JPH05318114A - Method for controlling output of consumable electrode type gas shield arc welding and welding device therefor - Google Patents

Method for controlling output of consumable electrode type gas shield arc welding and welding device therefor

Info

Publication number
JPH05318114A
JPH05318114A JP12857092A JP12857092A JPH05318114A JP H05318114 A JPH05318114 A JP H05318114A JP 12857092 A JP12857092 A JP 12857092A JP 12857092 A JP12857092 A JP 12857092A JP H05318114 A JPH05318114 A JP H05318114A
Authority
JP
Japan
Prior art keywords
welding
arc
output voltage
value
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12857092A
Other languages
Japanese (ja)
Other versions
JP3200154B2 (en
Inventor
Tsuneo Mita
常夫 三田
Hiroshi Tagami
博司 田上
Takayuki Kashima
孝之 鹿島
Kiroku Fujiwara
紀六 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP12857092A priority Critical patent/JP3200154B2/en
Publication of JPH05318114A publication Critical patent/JPH05318114A/en
Application granted granted Critical
Publication of JP3200154B2 publication Critical patent/JP3200154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate satisfactory welding even for the inexperienced person by measuring the value of a weld ripple element during welding, drawing a fuzzy inference in accordance with a prescribed control regulation and setting an output voltage. CONSTITUTION:A commercial AC is converted to DC by a rectifier 1 on the input side, and converted to a high-frequency AC by an inverter circuit 2. Through a welding transformer 3, a rectifier 4 on the output side, and a DC reactor 5, a DC is outputted to a welding zone. During the welding, a welding voltage is detected by a voltage detector 14; a short-circuited period and an arcing period are discriminated by a discriminator 17; the standard deviation between the two periods are processed in a fuzzy state by a fuzzy controller 22 through a prescribed fuzzy function and a rule of inference; an optimum arc voltage is calculated by an adder-subtractor circuit 11; and the inverter circuit 2 is operated. Even the inexperienced person can always obtain a satisfactory welding result equally as the experienced person.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、消耗電極式ガスシール
ドアーク溶接の出力制御方法およびその溶接装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power control method for consumable electrode type gas shielded arc welding and a welding apparatus therefor.

【0002】[0002]

【従来の技術】CO2あるいはマグ溶接などの消耗電極
式ガスシールドアーク溶接では、作業状況やワーク形状
に応じて溶接電流値を選定する。ところで、良好な溶接
結果を得るためには、溶接電流値に応じた適切なアーク
電圧が得られるように溶接機の出力電圧を設定する必要
がある。しかし、適切なアーク電圧は溶接電流値だけで
なく、作業環境や形態によっても異なる。このため、選
定した溶接電流値に対し、適正なアーク電圧が得られる
ように溶接機の出力電圧を設定するにはかなりの熟練と
技能の向上とが必要であり、初心者が容易に修得できる
ものではない。そこで、初心者でも熟練者と同等の溶接
結果が得られるようにするため、特開昭56−1582
81号公報(以下、第1の従来技術という)には、予め
溶接電流と適正出力電圧の関係をデータベース化してお
き、溶接電流が選定されると溶接機の出力電圧が一元的
に設定される機能を設けた技術が開示されている。ま
た、特開昭60−128340号公報(以下、第2の従
来技術という)ならびに特開昭60−162577号公
報(以下、第3の従来技術という)には、溶接中の電流
と電圧波形の観測結果を所定の関数で演算し、演算した
値が最小となるように出力電圧を設定する技術が開示さ
れている。
2. Description of the Related Art In consumable electrode type gas shielded arc welding such as CO 2 or MAG welding, the welding current value is selected according to the work situation and the work shape. By the way, in order to obtain a good welding result, it is necessary to set the output voltage of the welding machine so as to obtain an appropriate arc voltage according to the welding current value. However, the appropriate arc voltage varies not only with the welding current value but also with the work environment and form. For this reason, considerable skill and skill improvement are required to set the output voltage of the welding machine so that an appropriate arc voltage can be obtained for the selected welding current value. is not. Therefore, in order that even a beginner can obtain a welding result equivalent to that of a skilled person, JP-A-56-1582
In Japanese Patent Publication No. 81 (hereinafter referred to as the first prior art), a database of the relationship between the welding current and the proper output voltage is prepared in advance, and when the welding current is selected, the output voltage of the welding machine is set in a unified manner. A technology provided with a function is disclosed. Further, JP-A-60-128340 (hereinafter referred to as the second prior art) and JP-A-60-162577 (hereinafter referred to as the third prior art) disclose the current and voltage waveforms during welding. A technique is disclosed in which the observation result is calculated by a predetermined function and the output voltage is set so that the calculated value becomes the minimum.

