layer formed in the first step, and the film formation is completed. The film thus obtained on the substrate T has a mixed layer with good adhesion formed at the interface with the material of the substrate T.
As a whole, the adhesion to the substrate T is good. Further, this film having good adhesion is obtained easily and inexpensively by using one ion source and one evaporation source as described above.
【0028】また、基体Tは前記両工程のいずれにおい
ても連続的に送られるので、膜の生産性も良好である。
次に、前記装置による成膜の具体例を説明する。 基体T:ストリップ状のステンレス鋼板 送り速度:両工程とも6m/min 蒸発源5による蒸着物質:アルミニウム 成膜真空度:5.0×10-5Torr 混合層形成時の蒸発源5による成膜速度:500Å/s
ec 混合層上への蒸発源5による成膜速度:2000Å/s
ec イオン源4:イオン種 アルゴンイオン エネルギー 2KeV ビーム電流密度 0.8mA/cm2 。Further, since the substrate T is continuously fed in both of the above steps, the productivity of the film is good.
Next, a specific example of film formation by the apparatus will be described. Substrate T: Strip-shaped stainless steel plate Feed rate: 6 m / min in both steps Vapor deposition material by evaporation source 5: Aluminum Deposition degree of vacuum: 5.0 × 10 −5 Torr Deposition rate by evaporation source 5 during mixed layer formation : 500Å / s
ec Deposition rate on the mixed layer by the evaporation source 5: 2000Å / s
ec Ion source 4: Ion species Argon ions Energy 2 KeV Beam current density 0.8 mA / cm 2 .
【0029】基体表面での面イオンビームサイズ 基体
送り方向に150mm、それと直角な方向に700mm。 混合層形成時の輸送比M/N:Al/Arイオン=60 かくして、ステンレス鋼板上に混合層厚が約1000
Å、Al膜厚が約1μmの密着性の良いAl膜が形成さ
れた。Plane ion beam size on the substrate surface: 150 mm in the substrate feed direction and 700 mm in the direction perpendicular thereto. Transport ratio when forming mixed layer M / N: Al / Ar ions = 60 Thus, the mixed layer thickness is about 1000 on the stainless steel plate.
Å, Al film with good adhesion with Al film thickness of about 1 μm was formed.
【0030】このAl膜の密着力をテストするため、比
較例としてイオン照射による混合層形成を行わず、他の
条件は前記具体例と同様にしてAl膜を形成したステン
レス鋼板を準備し、両者を150℃の温度に曝し、所定
時間経過ごとにJISC−5016に準じてAl膜の引
きはがし強さテストを行ったところ、図2の結果を得
た。図2のグラフにおいて○印ラインは具体例によるA
l膜について、□印ラインは比較例について示してい
る。In order to test the adhesion of this Al film, as a comparative example, a mixed layer was not formed by ion irradiation, and a stainless steel plate on which an Al film was formed was prepared in the same manner as in the above specific example under other conditions. Was exposed to a temperature of 150 ° C., and a peeling strength test of the Al film was carried out according to JISC-5016 every predetermined time, and the results shown in FIG. 2 were obtained. In the graph of FIG. 2, the circled line is A according to a specific example.
For the l film, the □ line indicates the comparative example.
【0031】このテスト結果から分かるように、イオン
照射を併用して混合層を形成しなかった比較例では、時
間の経過とともにAl膜の密着力は著しく低下するが、
イオン照射を併用して混合層を形成した本発明に係るA
l膜は、時間が経過しても安定した密着力を維持してい
る。なお、本発明は前記実施例に限定されるものではな
く、他にも種々の態様で実施できる。例えば、リール
2、3は真空容器1内に設置し、補助真空室11〜14
を省略してもよい。As can be seen from the test results, in the comparative example in which the mixed layer was not formed by using the ion irradiation, the adhesion of the Al film was significantly decreased with the passage of time.
A according to the present invention in which a mixed layer is formed by using ion irradiation together
The l film maintains a stable adhesive force over time. It should be noted that the present invention is not limited to the above-mentioned embodiment, and can be carried out in various other modes. For example, the reels 2 and 3 are installed in the vacuum container 1, and the auxiliary vacuum chambers 11 to 14 are
May be omitted.
