JPH05318141A - Method and device for monitoring resistance welded tube welding and resistance welded tube welding controller - Google Patents

Method and device for monitoring resistance welded tube welding and resistance welded tube welding controller

Info

Publication number
JPH05318141A
JPH05318141A JP4131263A JP13126392A JPH05318141A JP H05318141 A JPH05318141 A JP H05318141A JP 4131263 A JP4131263 A JP 4131263A JP 13126392 A JP13126392 A JP 13126392A JP H05318141 A JPH05318141 A JP H05318141A
Authority
JP
Japan
Prior art keywords
welding
signal
image
resistance welded
inference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4131263A
Other languages
Japanese (ja)
Inventor
Yuji Ishizaka
雄二 石坂
Takashi Katanosaka
隆 片之坂
Osamu Masuda
修 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP4131263A priority Critical patent/JPH05318141A/en
Priority to ES95108472T priority patent/ES2108516T3/en
Priority to DE69309763T priority patent/DE69309763T2/en
Priority to EP95108472A priority patent/EP0670194B1/en
Priority to ES93102179T priority patent/ES2103387T3/en
Priority to EP93102179A priority patent/EP0566834B1/en
Priority to DE69314052T priority patent/DE69314052T2/en
Priority to TW082101046A priority patent/TW221384B/zh
Priority to CA002150873A priority patent/CA2150873C/en
Priority to MYPI93000277A priority patent/MY109636A/en
Priority to CA002089849A priority patent/CA2089849C/en
Priority to MYPI96000124A priority patent/MY113115A/en
Priority to US08/020,373 priority patent/US5265787A/en
Priority to KR1019930003601A priority patent/KR960016155B1/en
Priority to US08/104,505 priority patent/US5360156A/en
Publication of JPH05318141A publication Critical patent/JPH05318141A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To carry out proper discrimination of a welding state and heat input control by catching a heat generating metal part generated on edge parts in opposition of tube raw material as two pictures, picture-processing the feature quantity based on these pictures to obtain an analysis signal and determining the propriety of the welding state based on this analysis signal. CONSTITUTION:In resistance welded tube welding, masking 21 is performed in the vicinity of a welding point 1a, the heat generating metal part generated extending over edge parts 1b and 1c from the welding point 1a is divided into two visually, the feature quantity of these heat generating metal parts 4a and 4b divided into two is analyzed by a picture processing part 10, the welding state is inferred by an inference part 16 based on the analysis signal S5 and a different welding condition signal S9 and an alarm is raised and display is executed on a monitoring part 17 based on the inference result.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高周波溶接における溶接
状態の監視方法およびその監視・制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welding state monitoring method in high frequency welding and a monitoring / controlling apparatus therefor.

【0002】[0002]

【従来の技術】電縫管はストリップを成形機で円筒状に
成形しながら、そのV字状両エッジに高周波電流を流し
て加熱溶融し、スクイブロールで加圧接着して製管され
る。
2. Description of the Related Art An electric resistance welded pipe is manufactured by forming a strip into a cylindrical shape by a molding machine, applying a high-frequency current to both V-shaped edges of the strip to heat and melt it, and press-bonding it with a squib roll.

【0003】溶接状態はほぼ適度な温度と適度な成形具
合、適正素材および運転レベルに反映される。ここで、
計測可能な要素の変化を捕えて、溶接適否を判別するこ
と、不適原因を判別すること及び投入電力量をフィード
フォアード的に設定し、更に他の要因による変化を包括
的に温度で捕えてフィードバック的に補正しようとする
のが溶接監視及び入熱制御の基本的な考え方である。
Welding conditions are reflected in almost proper temperature, proper forming condition, proper material and operation level. here,
By grasping changes in measurable elements, determining whether welding is appropriate, determining the cause of inadequacy, and setting the amount of input electric power in a feed-forward manner, and by comprehensively capturing the changes due to other factors and providing feedback. The basic idea of welding monitoring and heat input control is to correct the problem.

【0004】図7は誘導式高周波電縫管溶接を示し、図
8は接触式高周波電縫管溶接を示す。図中、3aは電磁
誘導のためのワークコイル、3b,3cは接触通電のた
めのチップ(接触子)、2a,2bはスクイズロール、
1は溶接される管素材、1b,1cはV字状ギャップを
形成する縁部、1aは溶接点、3dは高周波発振装置で
ある。ワークコイル3a又はチップ3b,3cはスクイ
ズロール2a,2bの前段部に配置されており、これら
により多段の成形ロール(図示省略)によって管素材1
に作られたV字状ギャップの対向する縁部1b,1cに
高周波電流iを流すと、対向する縁部1b,1cが高周
波電流によって加熱され溶接点1aにおいて最高温度に
達するとともにスクイズロール2a,2bによって加圧
溶接される。
FIG. 7 shows induction type high frequency electric resistance welded pipe welding, and FIG. 8 shows contact type high frequency electric resistance welded pipe welding. In the figure, 3a is a work coil for electromagnetic induction, 3b and 3c are tips (contacts) for contact energization, 2a and 2b are squeeze rolls,
Reference numeral 1 is a pipe material to be welded, 1b and 1c are edges forming a V-shaped gap, 1a is a welding point, and 3d is a high-frequency oscillator. The work coil 3a or the chips 3b and 3c are arranged in front of the squeeze rolls 2a and 2b, so that the pipe blank 1 can be formed by a multi-stage forming roll (not shown).
When a high-frequency current i is applied to the opposite edges 1b, 1c of the V-shaped gap formed on the squeeze roll 2a, the opposite edges 1b, 1c are heated by the high-frequency current and reach the maximum temperature at the welding point 1a. It is pressure welded by 2b.

【0005】このような電縫管溶接においては、入熱の
大小,管径,板厚によって溶接状態に特色のある現象が
現れる。
[0005] In such electric resistance welded pipe welding, a phenomenon in which the welding state has a characteristic appears depending on the amount of heat input, the pipe diameter, and the plate thickness.

【0006】上述した電縫管溶接において、溶接状態を
監視する従来の方法を以下に述べる。
A conventional method for monitoring the welding condition in the above-mentioned electric resistance welded pipe welding will be described below.

【0007】(1)操作員の肉眠による判断方法。(1) A method of determining whether the operator is sleeping.