【0003】[0003]

【発明が解決しようとする課題】たとえば大形構造物を
溶接する時には、溶接ケーブルを延長することが多い。
この場合、適切なアーク電圧とするためには、溶接機の
出力電圧高くし、延長した溶接ケーブルで発生する電圧
降下の影響を補正する必要がある。しかし、上記第1の
従来技術場合、適切なアーク電圧として自動設定される
出力電圧は、所定の基準条件ならびに標準作業環境のも
とでデータとして選定されたものであるため、標準作業
環境から外れる場合は適正値とはならない。なお、アー
ク電圧を検出するための検出線を溶接部まで配線すれば
適正値を得ることができるが、配線が増加すると操作性
は低下する。さらに、データとして選定されたものは特
定の熟練溶接作業者によって選定されたものであり、必
ずしも不偏的な適正値であるとは言えない。また、上記
第2のないし第3の従来技術の場合、延長ケーブル使用
時の電圧降下を補正することは可能であるが、所定の関
数で演算される値を最小とするには、出力電圧を操作し
て少なくとも3個の演算値を求める必要があり、適正な
アーク電圧を得る迄に時間を要する。本発明の目的は、
上記した課題を解決し、作業環境や形態の変化あるいは
作業者の熟練の程度に拘らず、常に良好な溶接結果を得
ることのできる消耗電極式ガスシールドアーク溶接の出
力制御方法、ならびにその方法を実行するための溶接装
置を提供することにある。
When welding large structures, for example, the welding cable is often extended.
In this case, in order to obtain an appropriate arc voltage, it is necessary to increase the output voltage of the welding machine and correct the influence of the voltage drop that occurs in the extended welding cable. However, in the case of the above-mentioned first conventional technique, the output voltage automatically set as an appropriate arc voltage is selected as data under a predetermined reference condition and standard working environment, and therefore deviates from the standard working environment. In this case, the value is not appropriate. An appropriate value can be obtained by wiring the detection line for detecting the arc voltage up to the welded portion, but if the wiring is increased, the operability deteriorates. Furthermore, what is selected as the data is one selected by a specific skilled welding operator, and it cannot be said that it is necessarily an unbiased and proper value. In addition, in the case of the second to third conventional techniques, it is possible to correct the voltage drop when the extension cable is used, but in order to minimize the value calculated by the predetermined function, the output voltage It is necessary to operate and obtain at least three calculated values, and it takes time to obtain a proper arc voltage. The purpose of the present invention is to
An output control method for consumable electrode type gas shielded arc welding, which solves the above-mentioned problems and can always obtain good welding results, regardless of changes in work environment and form or degree of skill of an operator, and a method thereof. It is to provide a welding device for performing.

【0004】[0004]

【課題を解決するための手段】上記した課題は、ワイヤ
を略定速度で送給し、短絡とアークを交互に繰返しなが
ら溶接をする消耗電極式ガスシールドアーク溶接の出力
制御方法において、溶接中に測定される少くとも2種類
の溶接波形因子の値を前件部、また出力電圧の操作量を
後件部とし、予め定めた制御規則に従ってファジィ推論
を実行することにより出力電圧設定の増減操作量を決定
することによりを解決される。
Means for Solving the Problems The above-mentioned problem is solved in a power control method of consumable electrode type gas shielded arc welding in which a wire is fed at a substantially constant speed and welding is performed while alternately repeating a short circuit and an arc. The value of at least two kinds of welding waveform factors measured in the above is used as the antecedent part, and the manipulated variable of the output voltage is used as the antecedent part, and the fuzzy inference is executed according to the predetermined control rule to increase or decrease the output voltage setting. Solved by determining the amount.

【0005】[0005]

【作用】外部特性を定電圧特性とした溶接装置では、ワ
イヤ送給速度すなわち溶接電流の設定値を一定に維持し
た状態で溶接機の出力電圧すなわちアーク電圧を変える
と、アーク電圧の変化に対応して短絡期間およびアーク
期間の標準偏差もそれぞれ変化する。そこで、短絡期間
およびアーク期間を測定してそれぞれの標準偏差を求
め、求めた標準偏差を所定のファジィ関数と推論規則に
よりファジィ処理し、適正アーク電圧とするための操作
量を演算して出力電圧を増減させるから、溶接機の出力
電圧は適正な値に自動設定される。
[Function] In a welding device with a constant voltage external characteristic, if the output voltage of the welding machine, that is, the arc voltage is changed while the wire feeding speed, that is, the setting value of the welding current is kept constant, it will respond to the change of the arc voltage. Then, the standard deviations of the short circuit period and the arc period also change. Therefore, the short circuit period and the arc period are measured to obtain the respective standard deviations, and the standard deviations thus obtained are fuzzy processed according to a predetermined fuzzy function and inference rules, and the manipulated variable for obtaining the proper arc voltage is calculated to calculate the output voltage. The output voltage of the welding machine is automatically set to an appropriate value because the value is increased or decreased.

【0006】[0006]

【実施例】図1は、本発明を実施するための溶接装置の
第1の構成例図である。同図において、1は商用交流を
直流に変換するための入力側整流器、2はパワー半導体
素子で構成されたインバータ回路で、上記直流を高周波
交流に変換する。3は溶接トランスでその入力側はイン
バータ回路2に接続されている。4は溶接トランス3の
出力側に接続された出力側整流器で、上記インバータ回
路2で作り出す高周波交流を再び直流に変換する。5は
直流リアクタで、出力側整流器4で整流された直流出力
を平滑する。6はワイヤで、ワイヤ送給装置7により溶
接部に供給される。8は母材。9は溶接電流設定器で、
ワイヤ6の送給速度を設定するためのものである。な
お、インバータ回路2は外部特性が定電圧特性となるよ
うに制御される。10は出力電圧設定器で、出力電圧V
0を設定するためのものである。11は加減算回路で、
出力電圧設定器10で設定される出力電圧V0と、後述
するファジィ制御器22から出力される出力電圧の操作
量△Vとを合成し、その結果をパルス幅制御回路12に
出力する。パルス幅制御回路12は加減算回路11から
の信号に基づき駆動回路13を介してインバータ回路2
の出力を制御する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a first structural example of a welding apparatus for carrying out the present invention. In the figure, 1 is an input side rectifier for converting commercial AC into DC, and 2 is an inverter circuit composed of power semiconductor elements, which converts the DC into high frequency AC. 3 is a welding transformer, the input side of which is connected to the inverter circuit 2. An output side rectifier 4 is connected to the output side of the welding transformer 3, and converts the high frequency alternating current generated by the inverter circuit 2 into a direct current again. A DC reactor 5 smoothes the DC output rectified by the output side rectifier 4. Reference numeral 6 denotes a wire, which is supplied to the welding portion by the wire feeding device 7. 8 is the base metal. 9 is a welding current setting device,
This is for setting the feeding speed of the wire 6. The inverter circuit 2 is controlled so that the external characteristic becomes a constant voltage characteristic. 10 is an output voltage setting device, which is an output voltage V
It is for setting 0 . 11 is an adder / subtractor circuit,
The output voltage V 0 set by the output voltage setting unit 10 and the manipulated variable ΔV of the output voltage output from the fuzzy controller 22 described later are combined, and the result is output to the pulse width control circuit 12. The pulse width control circuit 12 uses the signal from the adder / subtractor circuit 11 to drive the inverter circuit 2 via the drive circuit 13.
Control the output of.