【0032】また、イオン源4からのイオン照射の一部
を混合層形成前の前処理イオン照射に利用してもよい。
この場合は、イオン照射の一部を蒸発粒子の到達しない
前領域に向ければよい。Further, a part of the ion irradiation from the ion source 4 may be used for pretreatment ion irradiation before forming the mixed layer.
In this case, a part of the ion irradiation may be directed to the front area where vaporized particles do not reach.
【0033】[0033]
【発明の効果】以上説明したように本発明によると、従
来に比べ簡単、安価に、また、著しく生産性を低下させ
ることなく、基体上に連続的に密着性良好な膜を形成で
きる成膜方法及び成膜装置を提供することができる。As described above, according to the present invention, it is possible to form a film having good adhesion continuously on a substrate in a simpler and cheaper method than before, and without significantly lowering productivity. A method and a film forming apparatus can be provided.
【図1】本発明方法の実施に用いる成膜装置の一例の概
略構成図である。FIG. 1 is a schematic configuration diagram of an example of a film forming apparatus used for carrying out a method of the present invention.
【図2】ステンレス鋼板上のAl膜の引きはがし強さテ
スト結果を示すグラフである。FIG. 2 is a graph showing a peel strength test result of an Al film on a stainless steel plate.
【図3】従来例の説明図である。FIG. 3 is an explanatory diagram of a conventional example.
【符号の説明】 1 真空容器 11、12、13、14 補助真空室 11a、12a、13a、14a、1a、1b 基体通
孔 2、3 リール 21、31 継手装置 22、32 リール駆動モータ 4 イオン源 5 蒸発源 51 制御部 6 膜厚モニター 7 ビームモニター T 基体[Description of Reference Signs] 1 vacuum container 11, 12, 13, 14 auxiliary vacuum chamber 11a, 12a, 13a, 14a, 1a, 1b substrate through hole 2, 3 reel 21, 31 coupling device 22, 32 reel drive motor 4 ion source 5 evaporation source 51 control unit 6 film thickness monitor 7 beam monitor T substrate
Claims (2)
動させつつ該基体表面に蒸発源から所定物質を真空蒸着
させるとともにイオン源からイオンを照射して該基体表
面に基体材料原子と蒸着物質原子との混合層を形成する
工程と、前記工程により基体表面の所定部分に一通り混
合層を形成したのち、前記基体を前記一定方向と同方向
又は反対方向に連続的に移動させつつ前記形成された混
合層上に前記蒸発源にて所定厚さの膜を真空蒸着形成す
る工程とを含むことを特徴とする成膜方法。1. A substrate on which a film is to be formed is continuously moved in a certain direction, a predetermined substance is vacuum-deposited from an evaporation source on the surface of the substrate, and ions are irradiated from an ion source to form substrate material atoms on the surface of the substrate. A step of forming a mixed layer with vapor deposition substance atoms, and a step of forming a mixed layer through a predetermined portion of the surface of the substrate by the above step, and continuously moving the substrate in the same direction or in the opposite direction. Forming a film of a predetermined thickness on the formed mixed layer with the evaporation source by vacuum vapor deposition.
