JPH05319855A - Fluoride glass for blue light emission - Google Patents

Fluoride glass for blue light emission

Info

Publication number
JPH05319855A
JPH05319855A JP16818992A JP16818992A JPH05319855A JP H05319855 A JPH05319855 A JP H05319855A JP 16818992 A JP16818992 A JP 16818992A JP 16818992 A JP16818992 A JP 16818992A JP H05319855 A JPH05319855 A JP H05319855A
Authority
JP
Japan
Prior art keywords
glass
blue light
fluoride
fluoride glass
light emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16818992A
Other languages
Japanese (ja)
Inventor
Tetsuo Izumitani
徹郎 泉谷
Nami Hou
波 彭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP16818992A priority Critical patent/JPH05319855A/en
Publication of JPH05319855A publication Critical patent/JPH05319855A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PURPOSE:To increase electron density and to enhance blue light emission intensi ty by coactivating fluoride glass with Tm<3+> as a light emission center and Yb<3+> as a sensitizer. CONSTITUTION:Starting material for fluoride glass consisting of Al$3, ZrF4, YF3, CaF2, MgF2, SrF2, BaF2 and NaF is prepd., TmF3 and YbF3 are added to the starting material and they are melted by heating and rapidly cooled. The resulting glass is heated to the glass transition temp. and slowly cooled to obtain fluoride glass for emission of blue light excited by laser dioxide light having 0.97mum wavelength. This glass is fluoride glass coactivated with 0.01-0.1 cationic % Tm<3+> as a light emission center and 11-20 cationic % Yb<3+> as a sensitizer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は青色発光用フッ化物ガラ
スに係り、特に光励起レーザやディスプレイに好適な
0.97μmレーザダイオード励起青色発光用フッ化物
ガラスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blue light emitting fluoride glass, and more particularly to a 0.97 .mu.m laser diode excited blue light emitting fluoride glass suitable for photoexcitation lasers and displays.

【0002】[0002]

【従来の技術】近年、レーザ技術の向上に伴って小型軽
量であり量産性にすぐれたレーザダイオード(LD)や
LD励起固体レーザが開発されている。これらは、光通
信用光源の他に民生用機器に広く利用されている。たと
えば、レーザプリンタ、光ディスクやPOSの光源であ
る。これら機器の光センサの感度は短波長になる程急速
に向上するので、レーザの短波長化が望まれている。
2. Description of the Related Art In recent years, laser diodes (LDs) and LD-pumped solid-state lasers have been developed which are compact and lightweight and have excellent mass productivity with the improvement of laser technology. These are widely used in consumer devices in addition to light sources for optical communication. For example, a laser printer, an optical disk, or a POS light source. Since the sensitivity of the optical sensor of these devices improves rapidly as the wavelength becomes shorter, it is desired to shorten the wavelength of the laser.

【0003】しかし、LDは材料的制約から赤色より短
波長側の光を得ることは困難である。ごく最近青色LD
が研究段階で発表されたが発光効率は著しく低く、実用
化はまだ遠い。一方、LD励起固体レーザにおいても、
未だ直接励起で青色発光が得られていない。
However, it is difficult for an LD to obtain light on the shorter wavelength side than red, due to material restrictions. Most recently blue LD
Was announced at the research stage, but its luminous efficiency is extremely low, and its practical application is still far away. On the other hand, in the LD pumped solid state laser,
Blue light emission has not been obtained yet by direct excitation.

【0004】小型軽量長寿命の全固体青色発光レーザが
得られるならば、従来開発されている赤色、緑色レーザ
と共に三原色コンパクトレーザが揃うことになり、投射
型ディスプレイなどにも利用できる。
If a compact, lightweight and long-life all-solid-state blue light-emitting laser can be obtained, compact lasers of the three primary colors will be available along with the conventionally developed red and green lasers, which can be used for projection type displays.