【0008】(2)溶接部の温度を放射温度計を用いて
計測する方法であって、全放射エネルギーを温度に換算
する方法と、全放射エネルギーのうち特定の2波長のエ
ネルギーレベルの比を用いて温度に換算する方法。
(2) A method of measuring the temperature of a welded portion using a radiation thermometer, in which the total radiant energy is converted into temperature, and the ratio of the energy levels of two specific wavelengths of the total radiant energy is calculated. Method to convert to temperature using.

【0009】(3)共振周波数の変化を電気的に検出
し、入熱量の過多を判別する方法。
(3) A method of electrically detecting a change in resonance frequency to determine an excessive heat input amount.

【0010】(4)溶接後のビートの突起を用いて形状
を把握する方法。
(4) A method of grasping the shape by using the protrusions of the beat after welding.

【0011】[0011]

【発明が解決しようとする課題】上述したいずれの方法
も溶接状態を入熱(温度)が適正か過大もしくは過小か
を判別するだけで、溶接状態を監視しようとするもので
はない。
None of the above-mentioned methods is intended to monitor the welding state only by determining whether the heat input (temperature) of the welding state is proper, excessive or excessive.

【0012】入熱が適正でも、エッジの成形状態に捩れ
があったり、エッジが振れたり或はスクイブロールの加
圧(アップセット)が変化すると、入熱が適正でも溶接
不良をもたらすことがある。従って、このような条件変
化をも含めても把握できる監視方法が望まれていた。
Even if the heat input is appropriate, if the edge is twisted in the molding state, the edge is shaken, or the pressure (upset) of the squib roll is changed, welding failure may result even if the heat input is appropriate. .. Therefore, there has been a demand for a monitoring method capable of grasping such changes in conditions.

【0013】本発明は上述の問題点に鑑みてなされたも
ので、その目的は、管素材の対向する縁部に生じる発熱
金属部を2画像として捕え、これらの画像にもとづく特
長量を画像処理して解析信号を得、この解析信号を基に
溶接状態の適否を判定することにより、溶接状態の適正
な判別と入熱制御を可能にすることである。
The present invention has been made in view of the above-mentioned problems, and an object thereof is to capture, as two images, a heat-generating metal portion generated at opposing edges of a tube material, and perform image processing on a feature amount based on these images. Then, the analysis signal is obtained, and the suitability of the welding state is determined based on this analysis signal, thereby enabling appropriate determination of the welding state and heat input control.

【0014】[0014]

【課題を解決するための手段】本発明は、上記目的を達
成するために、管素材をV字状ギャップを有する管状に
成形し、該V字状ギャップの対向する縁部をその縁部同
志が接合する溶接点で連続的に溶接する電縫管溶接にお
いて、前記溶接点近傍の上部にマスキングを施して前記
各縁部に生じる発熱金属部を視覚的に2分割し、この2
分割された発熱金属部の各輝度レベル又は輝度分布を撮
像手段により画像信号として捕え、前記各発熱金属部の
面積,台形軸長,重心位置および傾斜からなる特長量を
画像処理し、予め作成しておいた判定ロジックに基づい
て溶接状態の適否を判別するとともに、前記特長量に基
づいて溶接不良原因の判別を行うとことを特徴とする。
In order to achieve the above-mentioned object, the present invention forms a tube material into a tubular shape having a V-shaped gap, and the opposite edges of the V-shaped gap are formed at the edges thereof. In electric resistance welded pipe welding in which welding is continuously performed at the welding points joined with each other, masking is applied to the upper portion in the vicinity of the welding points to visually divide the heat-generating metal portion generated at each edge into two.
Each brightness level or brightness distribution of the divided heating metal part is captured as an image signal by the image pickup means, and the feature amount including the area of each heating metal part, the trapezoidal axial length, the center of gravity position and the inclination is image-processed and created in advance. It is characterized in that the appropriateness of the welding state is determined based on the determined logic, and the cause of the welding failure is determined based on the feature amount.

【0015】[0015]

【作用】撮像手段により溶接点近傍にマスキングを施
し、この溶接点近傍に発生する発熱金属部を視覚的2分
割し、この2分割された発熱金属部の輝度レベル又は輝
度分布によって前記発熱金属部の特長量を画像処理部に
よって捕え、この画像処理部の解析信号と予め設定され
た判定ロジックによって推論部で溶接状態を推論し、こ
の推論部の推論結果に基づいて溶接状態を監視する。
By masking the vicinity of the welding point by the image pickup means, the heat-generating metal portion generated near the weld point is visually divided into two, and the heat-generating metal portion is divided by the luminance level or the luminance distribution of the two-divided heat-generating metal portion. The image processing unit captures the feature amount of 1., the inference unit infers the welding state by the analysis signal of the image processing unit and the preset determination logic, and the welding state is monitored based on the inference result of the inference unit.

【0016】[0016]

【実施例】以下に本発明の実施例を図1〜図6によって
説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0017】図1は本発明の実施例に係る電縫管溶接の
監視制御方法およびその装置を示し、20は電縫管溶接
における溶接部位を側面より見たものである。図2は溶
接部位20を上方より見た平面図である。図1および図
2において、5はCCD素子を備えたカメラで、管素材
1の溶接点1aに配設されている。6はカメラ5からア
ナログ画像信号S1をデイジタル画像信号S2に変換する
アナログ/デイジタル変換器(A/D変換器)、7はデ
イジタル画像信号S2を格納する画像メモリ、8は予め
設定された画像パターンを格納しておくための設定メモ
リ、9は演算処理部(CPU)で、画像メモリ7の画像
メモリ信号S3と設定信号S4をもとに演算処理して画像
解析を行う。これらのA/D変換器6,画像メモリ7,
設定メモリ7,設定メモリ8および演算処理部CPU9
によって画像処理部10が構成され、この画像処理部1
0の処理信号をもとに種々の制御を実行する。
FIG. 1 shows a supervisory control method and apparatus for electric resistance welded pipe welding according to an embodiment of the present invention, and 20 is a side view of a welded portion in electric resistance welded pipe welding. FIG. 2 is a plan view of the welded portion 20 as seen from above. In FIGS. 1 and 2, reference numeral 5 denotes a camera equipped with a CCD element, which is arranged at the welding point 1 a of the tube material 1. Reference numeral 6 is an analog / digital converter (A / D converter) for converting the analog image signal S 1 from the camera 5 into a digital image signal S 2 , 7 is an image memory for storing the digital image signal S 2 , and 8 is preset. A setting memory for storing the image pattern, and an arithmetic processing unit (CPU) 9 performs arithmetic processing based on the image memory signal S 3 of the image memory 7 and the setting signal S 4 to perform image analysis. These A / D converter 6, image memory 7,
Setting memory 7, setting memory 8 and arithmetic processing unit CPU 9
The image processing unit 10 is configured by the image processing unit 1.
Various controls are executed based on the processed signal of 0.