【0007】14は電圧検出器。15は電圧検出器14
のサンプリング条件設定器。16は判定電圧設定器。1
7は短絡かアークかを判定する判定器で、サンプリング
条件設定器15で設定されるサンプリング間隔およびサ
ンプリング時間に従って、電圧検出器14で計測される
溶接電圧υと判定電圧設定器16で設定された判定電圧
Vjの大小を比較する。そして、判定器17は、υ≦Vj
のときには短絡期間であることの判定信号をTs測定器
18へ、またυ>Vjのときには、アーク期間であるこ
との判定信号をTa測定器19へ、それぞれ出力する。
上記Ts測定器18およびTa測定器19は、短絡とア
ークが交互に繰返される各短絡周期毎に、それぞれの時
間の計測値(TsおよびTaの値)を、短絡期間の標準
偏差sTsの演算器20ならびにアーク期間の標準偏差s
Taの演算器21へ入力する。なお、演算器20は、上記
Ts測定器18の出力を用いて、Tsの総和ΣTsおよ
びTsの平方和ΣTs2の演算、ならびにTsの個数N
のカウントを行い、標準偏差sTsの値を下記の式1によ
り算出し、その値をファジィ制御器22へ出力する。演
算器21も上記演算器20と同様にして標準偏差sTa
値を下記の式2により算出し、その値をファジィ制御器
22へ出力する。
Reference numeral 14 is a voltage detector. 15 is a voltage detector 14
Sampling condition setting device. 16 is a judgment voltage setting device. 1
Reference numeral 7 is a judgment device for judging whether it is a short circuit or an arc. The welding voltage υ measured by the voltage detector 14 and the judgment voltage setting device 16 are set in accordance with the sampling interval and sampling time set by the sampling condition setting device 15. The magnitude of the judgment voltage Vj is compared. Then, the determiner 17 determines that ν ≦ Vj
In the case of, the determination signal of the short-circuit period is output to the Ts measuring device 18, and in the case of υ> Vj, the determination signal of the arc period is output to the Ta measuring device 19.
The Ts measuring device 18 and the Ta measuring device 19 calculate the standard deviation s Ts of the short-circuit period for the measured value (Ts and Ta value) of each time for each short-circuit cycle in which the short circuit and the arc are alternately repeated. Standard deviation s of instrument 20 and arc period
Input to the Ta calculator 21. The arithmetic unit 20 uses the output of the Ts measuring unit 18 to calculate the sum ΣTs of Ts and the sum ΣTs 2 of squares of Ts, and the number N of Ts.
Is calculated, the value of the standard deviation s Ts is calculated by the following equation 1, and the value is output to the fuzzy controller 22. The arithmetic unit 21 also calculates the value of the standard deviation s Ta by the following equation 2 in the same manner as the arithmetic unit 20 and outputs the value to the fuzzy controller 22.

【0008】[0008]

【数1】 [Equation 1]

【0009】[0009]

【数2】 [Equation 2]

【0010】設定器23は、ファジィ推論の前件部を構
成する因子である標準偏差sTs、sTaおよび後件部を構
成する因子△V(出力電圧操作量)のファジィ変数、な
らびにこれらの因子についての推論規則を入力するため
のものである。そして、ファジイ制御器22は、上記設
定器23により設定されるファジィ変数と推論規則に基
づき、入力された標準偏差sTsおよび標準偏差sTaの推
論規則への適合度を求め、その適合度に見合った推論結
果を各規則ごとに算出する。そして、各推論規則ごとに
得られた推論結果を総合し、全体としての推論結果△V
を重心法で求め、上記加算回路11へ出力する。
The setter 23 determines the standard deviations s Ts and s Ta which are the factors constituting the antecedent part of the fuzzy inference and the fuzzy variables of the factor ΔV (output voltage manipulated variable) which constitutes the antecedent part, and these variables. It is for inputting inference rules about factors. Then, the fuzzy controller 22 obtains the conformity of the input standard deviation s Ts and standard deviation s Ta to the inference rule based on the fuzzy variable and the inference rule set by the setter 23, Calculate the inference results that match each rule. Then, the inference results obtained for each inference rule are integrated, and the overall inference result ΔV
Is calculated by the centroid method and is output to the adder circuit 11.