【0005】青色レーザは、ガスレーザで高出力のもの
が得られている他、非線形光学材料を利用してLDの第
二次高調波成分(SHG)を発生させる周波数逓倍法が
実用化されている。
As a blue laser, a high output laser is obtained as a gas laser, and a frequency multiplication method for generating a second harmonic component (SHG) of an LD using a nonlinear optical material has been put into practical use. ..

【0006】しかし、ガスレーザは大型でかつ寿命が短
く、一方、SHG材料とLDの組合せは、LD輻射の可
干渉性が悪いため、いずれも青色レーザとして完全性の
高いものとは言えない。
However, since the gas laser is large and has a short life, on the other hand, the combination of the SHG material and the LD has a poor coherence of LD radiation, so that it cannot be said that the blue laser has high integrity.

【0007】そこで、コンパクトな全固体青色レーザの
開発をLD励起ガラスレーザで行なうおうとする試みが
ある。
Therefore, there is an attempt to develop a compact all-solid-state blue laser with an LD-excited glass laser.

【0008】たとえば、Tm3+付活石英ガラスを、1.
06μm LDで励起して青色発光を得た報告(Han
na et al, Optics Commun,1
8(2),(1990)189)や、0.65μm L
Dで励起して青色発光を得た報告(田部ら、第3回オプ
トエレクトロニクス用ガラス講演会予稿集(1992)
14)などがある。
For example, Tm 3+ activated quartz glass is
Reported that blue emission was obtained by excitation with 06 μm LD (Han
na et al, Optics Commun, 1
8 (2), (1990) 189) and 0.65 μm L
Report on blue emission when excited by D (Tabe et al., Proceedings of 3rd glass lecture for optoelectronics (1992)
14) etc.

【0009】これらは、Tm3+の励起光多段階吸収によ
る上方遷移を利用して、基底準位 36 から 14 準位
まで励起し、輻射緩和によって放出される青色光を得る
ものである。
[0009] These are obtained by exciting up from the ground level 3 H 6 to the 1 G 4 level by utilizing the up-transition of Tm 3+ by the excitation light multi-step absorption and obtaining blue light emitted by radiation relaxation. Is.

【0010】この他に、HannaらはTm3+、Yb3+
共付活石英ガラスファイバを0.97μm LDで励起
して0.47μmの青色発光を得ている。これは、0.
97μm光をまずYb3+増感剤に吸収させて、そこから
Tm3+へエネルギーを共鳴吸収させる方法を利用したも
のである。
In addition to this, Hanna et al. Tm 3+ , Yb 3+
The co-activated silica glass fiber was excited by a 0.97 μm LD to obtain a blue emission of 0.47 μm. This is 0.
This is a method in which 97 μm light is first absorbed by the Yb 3+ sensitizer, and the energy is resonantly absorbed from there to Tm 3+ .

【0011】[0011]

【発明が解決しようとする課題】従来報告されてる青色
発光ガラスは、上記したようにTm3+ 14 から 3
6 (基底準位)への遷移を利用したものである。しか
し、Tm3+を単独付活した場合は、LD励起では多段階
光吸収遷移が必要なため、 14 準位の励起密度が低
く、青色発光強度は非常に低い。
The blue light-emitting glass that has been reported so far has been reported to have the above-mentioned Tm 3+ of 1 G 4 to 3 H.
It uses the transition to 6 (ground level). However, when Tm 3+ is solely activated, multistage photoabsorption transition is required for LD excitation, so that the excitation density of the 1 G 4 level is low and the blue emission intensity is very low.

【0012】一方HannaらのTm3+、Yb3+共付活
石英ファイバにおいては、Tm3+の濃度[Tm3+]が
0.15wt%、Yb3+の濃度[Yb3+]が1.5wt
%であり、増感剤Yb3+の濃度が[Tm3+]に比べて充
分高くないため、やはり 14準位に励起される密度が
あまり多くなく、弱い青色発光しか得られない。
Meanwhile Hanna et al Tm 3+, in the active silica fibers with Yb 3+ both concentrations of Tm 3+ [Tm 3+] is 0.15 wt%, the concentration of Yb 3+ [Yb 3+] is 1 .5 wt
%, And the concentration of the sensitizer Yb 3+ is not sufficiently higher than that of [Tm 3+ ], so that the density excited by the 1 G 4 level is not so high and only weak blue light emission is obtained.