【0018】11は信号補正部で、CPU9の解析信号
5に基づいて適正な電気制御信号を得るものである。
すなわち、信号補正部11は、補正量演算回路12と、
信号変換回路13および信号制御回路14によって構成
される。
Reference numeral 11 is a signal correction unit for obtaining an appropriate electric control signal based on the analysis signal S 5 of the CPU 9.
That is, the signal correction unit 11 includes a correction amount calculation circuit 12,
It is composed of a signal conversion circuit 13 and a signal control circuit 14.

【0019】補正量演算回路12は画像処理部10から
の画像解析信号S5と、溶接状態信号S9および溶接基準
設定値信号S0を入力として補正すべき補正量の演算を
行う。溶接状態信号S9としては、成形中心のずれ、座
屈・波状現象,段差・ラップ,変形があり、このような
状態の変化は溶接欠陥を発生させる。また、溶接基準値
設定信号S0としては、基本的には温度,素材,環境お
よび突合わせ状態がある。
The correction amount calculation circuit 12 inputs the image analysis signal S 5 from the image processing unit 10, the welding state signal S 9 and the welding reference set value signal S 0 and calculates the correction amount to be corrected. The welding state signal S 9 includes a deviation of the forming center, buckling / wave-like phenomenon, step / lap, and deformation, and such a change in state causes a welding defect. Further, the welding reference value setting signal S 0 basically includes temperature, material, environment and butt state.

【0020】信号変換回路13は、補正量演算回路12
の補正量信号S6を電気信号に変換し、信号制御回路1
4は信号変換回路13の電気信号S7に基づいて電力制
御信号S8を電力制御部15に入力する。電力制御部1
5は電力制御部信号S8に基づいてワークコイル3aに
電力を供給する。
The signal conversion circuit 13 includes a correction amount calculation circuit 12
The correction amount signal S 6 of is converted into an electric signal, and the signal control circuit 1
4 inputs the power control signal S 8 to the power control unit 15 based on the electric signal S 7 of the signal conversion circuit 13. Power control unit 1
5 supplies power to the work coil 3a based on the power control unit signals S 8.

【0021】本発明の最も特徴とするところは、図3に
示すように溶接点の下流側をマスキング21を施して溶
接状態を画像的に2分割し、これらの溶接状態を画像処
理部10によって画像処理するとともに、画像処理部1
0によって解析された解析信号S5を基に溶接不良原因
を推論する推論部16と、この推論部16の推論結果を
基に溶接状態を監視する監視部17を設けたことであ
る。
The most characteristic feature of the present invention is that the downstream side of the welding point is masked 21 as shown in FIG. Image processing unit 1 as well as image processing
The reason is that the inference unit 16 that infers the cause of welding failure based on the analysis signal S 5 analyzed by 0 and the monitoring unit 17 that monitors the welding state based on the inference result of the inference unit 16 are provided.

【0022】推論部16は画像処理部10によって発熱
金属部4a,4bの面積,軸長,周長,傾斜などの特長
量を用いて推論する。監視部17は、推論部16の推論
結果に基づいて警報を発する警報回路18、および画像
処理部10の画像解析結果と、推論部16の推論結果を
基に視覚的に表示する表示回路19によって構成されて
いる。
The inference unit 16 makes an inference by the image processing unit 10 using the features such as the area, the axial length, the peripheral length, and the inclination of the heat-generating metal portions 4a and 4b. The monitoring unit 17 uses an alarm circuit 18 that issues an alarm based on the inference result of the inference unit 16, and an image analysis result of the image processing unit 10 and a display circuit 19 that visually displays based on the inference result of the inference unit 16. It is configured.

【0023】さらに、本発明の特徴とするところは、ノ
イズレベルを下げるために検出端の振動を10μm以下
とし、100画素数以上の分解能を持たせることであ
る。
Further, a feature of the present invention is that the vibration of the detection end is set to 10 μm or less in order to reduce the noise level and the resolution of 100 pixels or more is provided.

【0024】図1に示す装置の動作をさらに詳しく説明
すると、まず横×縦方向にn×m個のCCD素子を備え
たカメラ5は溶接点の溶接現象モード等を各CCD素子
ごとにその対応する位置の輝度レベル(従って全体とし
ては輝度分布パターン)としてとらえ、スキャニングに
よる画像信号S1を出力する。画像信号S1は輝度信号で
あって、n×m個のCCD素子よりなるカメラ5の受光
体からの電気信号である。この電気信号は、A/D変換
器6によってデイジタル信号S2に変換された後、n×
m個の各画素ごとの輝度Cd/M2を例えば128の段
階のレベルに解析したデイジタル量として画像メモリ7
に格納される。画像メモリ7内の画像データS3はCP
U9に入力される。CPU9は、画像データS3を受け
入れ、図4に示す、横×縦方向にn×m個の各画素の輝
度レベルに従って画像処理を行って特長量を求める。図
4の各パターンP1,P2は各画素ごとの輝度分布をX,
Y軸方向の位置関係で示したものである。
The operation of the apparatus shown in FIG. 1 will be described in more detail. First, the camera 5 equipped with n × m CCD elements in the horizontal × vertical direction corresponds to the welding phenomenon mode of the welding point for each CCD element. The image signal S 1 is output by scanning as a brightness level at the position (that is, the brightness distribution pattern as a whole). The image signal S 1 is a luminance signal, which is an electric signal from the light receiving body of the camera 5 composed of n × m CCD elements. This electric signal is converted into a digital signal S 2 by the A / D converter 6 and then n ×
The image memory 7 is used as a digital amount obtained by analyzing the brightness Cd / M 2 for each of the m pixels, for example, into 128 levels.
Stored in. The image data S 3 in the image memory 7 is CP
Input to U9. The CPU 9 receives the image data S 3 and performs image processing according to the luminance levels of n × m pixels in the horizontal × vertical direction shown in FIG. 4 to obtain the characteristic amount. The patterns P 1 and P 2 in FIG.
It is shown by the positional relationship in the Y-axis direction.