【0011】以下、ファジィ制御器22における推論方
法をさらに詳しく説明する。 (1)ワイヤ先端に形成される溶滴の母材への移行形態
が短絡移行の場合。 溶滴の移行形態が短絡移行の場合、ワイヤ送給速度は比
較的遅く、溶接電流は比較的小さい。そして、この時の
標準偏差sTsおよび標準偏差sTaは、アーク電圧に応じ
てそれぞれ図2および図3に示すように変化する。そこ
で、標準偏差sTsおよび標準偏差sTaおよび出力電圧の
操作量△Vのファジィ変数を、それぞれ図4〜図6のよ
うに定めるとともに、表1に示す合計15個の推論規則
を設定する。
The inference method in the fuzzy controller 22 will be described in more detail below. (1) When the transfer form of the droplet formed at the tip of the wire to the base material is a short-circuit transfer. When the droplet transfer form is a short-circuit transfer, the wire feeding speed is relatively slow and the welding current is relatively small. Then, the standard deviation s Ts and the standard deviation s Ta at this time change according to the arc voltage as shown in FIGS. 2 and 3, respectively. Therefore, the standard deviation s Ts, the standard deviation s Ta, and the fuzzy variables of the manipulated variable ΔV of the output voltage are set as shown in FIGS. 4 to 6, respectively, and a total of 15 inference rules shown in Table 1 are set.

【0012】[0012]

【表1】 [Table 1]

【0013】なお、表1における推論規則のうち、
1,R2,R3を代表例にとり、以下に説明する。な
お、括弧内の記号は表1に示すものである。 R1; もしsTsが小さく(S)、かつsTaがやや小さ
い(SM)ときには出力電圧を変化させない(△V=Z
0) R2; もしsTsが小さく(S)、かつsTaが極めて大
きい(BB)ときには出力電圧を大幅に低下させる(△
V=NB) R3; もしsTsが大きく(B)、かつsTaがやや大き
い(MB)ときには出力電圧を大幅に上昇させる(△V
=PB) すなわち出力電圧設定器10で設定された出力電圧V0
が適正電圧に対して低過ぎた場合、上記図2および図3
に示したように、sTsの値が大きくまたsTaの値がやや
大きくなるため、上記の推論規則R3が適用されて出力
電圧を大幅に上昇させるという推論結果(△V=PB)
を得る。また、出力電圧設定器10で設定された出力電
圧V0が適正であった場合、sT sの値が小さくまたsTa
の値がやや小さくなるため、上記の推論規則R1が適用
され、出力電圧を変化させないという推論結果(△V=
Z0)を得る。さらに、出力電圧設定器10で設定され
た出力電圧V0が適正電圧に対して高過ぎた場合、sTs
の値が小さくまたsTaの値が極めて大きくなるため、上
記推論規則R2が適用され、出力電圧を大幅に低下させ
るという推論結果(△V=NB)を得る。なお、その他
のケースの場合も上記R1,R2,R3の場合と同様に、
出力電圧の設定値が適正電圧より低い場合には、適正電
圧からのズレ量に応じた出力電圧の増加量が、また出力
電圧の設定値が適正電圧より高い場合には、その程度に
応じた出力電圧の減少量がファジィ推論結果△Vとして
与えられる。すなわち、当初の出力電圧の設定がどのよ
うな値であっても、その設定値のもとで所定の時間テス
ト溶接を行い、その時のsTsおよびsTaの値を用いて上
述のファジィ推論を行えば、出力電圧を常に適正な値に
設定できる。
Among the inference rules in Table 1,
R 1 , R 2 , and R 3 will be described below as typical examples. The symbols in parentheses are shown in Table 1. R 1 ; If s Ts is small (S) and s Ta is slightly small (SM), the output voltage is not changed (ΔV = Z
0) R 2 ; If s Ts is small (S) and s Ta is extremely large (BB), the output voltage is significantly reduced (Δ
V = NB) R 3 ; If s Ts is large (B) and s Ta is slightly large (MB), the output voltage is significantly increased (ΔV
= PB) That is, the output voltage V 0 set by the output voltage setting unit 10
2 is lower than the proper voltage,
As shown in, since the value of s Ts is large and the value of s Ta is slightly large, the inference result that the above inference rule R 3 is applied and the output voltage is significantly increased (ΔV = PB)
To get Further, when the output voltage V 0 set by the output voltage setting device 10 is proper, the value of s T s is small and s Ta
Since the value of is slightly smaller, the above inference rule R 1 is applied and the inference result that the output voltage is not changed (ΔV =
Z0) is obtained. Furthermore, if the output voltage V 0 set by the output voltage setting unit 10 is too high with respect to the proper voltage, s Ts
Since the value of is small and the value of s Ta is extremely large, the above inference rule R 2 is applied, and the inference result (ΔV = NB) is obtained that the output voltage is significantly reduced. In other cases, as in the case of R 1 , R 2 and R 3 above,
When the set value of the output voltage is lower than the proper voltage, the amount of increase in the output voltage according to the amount of deviation from the proper voltage, and when the set value of the output voltage is higher than the proper voltage, the extent of the increase The reduction amount of the output voltage is given as the fuzzy inference result ΔV. That is, no matter what the initial output voltage setting is, test welding is performed for a predetermined time under the set value, and the fuzzy inference is performed using the values of s Ts and s Ta at that time. If done, the output voltage can always be set to an appropriate value.