【0013】上記した従来報告例程度の弱い輻射しか得
られない場合は、内部損失に打ち勝って光増幅を行なう
ことが困難であり、青色レーザは期待できない。
When only the radiation as weak as the above-mentioned conventional example can be obtained, it is difficult to overcome the internal loss and perform optical amplification, and a blue laser cannot be expected.

【0014】本発明の目的は、レーザ発振可能な強い青
色発光を得ることが出来るTm3+、Yb3+共付活LD励
起青色発光ガラスを提供することである。
An object of the present invention is to provide a Tm 3+ , Yb 3+ co-activated LD-excited blue light-emitting glass capable of obtaining strong blue light emission capable of laser oscillation.

【0015】[0015]

【課題を解決するための手段】本発明者らの研究によれ
ば、Tm3+、Yb3+共付活ガラスをLD励起して、アン
チストークス型の青色発光を、レーザ発振可能な程度に
迄強めるには、発光中心および増感剤の濃度最適化と母
体のガラス材料選定がきわめて重要であることがわかっ
た。
According to the research conducted by the present inventors, LD excitation of Tm 3+ , Yb 3+ co-activated glass was performed, and anti-Stokes type blue light emission was made to the extent that laser oscillation was possible. It was found that optimizing the concentrations of the luminescent center and the sensitizer and selecting the glass material of the matrix are extremely important for strengthening.

【0016】本発明の青色発光ガラスにおいては、母体
ガラスとしてフッ化物ガラスを用いる。ここにフッ化物
ガラスとは、フッ素を網目構造の構成要素(ネットワー
クフォーマー)として含むフッ化物ガラスの総称であ
る。好ましいフッ化物ガラスには、フツアルミノジルコ
ン酸塩ガラス(特開昭62−275039号公報、特開
平17433号公報)、フツリン酸塩ガラス(特公昭5
4−6047号公報、特公昭58−14379号公報、
特公昭61−14093号公報)、フツアルミノハフニ
ウム酸塩ガラス(特開昭62−275039号公報)お
よびZBLANガラス(Zr、Ba、La、Al、Na
のフッ化物を主成分とするガラスをいう。以下同様)な
どがある。
In the blue light emitting glass of the present invention, fluoride glass is used as the base glass. Fluoride glass is a generic term for fluoride glass containing fluorine as a constituent element (network former) of a network structure. Preferred fluoride glasses include fluoroalumino zirconate glass (Japanese Patent Laid-Open No. 62-275039 and Japanese Patent Laid-Open No. 17433), and fluorophosphate glass (Japanese Patent Publication No.
4-6047, Japanese Patent Publication No. 58-14379,
Japanese Patent Publication No. 61-14093), Fluoralumino hafnate glass (Japanese Patent Laid-Open No. 62-275039) and ZBLAN glass (Zr, Ba, La, Al, Na).
A glass whose main component is fluoride. The same applies below).

【0017】本発明の青色発光用ガラスは、上記母体ガ
ラスに発光中心のTm3+と増感剤のYb3+を共付活した
ものであり、0.97μm LDで励起する。トーピン
グ濃度は、発光中心Tm3+が0.01〜0.1cat
%、増感剤Yb3+が11〜20cat%であるのが好ま
しい。
The glass for blue light emission of the present invention is obtained by co-activating Tm 3+, which is the emission center, and Yb 3+, which is the sensitizer, on the above-mentioned base glass, and is excited by 0.97 μm LD. The taping concentration is 0.01 to 0.1 cat for the emission center Tm 3+.
%, And the sensitizer Yb 3+ is preferably 11 to 20 cat%.