【0025】図4に例示したパターンは溶接点1aの近
傍における前記の図3に示した溶接現象モードに相当す
るものであって図4におけるP1で囲まれた部位は最も
輝度レベルの高い部分であって図3の発熱部4aに相当
する。また図4におけるP2で囲まれた部位は2番目に
輝度レベルの高い部分であって、図3の発熱部4bに相
当する。CPU9は、一方で設定メモリ8に予め記憶し
ていた判定基準と輝度レベルおよび輝度分布データS4
を受け入れ、画像メモリ7からの信号S3にもとづく前
記の図4のパターンを基準データS4と比較演算してそ
の形状(輝度分布)や輝度レベルから溶接状態が適正レ
ベルに対してどのようなレベルにあるかを判断すること
によってVシームを形成する対向エッジ部への投入電力
の適否を判断して解析信号S5を信号補正部11と推論
部16および監視部17に入力する。
The pattern illustrated in FIG. 4 corresponds to the welding phenomenon mode shown in FIG. 3 in the vicinity of the welding point 1a, and the portion surrounded by P 1 in FIG. 4 has the highest brightness level. And corresponds to the heat generating portion 4a in FIG. The portion surrounded by P 2 in FIG. 4 is the portion having the second highest luminance level and corresponds to the heat generating portion 4b in FIG. On the other hand, the CPU 9, on the other hand, determines the judgment standard, the brightness level and the brightness distribution data S 4 stored in advance in the setting memory 8.
4 and the pattern of FIG. 4 based on the signal S 3 from the image memory 7 is compared with the reference data S 4 and the shape (luminance distribution) and luminance level of the welding state relative to the proper level Whether or not the applied power to the facing edge portion forming the V-seam is appropriate is determined by determining whether or not the level is present, and the analysis signal S 5 is input to the signal correction unit 11, the inference unit 16 and the monitoring unit 17.

【0026】なお、CPU9において、カメラ5がとら
えた溶接現象モードにもとづく輝度レベルおよび輝度分
布データS3を複数の基準データS4と比較せしめるに
は、例えば最も単純な方法の1例としては前記の図4の
パターンにおけるP1で囲まれた部分のX方向の長さを
基準データの基準長と比較することでよい。即ちこれに
よって前記の図3における発熱部4a,4bの存在する
部位の長さから溶接状態(レベル)の適否を判断するこ
とができる。
In order for the CPU 9 to compare the brightness level and the brightness distribution data S 3 based on the welding phenomenon mode captured by the camera 5 with a plurality of reference data S 4 , for example, one of the simplest methods is described above. The length in the X direction of the portion surrounded by P 1 in the pattern of FIG. 4 may be compared with the reference length of the reference data. That is, this makes it possible to determine the suitability of the welding state (level) from the length of the portion where the heat generating portions 4a and 4b exist in FIG.

【0027】さらに詳しくは、画像処理部10は、図5
に示すように発熱金属部4aと4bの等価台形主軸長,
等価台形副軸長および等価台形傾斜角θ1,θ2を求めて
画像処理する。該等エリアの同一面積,同一の2次モー
メントをもつ台形の主軸長,副軸長および台形の方向を
検出して溶接の良否判定要素とし、これらを監視と制御
に用いる。
More specifically, the image processing unit 10 is shown in FIG.
As shown in, the equivalent trapezoidal spindle length of the heating metal parts 4a and 4b,
Image processing is performed by finding the equivalent trapezoidal auxiliary axis length and the equivalent trapezoidal tilt angles θ 1 and θ 2 . The main axis length, auxiliary axis length of a trapezoid having the same area of the same area and the same second moment, and the direction of the trapezoid are detected and used as a quality determination element for welding, and these are used for monitoring and control.

【0028】図5に示すように、発熱金属部4aと4b
を台形30aと30bとして捕え、その台形30a,3
0bの主軸長a1,a2,副軸長b1,b2および重心位置
1,G2を演算処理するとともに、台形30a,30b
の傾き角θ1,θ2を演算して発熱部4a,4bの特長量
を求める。
As shown in FIG. 5, heat-generating metal parts 4a and 4b.
As trapezoids 30a and 30b, and trapezoids 30a, 3
0b of the main axis lengths a 1 and a 2 , the sub axis lengths b 1 and b 2 and the positions of the centers of gravity G 1 and G 2 of the trapezoids 30a and 30b.
Inclination angles θ 1 and θ 2 are calculated to obtain the feature amount of the heat generating portions 4a and 4b.

【0029】画像処理部10のCPU9は、発熱金属部
4aと4bの面積A1とA2,重心G1とG2およびずれ
(傾斜角)θ1とθ2を基に入熱状態,成形状態を解析す
る。CPU9は、画像データを基に、面積に関するデー
タとして(A1+A2)/2と(A1−A2)/(A1
21/2を算出し、重心に関するデータとして(G1
2)/2と|G1−G2|/(G1×G21/2を、傾斜に
関して(|θ1|−|θ2|/(θ1×θ21/2を算出し
て解析信号S5に重乗する。
The CPU 9 of the image processing unit 10 determines the heat input state and the molding state based on the areas A 1 and A 2 , the centers of gravity G1 and G2, and the deviations (tilt angles) θ 1 and θ 2 of the heating metal portions 4a and 4b. To analyze. The CPU 9 uses (A 1 + A 2 ) / 2 and (A 1 −A 2 ) / (A 1 +) as area data based on the image data.
A 2 ) 1/2 is calculated, and as data on the center of gravity (G 1 +
G 2 ) / 2 and | G 1 −G 2 | / (G 1 × G 2 ) 1/2 , and (| θ 1 | − | θ 2 | / (θ 1 × θ 2 ) 1/2 for inclination. The calculated value is multiplied by the analytic signal S 5 .