めの手段と、移動する該基体の表面に所定物質の真空蒸
着を行うための一台の蒸発源と、移動する該基体の表面
に向けイオンを照射するための一台のイオン源とを備
え、前記基体の連続移動手段は、前記蒸発源とイオン源
による基体材料原子と蒸着物質原子との混合層形成工程
において該基体を一定の方向に移動させ、該混合層上に
前記蒸発源にて所定厚さの真空蒸着膜を形成する工程に
おいて該基体を前記混合層形成時における基体移動方向
と同一又は反対方向に移動させるものであることを特徴
とする成膜装置。2. A means for continuously moving a substrate to be formed a film, one evaporation source for performing vacuum deposition of a predetermined substance on the surface of the moving substrate, and a surface of the moving substrate. And a single ion source for irradiating ions toward the target, and the means for continuously moving the substrate keeps the substrate constant in a step of forming a mixed layer of substrate material atoms and vapor deposition substance atoms by the evaporation source and the ion source. In the step of forming a vacuum-deposited film having a predetermined thickness on the mixed layer by the evaporation source, the substrate is moved in the same direction or in the opposite direction to the moving direction of the substrate when the mixed layer is formed. A film forming apparatus characterized by the above.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12856792A JPH05320906A (en) | 1992-05-21 | 1992-05-21 | Film forming method and device therefor |
DE1992615077 DE69215077T2 (en) | 1992-05-21 | 1992-07-15 | Method and device for producing thin layers |
EP19920112053 EP0570618B1 (en) | 1992-05-21 | 1992-07-15 | Film forming method and apparatus |
US08/384,597 US6294479B1 (en) | 1992-05-21 | 1995-02-03 | Film forming method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12856792A JPH05320906A (en) | 1992-05-21 | 1992-05-21 | Film forming method and device therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05320906A true JPH05320906A (en) | 1993-12-07 |
Family
ID=14987953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12856792A Withdrawn JPH05320906A (en) | 1992-05-21 | 1992-05-21 | Film forming method and device therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05320906A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100834114B1 (en) * | 2007-03-15 | 2008-06-02 | 재단법인서울대학교산학협력재단 | Ibad system for fabricating metal wire article having biaxial-alignment property |
KR100834115B1 (en) * | 2007-03-12 | 2008-06-02 | 재단법인서울대학교산학협력재단 | Ibad system for fabricating metal wire article having biaxial-alignment property |
JP2011525292A (en) * | 2008-06-20 | 2011-09-15 | サクティ3 インコーポレイテッド | Mass production of electrochemical cells using physical vapor deposition |
US9065080B2 (en) | 2011-04-01 | 2015-06-23 | Sakti3, Inc. | Electric vehicle propulsion system and method utilizing solid-state rechargeable electrochemical cells |
US9127344B2 (en) | 2011-11-08 | 2015-09-08 | Sakti3, Inc. | Thermal evaporation process for manufacture of solid state battery devices |
US9627717B1 (en) | 2012-10-16 | 2017-04-18 | Sakti3, Inc. | Embedded solid-state battery |
US9627709B2 (en) | 2014-10-15 | 2017-04-18 | Sakti3, Inc. | Amorphous cathode material for battery device |
US9666895B2 (en) | 2008-06-20 | 2017-05-30 | Sakti3, Inc. | Computational method for design and manufacture of electrochemical systems |
US9929440B2 (en) | 2011-04-01 | 2018-03-27 | Sakti3, Inc. | Electric vehicle propulsion system and method utilizing solid-state rechargeable electrochemical cells |
CN115161600A (en) * | 2022-07-14 | 2022-10-11 | 扬州纳力新材料科技有限公司 | Aluminum composite current collector, preparation method thereof, positive plate, battery and power utilization device |
-
1992
- 1992-05-21 JP JP12856792A patent/JPH05320906A/en not_active Withdrawn
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100834115B1 (en) * | 2007-03-12 | 2008-06-02 | 재단법인서울대학교산학협력재단 | Ibad system for fabricating metal wire article having biaxial-alignment property |
KR100834114B1 (en) * | 2007-03-15 | 2008-06-02 | 재단법인서울대학교산학협력재단 | Ibad system for fabricating metal wire article having biaxial-alignment property |
US9303315B2 (en) | 2008-06-20 | 2016-04-05 | Sakti3, Inc. | Method for high volume manufacture of electrochemical cells using physical vapor deposition |