【0018】[Tm3+]が上記範囲外および[Yb3+
<11cat%の濃度領域では、発光強度が著しく弱く
なり、また[Yb3+]>20cat%では母体ガラスが
失透するからである。
[Tm 3+ ] is outside the above range and [Yb 3+ ]
This is because the emission intensity becomes extremely weak in the concentration range of <11cat%, and the matrix glass devitrifies when [Yb 3 + ]> 20cat%.

【0019】[0019]

【作用】図3は、Tm3+、Yb3+共付活フッ化物ガラス
を0.97μm LDで励起した時青色発光が得られる
準位間遷移を説明するための図である。
FUNCTION FIG. 3 is a diagram for explaining the inter-level transition in which blue emission is obtained when Tm 3+ , Yb 3+ co-activated fluoride glass is excited by 0.97 μm LD.

【0020】上記したように本発明では、[Yb3+]が
[Tm3+]に比べて100〜1000倍高い。このため
に、0.97μm LDの励起光は、まずYb3+に吸収
されて基底準位 27/2 から励起準位 25/2 へ電子を
遷移するのに使われる。Yb3+ 25/2 準位のエネル
ギーは共鳴伝達によって最近接位置にあるTm3+ 3
5 準位へ遷移する。
As described above, in the present invention, [Yb 3+ ] is 100 to 1000 times higher than [Tm 3+ ]. For this reason, the 0.97 μm LD excitation light is first absorbed by Yb 3+ and used to transit electrons from the ground level 2 F 7/2 to the excitation level 2 F 5/2 . The energy of the 2 F 5/2 level of Yb 3+ is 3 H of Tm 3+ , which is in the closest position by resonance transfer.
Transition to 5 levels.

【0021】35 準位のエネルギーは、一旦 34
位へ熱的に緩和する。この遷移は非輻射であるが[Tm
3+]が非常に低いために 34 準位の蛍光寿命は18m
secと極めて長く、 34 準位から下方の準位への輻
射遷移確率は小さい。
The energy of the 3 H 5 level is temporarily relaxed to the 3 H 4 level. This transition is non-radiative, but [Tm
3+ ] is so low that the fluorescence lifetime of the 3 H 4 level is 18 m.
sec is extremely long, and the radiative transition probability from the 3 H 4 level to the lower level is small.

【0022】34 準位にある電子は、0.97μmレ
ーザ光を吸収して 33 準位へ励起される。この準位か
ら、一旦 34 準位へ熱的緩和を行なうが、 34 準位
の蛍光寿命も2msecと非常に長く、下方への輻射遷
移確率は小さい。
Electrons in the 3 H 4 level absorb the 0.97 μm laser beam and are excited to the 3 F 3 level. Thermal relaxation from this level to the 3 F 4 level is performed once, but the fluorescence lifetime of the 3 F 4 level is also very long, 2 msec, and the downward radiation transition probability is small.

【0023】したがって、 34 準位の電子は再び0.
97μmレーザ光を吸収して 14準位まで励起され
る。そして、 14 準位からTm3+ 36 基底準位へ
の輻射遷移によって0.475μmの青色光が得られ
る。
Therefore, the electrons of the 3 F 4 level are again reduced to 0.
It absorbs 97 μm laser light and is excited to the 1 G 4 level. Then, 0.475 μm blue light is obtained by the radiative transition from the 1 G 4 level to the 3 H 6 ground level of Tm 3+ .

【0024】なお、以上の説明では、Tm3+ 34
33 34 14 の両遷移を0.97μm LD
光吸収が原因とした。この他にも、Yb3+ 25/2
らの共鳴エネルギー伝達による機構も考えられる。図3
には、これも示してある。
In the above description, Tm 3+ 3 H 4
Both the 3 F 3 and 3 F 41 G 4 transitions are 0.97 μm LD
Caused by light absorption. In addition to this, a mechanism by transfer of resonance energy from 2 F 5/2 of Yb 3+ is also conceivable. Figure 3
This is also shown in.