【0030】推論部16は、画像処理部10のCPU9
によって算出された発熱金属部4a,4bの等価台形主
軸長,等価台形副軸長,等価台形傾斜角および重心位置
の各2値化信号を入力として判定し、これらが許容範囲
の上限になれば警報回路18に警報を発生させる。表示
回路19は、推論部の推論結果とCPU9の解析信号S
5に基づいて、発熱金属部4a,4bの面積,重心,等
価台形主軸長,等価台形副軸長,等価台形傾斜角を視覚
的に表示する。表示回路19の表示により、発熱金属部
4a,4bの面積の平均値(A1+A2)/2によって入
熱量の大小,板厚の大小および速度の大小を判別でき、
面積の差値(A1−A2)/(A1+A21/2によって成
形の不均衡(アンバランス)を判別できる。重心の移動
に相当する平均値(G1+G2)/2によって加圧力,板
幅の大小を判別でき、重心の差値(|G1−G2|)/
(G1×G21/2によって成形状態を判別できる。ずれ
(|D1|−|D2|)/(D1×D21/2によって成形
状態のバランスを判別でき、傾斜によって成形の安定
度,板幅の変化およびロールの摩耗を判定することがで
きる。
The inference unit 16 is the CPU 9 of the image processing unit 10.
If the binary signals of the equivalent trapezoid main axis length, the equivalent trapezoid auxiliary axis length, the equivalent trapezoid inclination angle, and the center of gravity position of the heating metal parts 4a and 4b calculated by The alarm circuit 18 is caused to generate an alarm. The display circuit 19 displays the inference result of the inference unit and the analysis signal S of the CPU 9.
Based on 5 , the area, center of gravity, equivalent trapezoid main axis length, equivalent trapezoid auxiliary axis length, and equivalent trapezoid inclination angle of the heating metal parts 4a and 4b are visually displayed. By the display of the display circuit 19, the amount of heat input, the size of the plate thickness, and the speed can be determined by the average value (A 1 + A 2 ) / 2 of the areas of the heat-generating metal parts 4a and 4b.
The molding imbalance can be determined by the area difference value (A 1 −A 2 ) / (A 1 + A 2 ) 1/2 . The average value (G 1 + G 2 ) / 2 corresponding to the movement of the center of gravity can be used to determine the magnitude of the pressing force and the plate width, and the difference in the center of gravity (| G 1 −G 2 |) /
The molding state can be determined by (G 1 × G 2 ) 1/2 . The deviation of (| D 1 |-| D 2 |) / (D 1 × D 2 ) 1/2 can be used to determine the balance of the molding state, and the inclination can be used to determine the stability of molding, the change in plate width and the wear of rolls be able to.

【0031】図6は監視部17の最も簡単な動作の一例
を示すもので、画像重心×位置に対する動作状態を示す
ものである。図6において曲線C0は許容範囲内の重心
×位置の変動を示し、曲線C1は現実の変化状態を示し
ている。曲線C2は監視アラーム信号を示し、直線L1
監視下限値で画素数が350.0に対応し、直線L2
監視上限値で画素数400.0に対応する。有線L1
溶接状態の適性を示し、直線L2以上は溶接状態の不適
正を示しており、L2とL1の差が大きいとバランスが崩
れていることになる。
FIG. 6 shows an example of the simplest operation of the monitoring section 17 and shows an operation state with respect to the image center of gravity × position. In FIG. 6, the curve C 0 shows the variation of the center of gravity × position within the allowable range, and the curve C 1 shows the actual change state. The curve C 2 shows the monitoring alarm signal, the straight line L 1 corresponds to the monitoring lower limit value and the number of pixels is 350.0, and the straight line L 2 corresponds to the monitoring upper limit value and the number of pixels is 400.0. The wire L 1 indicates the suitability of the welding state, and the straight line L 2 or above indicates the inappropriateness of the welding state. If the difference between L 2 and L 1 is large, the balance is lost.

【0032】図6に示すように、直線L1とL2間はヒス
テリシス幅を示しており、時刻t0〜t3間の時間Tsは
微増処理周期である。
As shown in FIG. 6, the hysteresis width is shown between the straight lines L 1 and L 2, and the time Ts between the times t 0 and t 3 is the slightly increasing processing cycle.

【0033】図6に示すように、直線L1とL2間はヒス
テリシス幅を示しており、時刻t0〜t3間の時間Tsは
画像処理周期である。重心×位置が時刻t3で監視ヒス
テリシス帯域を越えると、推論部16がこれを検出し警
報回路18を動作させてアラーム信号が発生し、時刻t
5で重心×位置が監視ヒステリシス帯域以下になると、
推論部16がこれを検出して警報回路18に動作を停止
させてアラーム信号が停止する。また、監視部17にお
いては表示回路19は図6に示す画像モードを時系列的
に常時表示する。これにより、操作員が変わっても、溶
接状態の良否も常に判別でき、人間の主観から解放され
た監視が可能になる。
As shown in FIG. 6, the hysteresis width is shown between the straight lines L 1 and L 2, and the time Ts between the times t 0 and t 3 is the image processing cycle. When the center of gravity × position exceeds the monitoring hysteresis band at time t 3 , the inference unit 16 detects this and activates the alarm circuit 18 to generate an alarm signal.
At 5 when the center of gravity × position falls below the monitoring hysteresis band,
The inference unit 16 detects this and causes the alarm circuit 18 to stop operating, and the alarm signal stops. Further, in the monitoring unit 17, the display circuit 19 constantly displays the image modes shown in FIG. 6 in time series. As a result, even if the operator changes, it is possible to always judge the quality of the welding state, and it becomes possible to monitor without being subject to human subjectivity.

【0034】監視上限値,監視下限値および監視ヒステ
リシス幅は推論部16において任意の値に設定できる。
また、ヒステリシス帯域幅は、アラーム信号の必要以上
のオン,オフを防ぐために必要である。
The monitoring upper limit value, the monitoring lower limit value, and the monitoring hysteresis width can be set to arbitrary values in the inference unit 16.
In addition, the hysteresis bandwidth is necessary to prevent the alarm signal from turning on and off more than necessary.

【0035】図6に示す良否判別法では画像重心X位置
についての一例について示したが、画像Y位置,面積,
等価台形主軸長,等価台形副軸長,等価台形周長及び重
心について行うことができる。
In the pass / fail judgment method shown in FIG. 6, an example of the X position of the image center of gravity has been shown.
Equivalent trapezoid main axis length, equivalent trapezoid auxiliary axis length, equivalent trapezoid circumference and center of gravity can be performed.