【0014】(2)ワイヤ先端に形成される溶滴の母材
への移行形態がグロビュール移行の場合。 溶滴の移行形態がグロビュール移行の場合、ワイヤ送給
速度は比較的速く、溶接電流は中程度ないし比較的大き
い。そして、この時の標準偏差sTsおよび標準偏差sTa
は、アーク電圧に応じてそれぞれ図7および図8に示す
ように変化する。そこで、標準偏差sTsおよび標準偏差
Taおよび出力電圧の操作量△Vのファジィ変数を、そ
れぞれ図9〜図11のように定めるとともに、表2に示
す推論規則を設定すると、上記(1)の短絡移行の場合
と同様に、当初の出力電圧の設定がどのような値であっ
ても、その設定値のもとで所定の時間テスト溶接を行
い、その時のsTsおよびsTaの値を用いて上述のファジ
ィ推論を行えば、出力電圧を常に適正な値に設定でき
る。
(2) When droplets formed at the tip of the wire are transferred to the base material by globule transfer. When the droplet transfer form is globule transfer, the wire feed rate is relatively fast, and the welding current is medium to relatively large. Then, the standard deviation s Ts and the standard deviation s Ta at this time
Changes according to the arc voltage as shown in FIGS. 7 and 8, respectively. Therefore, the standard deviation s Ts, the standard deviation s Ta, and the fuzzy variables of the manipulated variable ΔV of the output voltage are set as shown in FIGS. 9 to 11, respectively, and the inference rules shown in Table 2 are set. As in the case of the short-circuit transfer, the test welding is performed for a specified time under the set value of the initial output voltage, and the values of s Ts and s Ta at that time are set. If the above fuzzy inference is performed using the output voltage, the output voltage can always be set to an appropriate value.

【0015】[0015]

【表2】 [Table 2]

【0016】以下(A),(B)に、良好な結果が得ら
れたファジィ変数の例を、図4〜6ならびに図9〜11
に基づいて示す。 (A)溶滴の母材への移行形態が短絡移行の場合。 なお、ワイヤ送給速度は3m/minである。 図4において、 a1=1.2ms、a2=1.5ms、a3=2.0ms、a
4=2.4ms、a5=2.7ms、a6=3.2ms、a7
=3.5ms、 図5において、 b1=−0.3ms、b2=0.5ms、b3=3.0ms、
4=3.8ms、b5=4.7ms、b6=7.2ms、b
7=b8=8.0ms、b9=11.3ms、b10=13.0
ms、b11=15.5ms、b12=18.0ms、b13
19.7ms 図6において、 c1=c2=−6.5V、c3=c4=c5=−4.3V、c6
=c7=c8=−2.2V、c9=c10=c11=0V、c12
=c13=c14=2.2V、c15=c16=c17=4.3V、
18=c19=6.5V (B)溶滴の母材への移行形態がグロビュール移行の場
合。 なお、ワイヤ送給速度は7.5m/minである。 図9において a´1=1.3ms、a´2=1.4ms、a´3=a´4=a
´5=1.6ms、a´6=1.8ms、a´7=1.9ms 図10において b´1=6ms、b´2=7ms、b´3=10ms、b´4
12ms、b´5=13ms、b´6=17ms、b´7=1
8ms、b´8=20ms、b´9=23ms、b´10=2
4ms、b´11=25ms、b´12=28ms、b´13
29ms 図11において c´1=c´2=−4.3V、c´3=c´4=c´5=−
2.2V、c´6=c´7=c´8=0V、c´9=c´10
=c´11=2.2V、c´12=c´13=c´14=4.3
V、c´15=c´16=6.5Vのようである。
In the following (A) and (B), examples of fuzzy variables for which good results are obtained are shown in FIGS.
Based on. (A) When the transfer form of the droplets to the base material is a short circuit transfer. The wire feeding speed is 3 m / min. In FIG. 4, a 1 = 1.2 ms, a 2 = 1.5 ms, a 3 = 2.0 ms, a
4 = 2.4ms, a 5 = 2.7ms , a 6 = 3.2ms, a 7
= 3.5 ms, in FIG. 5, b 1 = -0.3ms, b 2 = 0.5ms, b 3 = 3.0ms,
b 4 = 3.8 ms, b 5 = 4.7 ms, b 6 = 7.2 ms, b
7 = b 8 = 8.0ms, b 9 = 11.3ms, b 10 = 13.0
ms, b 11 = 15.5 ms, b 12 = 18.0 ms, b 13 =
In 19.7ms Figure 6, c 1 = c 2 = -6.5V, c 3 = c 4 = c 5 = -4.3V, c 6
= C 7 = c 8 = -2.2V , c 9 = c 10 = c 11 = 0V, c 12
= C 13 = c 14 = 2.2V, c 15 = c 16 = c 17 = 4.3V,
c 18 = c 19 = 6.5V (B) When the droplet transfer form to the base material is globule transfer. The wire feeding speed is 7.5 m / min. In FIG. 9, a ′ 1 = 1.3 ms, a ′ 2 = 1.4 ms, a ′ 3 = a ′ 4 = a
5 = 1.6 ms, a ′ 6 = 1.8 ms, a ′ 7 = 1.9 ms In FIG. 10, b ′ 1 = 6 ms, b ′ 2 = 7 ms, b ′ 3 = 10 ms, b ′ 4 =
12ms, b'5 = 13ms, b' 6 = 17ms, b'7 = 1
8ms, b'8 = 20ms, b' 9 = 23ms, b'10 = 2
4ms, b'11 = 25ms, b' 12 = 28ms, b'13 =
29 ms In FIG. 11, c ′ 1 = c ′ 2 = −4.3 V, c ′ 3 = c ′ 4 = c ′ 5 = −
2.2V, c'6 = c'7 = c'8 = 0V, c'9 = c'10
= C'11 = 2.2V, c'12 = c'13 = c'14 = 4.3
V, are as c'15 = c'16 = 6.5V.