【0025】一方、図4はTm3+ドープ各種ガラス(フ
ッ化ガラス、フツリン酸塩ガラス、ゲルマニウム酸化物
塩ガラス、ガリウム酸化物ガラス、アルミニウム酸化物
ガラス、ケイ素酸化物ガラス)を、0.68μm LD
で励起した時得られる0.79μm光( 34 36
の遷移に対応)の強度のTm3+濃度[Tm3+]依存性を
示すデータである。
On the other hand, FIG. 4 shows 0.68 μm of various Tm 3+ doped glasses (fluoride glass, fluorophosphate glass, germanium oxide salt glass, gallium oxide glass, aluminum oxide glass, silicon oxide glass). LD
0.79 μm light ( 3 F 43 H 6
(Corresponding to the transition of the above) and the intensity of Tm 3+ concentration [Tm 3+ ] dependence.

【0026】図4は、フッ化物ガラスが、もっとも強い
蛍光を放射することを示している。これは、フッ化物ガ
ラスにおいて、Tm3+ 34 準位の密度がもっとも高
くなることを意味している。
FIG. 4 shows that the fluoride glass emits the strongest fluorescence. This means that the fluoride glass has the highest density of Tm 3+ 3 F 4 level.

【0027】すなわち、フッ化物ガラスをTm3+の母体
に用いると、青色発光のための上方遷移の最終段階であ
34 14 の始準位密度がもっとも高くなる。 3
4の密度が高ければ、単位時間当り 14 に励起され
る電子密度も高くなるので、もっとも強い青色発光が得
られる。
That is, when fluoride glass is used as the host material of Tm 3+ , the highest level density of 3 F 41 G 4 , which is the final stage of the upward transition for blue emission, is highest. 3
If the density of F 4 is high, the electron density excited by 1 G 4 per unit time also becomes high, so that the strongest blue emission can be obtained.

【0028】以下、実施例に基づいて本発明をより詳し
く述べる。
Hereinafter, the present invention will be described in more detail based on examples.

【0029】[0029]

【実施例】図1は、フッ化物ガラスの一種であるフツア
ルミノジルコン酸塩(AZF)ガラスを母体として[Y
3+]を固定し[Tm3+]を変化させた時の0.97μ
mLD励起青色発光強度変化を示す。[Yb3+]はYb
3+の増感効果を最大限に引出すため、固溶限近傍の19
cat%ドープした。
EXAMPLE FIG. 1 shows a case where a fluoroalumino zirconate (AZF) glass, which is a kind of fluoride glass, is used as a base material [Y
b3 + ] is fixed and [Tm 3+ ] is changed, 0.97μ
The change in blue emission intensity of mLD excitation is shown. [Yb 3+ ] is Yb
In order to maximize the 3+ sensitizing effect, 19+ near the solid solubility limit
Cat% doped.

【0030】フッ化物粉末原料としてAlF3 を25.
1cat%、ZrF4 を12.8cat%、YF3 を1
1.1cat%、CaF2 を15.4cat%、MgF
2 を3.7cat%、SrF3 を13.6cat%、B
aF2 を12.6cat%、NaFを5.6cat%、
それぞれ秤量し混合して得た粉末に、YbF3 を19c
at%、TmF3 をxcat%(0.005%
0.3%)の割合で混合した。
AlF as a fluoride powder raw material325.
1cat%, ZrFFourTo 12.8cat%, YF31
1.1cat%, CaF215.4cat%, MgF
23.7cat%, SrF313.6cat%, B
aF2Of 12.6cat%, NaF of 5.6cat%,
YbF was added to the powder obtained by weighing and mixing.319c
at%, TmF3Xcat% (0.005%<x<
0.3%).

【0031】この粉末を白金ルツボ(内容積100c
c)に充填し、窒素気流中で950℃に45分間保持し
た。この工程よって上記原料ガラスは充分溶解する。そ
の後、窒素気流中で室温まで急冷した。
This powder was added to a platinum crucible (internal volume 100c).
It was filled in c) and kept at 950 ° C. for 45 minutes in a nitrogen stream. Through this step, the raw material glass is sufficiently melted. Then, it was rapidly cooled to room temperature in a nitrogen stream.