【0036】本発明は、高周波溶接のうちVスロートの
両エッジ部に沿って発熱金属部が発生する場合に有効で
あって、溶接衝合点下流をマスキングを施して2つの画
像としてCCDカメラで観測する。カメラで検出した発
光状態を画像処理するに当たって、取り込んだ画像のデ
ータは各画素ごとに輝度(W/sr/M2)値を測定で
きる。輝度値を2値化し、白黒画像に変換しその画像の
特長量を求める。この場合、画像はVスロート(衝合
点)でつながった一つの画像になるが、衝合点よりや入
側からマスキングをかけることにより、画像を白黒画像
に2分割し、Vスロートの両エッジの天々の輝度分布を
画像として捕える。夫々の画像を特長量として求め、夫
々の特長量を平均化することによって得られる量(全体
の加熱状態を代表)と夫々の特長量の差を求めて得られ
る量(両エッジの加熱状態のバランス状態を代表)を求
める。
The present invention is effective when a heat-generating metal portion is generated along both edges of the V throat in high frequency welding, and masking the welding abutting point downstream, two images observed by a CCD camera. To do. When the light emission state detected by the camera is subjected to image processing, the brightness (W / sr / M 2 ) value can be measured for each pixel in the data of the captured image. The brightness value is binarized, converted into a monochrome image, and the feature amount of the image is obtained. In this case, the image is one image connected by the V throat (abutting point), but by masking from the abutting point or from the entrance side, the image is divided into two black and white images, and both edges of the V throat are heavenly. Each brightness distribution is captured as an image. Each image is obtained as a feature amount, the amount obtained by averaging each feature amount (representing the overall heating state) and the amount obtained by calculating the difference between each feature amount (for the heating state of both edges (Represents the balance state).

【0037】また、溶接状態の監視をするには、溶接衝
合点を含む入側を観視できるようにCCDカメラの検出
点を設定する。視野は約5×5mm角程度でよい。材料
が静止しているVスロートに少量の高周波入熱を投入す
ると、衝合点はスポット状に最高温度に加熱されるの
で、衝合点を認識できる。
In order to monitor the welding state, the detection point of the CCD camera is set so that the entrance side including the welding abutting point can be viewed. The field of view may be about 5 × 5 mm square. When a small amount of high-frequency heat input is applied to the V throat in which the material is stationary, the abutting point is heated to the maximum temperature in a spot shape, so that the abutting point can be recognized.

【0038】さらに、画素数は片側エッジで100画素
以上とし、観測検出端の板動を100μmとするととも
に、外光を遮蔽して外光ノイズ対策を加える。
Further, the number of pixels is 100 pixels or more on one side edge, the plate movement at the observation / detection end is 100 μm, and external light is shielded to take measures against external light noise.

【0039】信号補正部11の補正量演算回路12が解
析信号S5,設定値信号S0および溶接条件信号S9を基
に補正量を演算して、補正量信号S6を信号変換回路1
3に導く。信号変換回路13は補正量信号S6を電気信
号S7に変換して、該電気信号S7を信号制御回路14に
入力する。信号制御回路14は信号変換回路13の電気
信号S7と電力設定基準信号を比較して電力制御信号S8
を電力制御部15に入力する。電力制御部15は電力制
御信号S8に応じてワークコイル3への供給電力の電圧
を調整する。
The correction amount calculation circuit 12 of the signal correction unit 11 calculates the correction amount based on the analysis signal S 5 , the set value signal S 0 and the welding condition signal S 9, and outputs the correction amount signal S 6 to the signal conversion circuit 1.
Lead to 3. The signal conversion circuit 13 converts the correction amount signal S 6 into an electric signal S 7 , and inputs the electric signal S 7 to the signal control circuit 14. The signal control circuit 14 compares the electric signal S 7 of the signal conversion circuit 13 with the power setting reference signal and compares the electric power control signal S 8 with the electric power control signal S 8.
Is input to the power control unit 15. The power control unit 15 adjusts the voltage of the power supplied to the work coil 3 according to the power control signal S 8 .

【0040】なお前記の画像処理部10内のCPU9で
の比較判断処理に際しての設定メモリ8に予め記憶せし
める基準値の数を増やすほど高精度で溶接電力を補正を
行うことができる。または基準値の数をふやす変わりに
リニアライザーによる処理を行わせることによってもよ
い。
The welding power can be corrected with higher accuracy as the number of reference values stored in advance in the setting memory 8 at the time of the comparison / judgment processing by the CPU 9 in the image processing unit 10 is increased. Alternatively, instead of increasing the number of reference values, processing by a linearizer may be performed.

【0041】[0041]

【発明の効果】本発明は電縫管溶接の際の適正な溶接条
件(温度,成形,運転レベル)を維持するものにおい
て、前述のように被加工物である管素材の板厚の変動や
移送速度の変動等の外乱要因による影響はすべて包含
し、最終的な溶接レベルに直接的に対応する現象である
溶接点近傍での溶接現象モードを輝度レベルおよびその
輝度分布としてとらえて画像処理を行うことにより、こ
の溶接状態を判定(推論)することができ、従来より単
なる入熱量の把握に留まらず高精度のかつ総合的な溶接
状態の適/不適の判定を行うことができると共に適確な
異常警報および表示を行うことができる。あわせて入熱
については適正な自動入熱制御を行うことができる。
As described above, the present invention maintains appropriate welding conditions (temperature, forming, operation level) during electric resistance welded pipe, and as described above, changes in the plate thickness of the pipe material to be processed and All the effects of disturbance factors such as transfer speed fluctuations are included, and image processing is performed by recognizing the welding phenomenon mode near the welding point, which is a phenomenon that directly corresponds to the final welding level, as the luminance level and its luminance distribution. By performing this, it is possible to judge (guess) this welding state, and it is possible to make a highly accurate and comprehensive determination of whether the welding state is appropriate or not, rather than simply grasping the heat input amount. Abnormal alarm and display can be performed. In addition, for heat input, proper automatic heat input control can be performed.

【0042】従って常に最適溶接条件で高品質の電縫管
溶接を実施できるので、安定して高品質の電縫管を製造
できると共に製品の歩留まりを向上できる効果が大き
い。温度測定が難しく、このため従来正確な自動入熱制
御を実施することが難しかったアルミ系や銅系の管材の
電縫管溶接にも適用して溶接電力の自動入熱制御にも寄
与するという効果を有する。
Therefore, since high-quality electric resistance welded pipe welding can always be carried out under optimum welding conditions, it is possible to stably manufacture a high quality electric resistance welded pipe and to improve the yield of products. It is difficult to measure the temperature, and for this reason, it is also applied to electric resistance welding of aluminum and copper pipes, which has been difficult to perform accurate automatic heat input control in the past, and contributes to automatic heat input control of welding power. Have an effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による電縫管溶接の監視制御装
置のブロック図。
FIG. 1 is a block diagram of a supervisory control device for electric resistance welded pipe welding according to an embodiment of the present invention.