【0017】図12は、本発明を実施するための溶接装
置の第2の構成例図である。なお、図1と同じものは同
一の符号を付してある。同図において、31は、2次巻
線32を備えた直流リアクタ。なお、2次巻線32のイ
ングスタンスはL2である。33は検出器で、2次巻線
32の端子間に誘起される電圧を検出する。34は判定
器で、短絡とアークを判定する。また、35は表示器
で、得られた出力電圧設定値の増減値を表示する。以
下、第2の構成例における短絡とアークの判定方法につ
いて説明する。溶接電流が流れると、2次巻線32の端
子間に誘起される電圧e2は、溶接電流の時間的変化d
i/dtを用いて、式3で表わすことができる。 e2=−L2・di/dt 式3 ところで、短絡とアークを交互に繰返す消耗電極式ガス
シールドアーク溶接では、短絡期間中は電流が増加し、
アーク期間中は電流が減少するため、短絡期間中のdi
/dtは正、アーク期間中のdi/dtは負となる。し
たがって、2次巻線32の端子間の電圧e2は、短絡期
間中e2<0、アーク期間中e2≧0となる。判定器34
は、検出器33から入力される電圧e2に基づいて、e2
<0の場合は、短絡期間であることの判定信号をTs測
定器18へ、e2≧0の場合は、アーク期間であること
の判定信号をTa測定器19へ、それぞれ出力する。こ
のような構成とすることによって、アーク電圧の検出を
行わなくても短絡とアークの判定が可能となり、より簡
単な構成で本発明を実施することができる。そして、こ
の構成例では、表示器35を設けたから、同一の溶接作
業を引き続き行う場合、表示器35の表示に合わせて出
力電圧の設定値を変更すれば、初めから適切な溶接がで
きる。なお、表示器35で表示させるものとしては出力
電圧設定値の増減値だけでなく、出力電圧設定値と出力
電圧設定値の増減値の両者もしくはその和を表示するよ
うにしてもよい。
FIG. 12 is a second structural example view of a welding apparatus for carrying out the present invention. The same components as those in FIG. 1 are designated by the same reference numerals. In the figure, 31 is a DC reactor provided with a secondary winding 32. The secondary coil 32 has an stance of L 2 . A detector 33 detects the voltage induced between the terminals of the secondary winding 32. Reference numeral 34 is a judging device for judging short circuit and arc. Further, 35 is a display, which displays the increase / decrease value of the obtained output voltage set value. Hereinafter, a method of determining a short circuit and an arc in the second configuration example will be described. When the welding current flows, the voltage e 2 induced between the terminals of the secondary winding 32 changes the welding current with time d.
It can be expressed by Equation 3 using i / dt. e 2 = −L 2 · di / dt Formula 3 By the way, in the consumable electrode type gas shield arc welding in which short circuit and arc are alternately repeated, the current increases during the short circuit period,
Since the current decreases during the arc period, di during the short circuit period
/ Dt is positive and di / dt during the arc period is negative. Therefore, the voltage e 2 between the terminals of the secondary winding 32 is e 2 <0 during the short circuit period and e 2 ≧ 0 during the arc period. Judge 34
Is based on the voltage e 2 input from the detector 33, e 2
In the case of <0, the determination signal of the short-circuit period is output to the Ts measuring device 18, and in the case of e 2 ≧ 0, the determination signal of the arc period is output to the Ta measuring device 19. With such a configuration, it becomes possible to determine a short circuit and an arc without detecting the arc voltage, and the present invention can be implemented with a simpler configuration. Further, in this configuration example, since the indicator 35 is provided, if the same welding work is continuously performed, appropriate welding can be performed from the beginning by changing the set value of the output voltage according to the display of the indicator 35. The display 35 may display not only the increase / decrease value of the output voltage set value but also the output voltage set value and the increase / decrease value of the output voltage set value, or the sum thereof.

【0018】なお、上記2つの実施例では、標準偏差s
Tsおよび標準偏差sTaを前件部としてファジィ推論を行
う方法について説明したが、前件部として用いる因子は
TsとsTaにのみ限定されるものではなく、アーク電圧
の差別化が可能であれば、どのような因子を用いても良
い。すなわち、例えば、Ts測定器18およびTa測定器
19で測定される短絡期間Tsおよびアーク期間Taの
標準偏差の代わりに平均値を用いても良い。また、溶接
電流検出器を設けることにより溶接電流値を検出し、短
絡期間Tsにおける溶接電流の平均値である短絡平均電
流の標準偏差sIsおよびアーク期間Taにおける溶接電
流の平均値であるアーク平均電流の標準偏差sIaを用い
ても同様の結果を得ることができる。さらに、前件部を
構成する因子は2個に限られるものではなく、例えば、
上記のsTs、sTa、sIsおよびsIaの4個などとすれ
ば、推論の精度をさらに向上できることは言うまでもな
い。また、ファジィ推論で求める出力電圧の操作量は、
必ずしも最適電圧を得るためのものとする必要はなく、
どのような出力電圧を得るかは、作業状況に応じて、す
なわち、余盛を小さくしたいとか、溶け込みを深くした
い等の作業状況に応じて選定すれば良いことも容易に推
察される。
In the above two embodiments, the standard deviation s
Although the method of performing fuzzy inference using Ts and standard deviation s Ta as the antecedent has been described, the factors used as the antecedent are not limited to s Ts and s Ta , and the arc voltage can be differentiated. Any factor may be used as long as it is available. That is, for example, an average value may be used instead of the standard deviation of the short circuit period Ts and the arc period Ta measured by the Ts measuring device 18 and the Ta measuring device 19. Further, the welding current value is detected by providing a welding current detector, and the standard deviation s Is of the short circuit average current which is the average value of the welding current during the short circuit period Ts and the arc average which is the average value of the welding current during the arc period Ta. Similar results can be obtained by using the standard deviation s Ia of the current. Furthermore, the factors that make up the antecedent part are not limited to two, and for example,
It goes without saying that the accuracy of inference can be further improved by using the above four s Ts , s Ta , s Is, and s Ia . Also, the manipulated variable of the output voltage obtained by fuzzy inference is
It is not always necessary to obtain the optimum voltage,
It can be easily inferred that what kind of output voltage should be obtained may be selected according to the work situation, that is, the work situation such as the reduction of excess or the deep penetration.