【0032】次に、得られたガラスをカーボンルツボに
入れ、ガラス転移点398℃に昇温し、20分間保持し
た後、10℃/hrの速度で室温付近まで徐冷すると、
Tm3+、Yb3+共付活AZFガラスが得られる。
Next, the obtained glass was put into a carbon crucible, heated to a glass transition point of 398 ° C., held for 20 minutes, and then slowly cooled to around room temperature at a rate of 10 ° C./hr,
Tm 3+ , Yb 3+ co-activated AZF glass is obtained.

【0033】AZFガラスの励起は、出力50mWの
0.97μm発光GaAlAs LDで行ない、AZF
ガラスからの0.475μm蛍光強度は、分光後R22
28ホトマルを通して測定した。
Excitation of AZF glass was performed with a 0.97 μm emission GaAlAs LD with an output of 50 mW.
The 0.475 μm fluorescence intensity from the glass is R22 after spectroscopy.
It was measured through 28 Photomaru.

【0034】図1のデータは[Tm3+]が0.06ca
t%(0.1wt%)の時0.475μm青色光の強度
がもっとも強くなることを示している。蛍光強度はx<
0.03cat%の領域で急激に低下し、x<0.01
cat%では実用に耐えない。また、x>0.06ca
t%の領域でも、蛍光強度の低下がみられる。これは
[Tm3+]の増加につれて、Tm3+ 34 準位からY
3+ 25/2 準位へのエネルギー逆伝達が増加するた
めと考えられる。前記したように、Tm3+ 34 準位
の密度はフッ化物ガラス母体においてもっとも高いから
である。
[Tm 3+ ] of the data in FIG. 1 is 0.06 ca.
It shows that the intensity of 0.475 μm blue light becomes the strongest at t% (0.1 wt%). Fluorescence intensity is x <
In the area of 0.03cat%, it sharply decreases and x <0.01
Cat% is not practical. Also, x> 0.06ca
A decrease in fluorescence intensity is also seen in the t% region. This is because Y increases from the 3 F 4 level of Tm 3+ as [Tm 3+ ] increases.
It is considered that this is because the reverse energy transfer of b 3+ to the 2 F 5/2 level is increased. This is because, as described above, the density of the 3 F 4 level of Tm 3+ is highest in the fluoride glass matrix.

【0035】したがって、実用性を考慮すると、[Tm
3+]は0.01〜0.1cat%の範囲が好ましい。
Therefore, considering practicality, [Tm
3+ ] is preferably in the range of 0.01 to 0.1 cat%.

【0036】次に、[Tm3+]をもっとも青色光強度の
高い0.06cat%に固定し、[Yb3+]をパラメー
タとして青色光強度の変化を調べた。
Next, [Tm 3+ ] was fixed at 0.06 cat%, which has the highest blue light intensity, and the change in blue light intensity was investigated using [Yb 3+ ] as a parameter.

【0037】母体ガラスは、上記実施例に同じAZFガ
ラスを用い、上記と同じ製造工程でTm3+、Yb3+共付
活フッ化物ガラスを得た。
As the base glass, the same AZF glass as in the above example was used, and Tm 3+ , Yb 3+ co-activated fluoride glass was obtained by the same manufacturing process as above.

【0038】[Yb3+]は10〜20cat%の範囲で
変化させた。その結果を、図2に示す。
[Yb 3+ ] was changed within the range of 10 to 20 cat%. The result is shown in FIG.