【図2】電縫管溶接における溶接部位を示す平面図。FIG. 2 is a plan view showing a welded portion in electric resistance welded pipe welding.

【図3】溶接モードを示す説明図。FIG. 3 is an explanatory view showing a welding mode.

【図4】パターン測定図。FIG. 4 is a pattern measurement diagram.

【図5】発熱金属部の測定方式を示す説明図。FIG. 5 is an explanatory diagram showing a measuring method of a heat-generating metal part.

【図6】溶接点近傍における良否判別法を示す説明図。FIG. 6 is an explanatory diagram showing a quality determination method in the vicinity of a welding point.

【図7】誘導式高周波電縫管溶接を示す斜視図。FIG. 7 is a perspective view showing induction-type high frequency electric resistance welded pipe welding.

【図8】溶解式高周波電縫管溶接を示す斜視図。FIG. 8 is a perspective view showing melting type high frequency electric resistance welded pipe welding.

【符号の説明】[Explanation of symbols]

1…管素材 1a…溶接点 1b,1c…縁部 3a…ワークコイル 4a,4b…発熱金属部 5…カメラ 6…アナログ/デイジタル変換回路 7…画像メモリ 8…設定メモリ 9…演算処理部 10…画像処理部 11…信号補正部 12…補正量演算回路 13…信号変換回路 14…信号制御回路 15…電力制御部 16…推論部 17…監視部 18…警報回路 19…表示回路 21…マスキング DESCRIPTION OF SYMBOLS 1 ... Pipe material 1a ... Welding point 1b, 1c ... Edge part 3a ... Work coil 4a, 4b ... Exothermic metal part 5 ... Camera 6 ... Analog / digital conversion circuit 7 ... Image memory 8 ... Setting memory 9 ... Arithmetic processing part 10 ... Image processing unit 11 ... Signal correction unit 12 ... Correction amount calculation circuit 13 ... Signal conversion circuit 14 ... Signal control circuit 15 ... Power control unit 16 ... Inference unit 17 ... Monitoring unit 18 ... Alarm circuit 19 ... Display circuit 21 ... Masking

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 管素材をV字状ギャップを有する管状に
成形し、該V字状ギャップの対向する縁部をその縁部同
志が接合する溶接点で連続的に溶接する電縫管溶接にお
いて、前記溶接点近傍の上部にマスキングを施して前記
各縁部に生じる発熱金属部を視覚的に2分割し、この2
分割された発熱金属部の各輝度レベル又は輝度分布を撮
像手段により画像信号として捕え、前記各発熱金属部の
面積,台形軸長,重心位置および傾斜からなる特長量を
画像処理し、予め作成しておいた判定ロジックに基づい
て溶接状態の適否を判別するとともに、前記特長量に基
づいて溶接不良原因の判別を行うとことを特徴とする電
縫管溶接の監視方法。
1. Electric resistance welded pipe welding in which a pipe material is formed into a tubular shape having a V-shaped gap, and the opposite edges of the V-shaped gap are continuously welded at welding points where the edges join each other. By masking the upper part in the vicinity of the welding point, the heat-generating metal part generated at each edge is visually divided into two.
Each brightness level or brightness distribution of the divided heating metal part is captured as an image signal by the image pickup means, and the feature amount including the area of each heating metal part, the trapezoidal axial length, the center of gravity position and the inclination is image-processed and created in advance. A method for monitoring electric resistance welded pipe welding, characterized in that the appropriateness of the welding state is determined based on the determined determination logic, and the cause of welding failure is determined based on the feature amount.
【請求項2】 管素材をV字状ギャップを有する管状に
成形し、該V字状ギャップの対向する縁部をその縁部同
志の接合点で連続的に溶接する電縫管溶接装置におい
て、 前記溶接点近傍の上部に設けられ、前記各縁部に生じる
発熱金属部を視覚的に2分割するマスキング手段と、 上記2分割された発熱金属部の各輝度レベル又は輝度分
布を検出して画像信号を得る撮像手段と、 上記撮像手段により得られた画像信号を解析して、輝度
分布として求める画像処理部と、 上記画像処理部の解析信号(S5)と、溶接条件信号(S9)
を基に予め作成された判定ロジックに基づいて溶接状態
の適否を判別する推論部(16)と、 上記推論部(16)の推論信号を基に溶接状態を監視する
監視部(17)からなり、 上記監視部(17)は、上記推論部(16)の推論信号に基
づいて警報を発する警報回路(18)と、前記画像処理部
(10)の解析信号に基づく前記各発熱金属部(4a,4
b)の特長量と、前記推論部(16)の推論信号を基に判
別結果を表示する表示回路19によって構成されている
ことを特徴とする、 電縫管溶接の監視装置。
2. An electric resistance welded pipe welding apparatus in which a pipe material is formed into a tubular shape having a V-shaped gap, and the opposite edges of the V-shaped gap are continuously welded at their joint points. A masking means which is provided in the upper part near the welding point and visually divides the heat-generating metal portion generated at each of the edges into two, and an image is obtained by detecting each luminance level or luminance distribution of the two-divided heat-generating metal portion. An image pickup unit for obtaining a signal, an image processing unit for analyzing the image signal obtained by the image pickup unit to obtain a luminance distribution, an analysis signal (S 5 ) for the image processing unit, and a welding condition signal (S 9 ).
It comprises an inference unit (16) that determines the adequacy of the welding state based on a determination logic created in advance based on the above, and a monitoring unit (17) that monitors the welding state based on the inference signal of the inference unit (16). The monitoring unit (17) includes an alarm circuit (18) for issuing an alarm based on the inference signal of the inference unit (16), and the image processing unit.
Each of the heating metal parts (4a, 4) based on the analysis signal of (10)
A monitoring device for electric resistance welded pipe welding, comprising a display circuit 19 for displaying a discrimination result based on the feature amount of b) and the inference signal of the inference unit (16).
【請求項3】 管素材をV字状ギャップを有する管状に
成形し、該V字状ギャップの対向する縁部をその縁部同
志が接合する溶接点で連続的に溶接する電縫管溶接にお
いて、前記溶接点近傍の上部にマスキングを施して前記
各縁部に生じる発熱金属部を視覚的に2分割し、この2
分割された発熱金属部の各輝度レベル又は輝度分布を撮
像手段により画像信号として捕え、前記各発熱金属部の
面積,台形軸長,重心位置および傾斜からなる特長量を
捕えて解析信号(S5)を得、基準設定信号(S0)と溶接条
件信号(S9)を基に前記解析信号(S5)を補正演算して補
正量信号(S6)を得、この補正量信号(S6)を基に前記管
素材への入熱量を制御することを特徴とする電縫管溶接
制御方法。
3. In electric resistance welded pipe welding, in which a pipe material is formed into a tubular shape having a V-shaped gap, and opposite edges of the V-shaped gap are continuously welded at welding points where the edges join each other. By masking the upper part in the vicinity of the welding point, the heat-generating metal part generated at each edge is visually divided into two.
The respective brightness levels or brightness distributions of the divided heat-generating metal parts are captured as image signals by the image pickup means, and the feature amount including the area of each heat-generating metal part, the trapezoidal axial length, the position of the center of gravity, and the inclination is captured to obtain an analysis signal (S 5 ) Is obtained, and the analysis signal (S 5 ) is corrected and calculated based on the reference setting signal (S 0 ) and the welding condition signal (S 9 ) to obtain a correction amount signal (S 6 ). A method for controlling electric resistance welded pipe, wherein the heat input amount to the pipe material is controlled based on 6 ).
JP4131263A 1992-03-25 1992-05-25 Method and device for monitoring resistance welded tube welding and resistance welded tube welding controller Pending JPH05318141A (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP4131263A JPH05318141A (en) 1992-05-25 1992-05-25 Method and device for monitoring resistance welded tube welding and resistance welded tube welding controller
ES95108472T ES2108516T3 (en) 1992-03-25 1993-02-11 APPARATUS FOR THE DIRECTION OF THE WELDING.
DE69309763T DE69309763T2 (en) 1992-03-25 1993-02-11 Device for the production of pipes
EP95108472A EP0670194B1 (en) 1992-03-25 1993-02-11 Welding management apparatus
ES93102179T ES2103387T3 (en) 1992-03-25 1993-02-11 MACHINE FOR THE PRODUCTION OF TUBES.
EP93102179A EP0566834B1 (en) 1992-03-25 1993-02-11 Tube production machine
DE69314052T DE69314052T2 (en) 1992-03-25 1993-02-11 Welding guide device
TW082101046A TW221384B (en) 1992-03-25 1993-02-15
CA002150873A CA2150873C (en) 1992-03-25 1993-02-16 Welding management apparatus
MYPI93000277A MY109636A (en) 1992-03-25 1993-02-18 Welding management apparatus
CA002089849A CA2089849C (en) 1992-03-25 1993-02-18 Welding management apparatus
MYPI96000124A MY113115A (en) 1992-03-25 1993-02-18 Tube production machine
US08/020,373 US5265787A (en) 1992-03-25 1993-02-22 Welding management apparatus
KR1019930003601A KR960016155B1 (en) 1992-03-25 1993-03-11 Welding management apparatus
US08/104,505 US5360156A (en) 1992-03-25 1993-08-09 Welding management apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4131263A JPH05318141A (en) 1992-05-25 1992-05-25 Method and device for monitoring resistance welded tube welding and resistance welded tube welding controller