JP2011525292A (en) * | 2008-06-20 | 2011-09-15 | サクティ3 インコーポレイテッド | Mass production of electrochemical cells using physical vapor deposition |
JP2014224322A (en) * | 2008-06-20 | 2014-12-04 | サクティ3 インコーポレイテッド | Mass production of electrochemical cell using physical gas-phase growth method |
US9666895B2 (en) | 2008-06-20 | 2017-05-30 | Sakti3, Inc. | Computational method for design and manufacture of electrochemical systems |
US9249502B2 (en) | 2008-06-20 | 2016-02-02 | Sakti3, Inc. | Method for high volume manufacture of electrochemical cells using physical vapor deposition |
US9065080B2 (en) | 2011-04-01 | 2015-06-23 | Sakti3, Inc. | Electric vehicle propulsion system and method utilizing solid-state rechargeable electrochemical cells |
US9350055B2 (en) | 2011-04-01 | 2016-05-24 | Sakti3, Inc. | Electric vehicle propulsion system and method utilizing solid-state rechargeable electrochemical cells |
US9929440B2 (en) | 2011-04-01 | 2018-03-27 | Sakti3, Inc. | Electric vehicle propulsion system and method utilizing solid-state rechargeable electrochemical cells |
US9631269B2 (en) | 2011-11-08 | 2017-04-25 | Sakti3, Inc. | Thermal evaporation process for manufacture of solid state battery devices |
US9127344B2 (en) | 2011-11-08 | 2015-09-08 | Sakti3, Inc. | Thermal evaporation process for manufacture of solid state battery devices |
US11078565B2 (en) | 2011-11-08 | 2021-08-03 | Sakti3, Inc. | Thermal evaporation process for manufacture of solid state battery devices |
US9627717B1 (en) | 2012-10-16 | 2017-04-18 | Sakti3, Inc. | Embedded solid-state battery |
US10497984B2 (en) | 2012-10-16 | 2019-12-03 | Sakti3, Inc. | Embedded solid-state battery |
US9627709B2 (en) | 2014-10-15 | 2017-04-18 | Sakti3, Inc. | Amorphous cathode material for battery device |
US10593985B2 (en) | 2014-10-15 | 2020-03-17 | Sakti3, Inc. | Amorphous cathode material for battery device |
CN115161600A (en) * | 2022-07-14 | 2022-10-11 | 扬州纳力新材料科技有限公司 | Aluminum composite current collector, preparation method thereof, positive plate, battery and power utilization device |
CN115161600B (en) * | 2022-07-14 | 2023-07-28 | 扬州纳力新材料科技有限公司 | Aluminum composite current collector, preparation method thereof, positive plate, battery and electricity utilization device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6294479B1 (en) | Film forming method and apparatus | |
US5065697A (en) | Laser sputtering apparatus | |
KR100279344B1 (en) | Thin film forming apparatus for filling the micropores of the substrate | |
EP0551117A2 (en) | Large scale integrated circuit device and thin film forming method and apparatus for the same | |
JPH05320906A (en) | Film forming method and device therefor | |
US6337005B2 (en) | Depositing device employing a depositing zone and reaction zone | |
US8168049B2 (en) | Sputtering apparatus and method of manufacturing solar battery and image display device by using the same | |
US5013416A (en) | Process for manufacturing transparent, conductive film | |
US9732419B2 (en) | Apparatus for forming gas blocking layer and method thereof | |
EP0570618B1 (en) | Film forming method and apparatus | |
US5741405A (en) | Spotter-deposit method and apparatus | |
JP4430165B2 (en) | Vacuum thin film forming apparatus and vacuum thin film forming method | |
JPH0665724A (en) | Device for inline plasma vapor deposition | |
JPS63307268A (en) | Bias sputtering method and its device | |
JPH05320907A (en) | Film forming method and device therefor | |
JP3765990B2 (en) | Conductor forming method and apparatus | |
JP3399570B2 (en) | Continuous vacuum deposition equipment | |
JPH09202965A (en) | Electron beam vapor deposition apparatus | |
JP4364423B2 (en) | Deposition equipment | |
EP0564693B1 (en) | Method of manufacturing a film carrier type substrate | |
US5672255A (en) | Sputtering device | |
JPH10324966A (en) | Vacuum vapor deposition apparatus and vacuum vapor deposition method | |
JPS63255366A (en) | Method for coating conductive film on insulating substrate | |
JPS6320447A (en) | Method and apparatus for continuous coating of metallic strip with ceramics | |
JP2878299B2 (en) | Ion plating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990803 |