【0039】0.49μmの青色光強度は、[Yb3+
の増大について実験範囲では単調に増大する。しかし、
[Yb3+]<11cat%の領域では発光強度が急激に
弱くなり、また[Yb3+]>20cat%ではガラス表
面に失透を生ずる。
The blue light intensity of 0.49 μm is [Yb 3+ ]
In the experimental range, it increases monotonically. But,
In the region of [Yb 3+ ] <11cat%, the emission intensity is sharply weakened, and when [Yb 3 + ]> 20cat%, devitrification occurs on the glass surface.

【0040】したがって、好ましい[Yb3+]は11〜
20cat%の範囲である。
Therefore, preferred [Yb 3+ ] is 11 to
It is in the range of 20 cat%.

【0041】以上の実施例では、フッ化物ガラス母体を
AZFガラスとした。しかし、本発明者らが検討した結
果、他のフッ化物ガラス、例えばフツアルミノハフニウ
ム酸塩ガラスやZBLANガラスにおいても同様の結果
が得られた。すなわち、増感剤Yb3+を共付活したTm
3+の0.97μm励起、0.475μm青色発光は、フ
ッ素を網目構造の構成元素として含有する全てのフッ化
物ガラスにおいて増強されるのである。
In the above examples, the fluoride glass matrix was AZF glass. However, as a result of the examination by the present inventors, similar results were obtained with other fluoride glasses such as fluoralumino hafnate glass and ZBLAN glass. That is, Tm co-activated with sensitizer Yb 3+
The 3+ 0.97 μm excitation and 0.475 μm blue emission are enhanced in all fluoride glasses containing fluorine as a constituent element of the network structure.

【0042】0.475μm青色発光強度は、従来報告
されていた青色発光ガラスから得られる蛍光強度に比べ
て桁違いに大きなものである。
The blue emission intensity of 0.475 μm is orders of magnitude higher than the fluorescence intensity obtained from the blue emission glass which has been conventionally reported.

【0043】以上実施例によって本発明を説明したが、
本発明はこれにとどまるものではない。たとえばフッ化
物ガラスの組成や製造方法などにおいて、様々な改良、
変更、組合せなどが可能なことは、当業者には明らかで
ある。
The present invention has been described above with reference to the embodiments.
The present invention is not limited to this. For example, various improvements in the composition and manufacturing method of fluoride glass,
It will be apparent to those skilled in the art that changes, combinations and the like are possible.

【0044】[0044]

【発明の効果】以上説明したように、本発明によれば、
従来例をはるかに上回る強度の青色発光を示すガラスが
得られる。その蛍光強度はレーザ発振可能な大きさであ
り、このため現在実用されている非線形光学効果材料と
LDの組合せに伍して、青色発光ガラスレーザを実用化
させることが出来る。
As described above, according to the present invention,
It is possible to obtain a glass that emits blue light having an intensity far exceeding that of the conventional example. The fluorescence intensity is large enough to cause laser oscillation. Therefore, a blue light-emitting glass laser can be put to practical use by combining the currently used nonlinear optical effect material and LD.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の0.97μm LD励起0.475μ
m青色発光ガラスにおいて、蛍光強度と[Tm3+]の関
係を示すデータ。
FIG. 1 is a 0.97 μm LD excitation 0.475 μ of the embodiment.
Data showing the relationship between fluorescence intensity and [Tm 3+ ] in m blue light-emitting glass.

【図2】実施例の0.97μm LD励起0.475μ
m青色発光ガラスにおいて、蛍光強度と[Yb3+]の関
係を示すデータ。
FIG. 2 shows 0.97 μm LD excitation 0.475μ of the example.
m Data showing the relationship between fluorescence intensity and [Yb 3+ ] in blue light-emitting glass.

【図3】Tm3+、Yb3+共付活フッ化物ガラスの励起と
遷移プロセスの説明図。
FIG. 3 is an explanatory diagram of excitation and transition processes of Tm 3+ , Yb 3+ co-activated fluoride glass.