【0019】[0019]

【発明の効果】以上詳述したように、本発明によれば、
当初の出力電圧の設定がどのような値であっても、出力
電圧を適正な値に自動的に変更することができる。従っ
て、延長ケーブルの付加、電源電圧、ワイヤ突出し長さ
の変化などが生じても、従来熟練が必要とされている出
力電圧の微調整を行う必要はなく、非熟練者でも熟練者
と同様、常に良好な溶接結果を得ることができるという
効果がある。
As described in detail above, according to the present invention,
Whatever value the initial output voltage is set to, the output voltage can be automatically changed to an appropriate value. Therefore, even if an extension cable is added, the power supply voltage, the wire protrusion length is changed, etc., it is not necessary to make fine adjustment of the output voltage, which has been required by the skilled artisan. There is an effect that a good welding result can always be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するための溶接装置の第1の構成
例。
FIG. 1 is a first configuration example of a welding device for carrying out the present invention.

【図2】短絡移行領域における標準偏差sTsとアーク電
圧の関係を示す図。
FIG. 2 is a diagram showing a relationship between a standard deviation s Ts and an arc voltage in a short circuit transition region.

【図3】短絡移行領域における標準偏差sTaとアーク電
圧の関係を示す図。
FIG. 3 is a diagram showing a relationship between a standard deviation s Ta and an arc voltage in a short circuit transition region.

【図4】短絡移行領域を対象としたsTsのファジィ変数
の一例。
FIG. 4 is an example of a fuzzy variable of s Ts for a short-circuit transition region.

【図5】短絡移行領域を対象としたsTaのファジィ変数
の一例。
FIG. 5 is an example of a fuzzy variable of s Ta for a short-circuit transition region.

【図6】短絡移行領域を対象とした△Vのファジィ変数
の一例。
FIG. 6 shows an example of a ΔV fuzzy variable for a short-circuit transition region.

【図7】グロビュール移行領域におけるsTsとアーク電
圧の関係を示す図。
FIG. 7 is a diagram showing a relationship between s Ts and an arc voltage in a globule transition region.

【図8】グロビュール移行領域におけるsTaとアーク電
圧の関係を示す図。
FIG. 8 is a diagram showing a relationship between s Ta and arc voltage in a globule transition region.

【図9】グロビュール移行領域を対象としたsTsのファ
ジイ変数の一例。
FIG. 9 is an example of a fuzzy variable of s Ts for a globule transition region.

【図10】グロビュール移行領域を対象としたsTaのフ
ァジイ変数の一例。
FIG. 10 is an example of a fuzzy variable of s Ta for a globule transition region.

【図11】グロビュール移行領域を対象とした△Vのフ
ァジイ変数の一例。
FIG. 11 shows an example of a fuzzy variable of ΔV for a globule transition area.

【図12】本発明を実施するための溶接装置の第2の構
成例。
FIG. 12 is a second configuration example of a welding device for carrying out the present invention.

【符号の説明】[Explanation of symbols]

2 インバータ回路 5,31 直流リアク
タ 6 ワイヤ 10 出力電圧設
定器 11 加減算回路 12 パルス幅
制御回路 14 電圧検出器 15 サンプリ
ング条件設定器 16 判定電圧設定器 17 判定器 18 Ts測定器 19 Ta測定
器 20,21 演算器 22 フ
ァジィ制御器 23 設定器 32 2次巻線 33 検出器 34 判定器 35 表示器
2 Inverter circuit 5,31 DC reactor 6 Wire 10 Output voltage setting device 11 Addition / subtraction circuit 12 Pulse width control circuit 14 Voltage detector 15 Sampling condition setting device 16 Judgment voltage setting device 17 Judgment device 18 Ts measurement device 19 Ta measurement device 20, 21 arithmetic unit 22 fuzzy controller 23 setting device 32 secondary winding 33 detector 34 judgment device 35 indicator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤原 紀六 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kihoku Fujiwara Co., Ltd. Machinery Research Institute, 502 Jinritsucho, Tsuchiura, Ibaraki Prefecture