Publications (1)

Publication Number Publication Date
JPH05318141A true JPH05318141A (en) 1993-12-03

Family

ID=15053840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4131263A Pending JPH05318141A (en) 1992-03-25 1992-05-25 Method and device for monitoring resistance welded tube welding and resistance welded tube welding controller

Country Status (1)

Country Link
JP (1) JPH05318141A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504413A (en) * 2005-08-12 2009-02-05 サーマツール コーポレイション Apparatus and method for calculating operating parameters of forge welding apparatus
US8406504B2 (en) 2007-11-02 2013-03-26 Nippon Steel & Sumitomo Metal Corporation System and method for monitoring of welding state

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504413A (en) * 2005-08-12 2009-02-05 サーマツール コーポレイション Apparatus and method for calculating operating parameters of forge welding apparatus
US8406504B2 (en) 2007-11-02 2013-03-26 Nippon Steel & Sumitomo Metal Corporation System and method for monitoring of welding state

Similar Documents

Publication Publication Date Title
KR960005824B1 (en) High frequency electronic welding system
JP5182330B2 (en) Welding state monitoring device and method
JPS6345911B2 (en)
JPWO2018092492A1 (en) Operation monitoring apparatus, method and program for high frequency resistance welding and induction heating welding of ERW steel pipe
JP4469298B2 (en) Diagnosis method and apparatus for flash butt weld of steel plate
JP2803386B2 (en) ERW pipe welding management method and apparatus
US20080237197A1 (en) System and method for welding and real time monitoring of seam welded parts
JPH05318141A (en) Method and device for monitoring resistance welded tube welding and resistance welded tube welding controller
JP2504056B2 (en) Heat input control method and device for ERW pipe welding
JPH05318142A (en) Method and device for monitoring resistance welded tube welding and resistance welded tube welding controller
JP2515460B2 (en) ERW welded pipe manufacturing method
JPH0740061A (en) Pressure welding quantity detector for high-frequency resistance welding process
JPH05293670A (en) Method and device for monitoring resistance welded tube welding and control method for resistance welded tube welding
JPH04127984A (en) Method and device for laser welding
Kapil et al. Digitization of welding processes
JP4532977B2 (en) Welding method for ERW steel pipe with excellent welding quality
JPS6117366A (en) Method and device for automatic welding
JPH11254031A (en) Manufacture of tube by high frequency
TW202136711A (en) Inspection device and welding device
JPH0871638A (en) Method of controlling heat input in electric resistance welded tube
JPH03155479A (en) Welding control method for resistance welded tube
JP6699116B2 (en) Upset control device and control method in electric resistance welding process
CN111408858B (en) Welding machine detection method and system
WO2020184414A1 (en) Method for monitoring welding of electric resistance welded steel pipe, method for manufacturing electric resistance welded steel pipe, device for monitoring welding of electric resistance welded steel pipe, and device for manufacturing electric resistance welded steel pipe
KR100230060B1 (en) The control method of welding input calorie by using monitor information