【図4】Tm3+ドープ各種ガラスの 34 36 遷移
発光強度の[Tm3+]依存性を示す図。
Shows the [Tm 3+] dependent 3 F 43 H 6 transition emission intensity of FIG. 4 Tm 3+ doped various glass.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 発光中心のTm3+と増感剤のYb3+を共
付活したフッ化ガラスからなることを特徴とする0.9
7μmレーザダイオード光励起青色発光用フッ化物ガラ
ス。
1. A fluorinated glass in which Tm 3+ of the luminescent center and Yb 3+ of the sensitizer are co-activated.
Fluoride glass for 7 μm laser diode light excitation blue emission.
【請求項2】 前記Tm3+の濃度[Tm3+]が0.01
〜0.1カチオニックパーセント(cat%)、前記Y
3+の濃度[Yb3+]が11〜20cat%である請求
項1記載の青色発光用フッ化物ガラス。
2. The Tm 3+ concentration [Tm 3+ ] is 0.01.
~ 0.1 Cationic percent (cat%), said Y
The fluoride glass for blue light emission according to claim 1, wherein the concentration of b 3+ [Yb 3+ ] is 11 to 20 cat%.
JP16818992A 1992-05-18 1992-05-18 Fluoride glass for blue light emission Withdrawn JPH05319855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16818992A JPH05319855A (en) 1992-05-18 1992-05-18 Fluoride glass for blue light emission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16818992A JPH05319855A (en) 1992-05-18 1992-05-18 Fluoride glass for blue light emission

Publications (1)

Publication Number Publication Date
JPH05319855A true JPH05319855A (en) 1993-12-03

Family

ID=15863438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16818992A Withdrawn JPH05319855A (en) 1992-05-18 1992-05-18 Fluoride glass for blue light emission

Country Status (1)

Country Link
JP (1) JPH05319855A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102992630A (en) * 2012-12-12 2013-03-27 中国科学院福建物质结构研究所 Nano-structure glass ceramic with up / down conversion luminescent property and preparation method thereof
CN103342464A (en) * 2013-07-03 2013-10-09 同济大学 Silver-containing nanocrystal blue light enhanced tellurite glass and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102992630A (en) * 2012-12-12 2013-03-27 中国科学院福建物质结构研究所 Nano-structure glass ceramic with up / down conversion luminescent property and preparation method thereof
CN103342464A (en) * 2013-07-03 2013-10-09 同济大学 Silver-containing nanocrystal blue light enhanced tellurite glass and preparation method thereof

Similar Documents

Publication Publication Date Title
CA2040557C (en) Red, green, blue upconversion laser pumped by single wavelength infrared laser source
US5351335A (en) Optical fiber for optical amplifier
US4701928A (en) Diode laser pumped co-doped laser
JPH05206563A (en) Laser device whose signal is converted by means of rare-earth oxide ions
JPH05319855A (en) Fluoride glass for blue light emission
JP2908680B2 (en) Upconversion laser material
US5070506A (en) Halide laser glass and laser device utilizing the glass
JPH05279079A (en) Green color glass laser
JPS6114093B2 (en)
JPH0648768A (en) Laser glass emitting light at 0.8mum wavelength
JP2989454B2 (en) Rare earth ion doped short wavelength laser light source device
JP2684947B2 (en) Laser oscillation device
JPH06219777A (en) Blue color-luminescent halide glass and blue-color laser
JPH05270858A (en) Red color light emitting glass
JPH0648770A (en) Er-tm-ho-doped laser glass emitting light at 2mum wavelength
JPH0648771A (en) Tm-doped fluoride laser glass emitting red light using er as sensitizer
JP2500595B2 (en) Laser oscillator
JPH06232491A (en) Green color laser
JPH0590693A (en) Up-conversion laser
JPH05319858A (en) 0.8mum luminant tm ion-doped fluoride laser glass
JPH0648769A (en) Yb-tm-ho-doped laser glass emitting light at 2mum wavelength
JPH09188541A (en) Hollow microsphere glass for laser
JPH08208265A (en) Infrared-visible converting material
JPH06216455A (en) Laser oscillator
JPH07111356A (en) Frequency upward conversion solid-state laser device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803