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ワイヤを略定速度で送給し、短絡とアー
クを交互に繰返しながら溶接をする消耗電極式ガスシー
ルドアーク溶接の出力制御方法において、溶接中に測定
される少くとも2種類の溶接波形因子の値を前件部、ま
た出力電圧の操作量を後件部とし、予め定めた制御規則
に従ってファジィ推論を実行することにより出力電圧設
定の増減操作量を決定することを特徴とする消耗電極式
ガスシールドアーク溶接の出力制御方法。
1. A power control method for consumable electrode type gas shielded arc welding in which a wire is fed at a substantially constant speed and welding is performed while alternately repeating a short circuit and an arc, and at least two types of measurements are performed during welding. The value of the welding waveform factor is the antecedent part, and the manipulated variable of the output voltage is the consequent part, and the fuzzy inference is executed according to a predetermined control rule to determine the increased or decreased manipulated variable of the output voltage setting. Output control method for consumable electrode gas shield arc welding.
【請求項2】 前件部として入力する溶接波形因子の値
が、短絡期間およびアーク期間の標準偏差であることを
特徴とする請求項1に記載の消耗電極式ガスシールドア
ーク溶接の出力制御方法。
2. The output control method for consumable electrode type gas shielded arc welding according to claim 1, wherein the value of the welding waveform factor input as the antecedent is the standard deviation of the short circuit period and the arc period. ..
【請求項3】 ファジィ推論によって求める出力電圧の
増減操作量が、適正アーク電圧を得るためのものである
ことを特徴とする請求項1または請求項2いずれかに記
載の消耗電極式ガスシールドアーク溶接の出力制御方
法。
3. The consumable electrode type gas shield arc according to claim 1, wherein the amount of increase / decrease operation of the output voltage obtained by fuzzy reasoning is for obtaining an appropriate arc voltage. Welding output control method.
【請求項4】 ワイヤを略定速度で送給し、短絡とアー
クを交互に繰返しながら溶接をする消耗電極式ガスシー
ルドアーク溶接の溶接装置において、少くとも2種類の
溶接波形因子の算出手段と、その算出手段の算出結果を
入力として予め定めた制御規則に従い所定のアーク状態
を得るための出力電圧の操作量を推論するファジィ制御
器と、上記ファジィ制御器の出力に応じて溶接電源の出
力電圧設定値の増減を行う手段とを備えたことを特徴と
する消耗電極式ガスシールドアーク溶接の溶接装置。
4. A consumable electrode type gas shield arc welding welding device for feeding a wire at a substantially constant speed and alternately repeating a short circuit and an arc, and a means for calculating at least two kinds of welding waveform factors. A fuzzy controller which infers the manipulated variable of the output voltage for obtaining a predetermined arc state according to a predetermined control rule by using the calculation result of the calculation means as an input, and the output of the welding power source according to the output of the fuzzy controller A welding device for gas shielded arc welding of a consumable electrode, comprising: a means for increasing / decreasing a voltage setting value.
【請求項5】 短絡期間とアーク期間の判別手段が出力
回路に接続された2次巻線を備える直流リアクタである
ことを特徴とする請求項4に記載の消耗電極式ガスシー
ルドアーク溶接の溶接装置。
5. The consumable electrode type gas shielded arc welding according to claim 4, wherein the means for discriminating the short-circuit period and the arc period is a DC reactor having a secondary winding connected to the output circuit. apparatus.
【請求項6】 溶接電源の出力電圧設定値の増減値また
は出力電圧設定値と出力電圧設定値の増減値の両者もし
くはその和を表示する手段を備えたことを特徴とする請
求項4に記載の消耗電極式ガスシールドアーク溶接の溶
接装置。
6. The method according to claim 4, further comprising means for displaying an increase / decrease value of an output voltage set value of the welding power source, an output voltage set value and an increase / decrease value of the output voltage set value, or a sum thereof. Welding equipment for consumable electrode type gas shield arc welding.
JP12857092A 1992-05-21 1992-05-21 Power control method of consumable electrode type gas shielded arc welding and welding device therefor Expired - Fee Related JP3200154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12857092A JP3200154B2 (en) 1992-05-21 1992-05-21 Power control method of consumable electrode type gas shielded arc welding and welding device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12857092A JP3200154B2 (en) 1992-05-21 1992-05-21 Power control method of consumable electrode type gas shielded arc welding and welding device therefor

Publications (2)

Publication Number Publication Date
JPH05318114A true JPH05318114A (en) 1993-12-03
JP3200154B2 JP3200154B2 (en) 2001-08-20

Family

ID=14988025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12857092A Expired - Fee Related JP3200154B2 (en) 1992-05-21 1992-05-21 Power control method of consumable electrode type gas shielded arc welding and welding device therefor

Country Status (1)

Country Link
JP (1) JP3200154B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100366373C (en) * 2003-04-25 2008-02-06 北京石油化工学院 Double constant currents of intelligent inversion soldering machine and self-optimizing control method
JP2011098375A (en) * 2009-11-06 2011-05-19 Panasonic Corp Method and apparatus for arc welding
JP2013154381A (en) * 2012-01-31 2013-08-15 Panasonic Corp Arc welding apparatus
CN104281183A (en) * 2014-08-25 2015-01-14 南京航空航天大学 Non-contact power transmission voltage stabilizing system based on fuzzy feedback

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100366373C (en) * 2003-04-25 2008-02-06 北京石油化工学院 Double constant currents of intelligent inversion soldering machine and self-optimizing control method
JP2011098375A (en) * 2009-11-06 2011-05-19 Panasonic Corp Method and apparatus for arc welding
JP2013154381A (en) * 2012-01-31 2013-08-15 Panasonic Corp Arc welding apparatus
CN104281183A (en) * 2014-08-25 2015-01-14 南京航空航天大学 Non-contact power transmission voltage stabilizing system based on fuzzy feedback
CN104281183B (en) * 2014-08-25 2016-04-27 南京航空航天大学 A kind of transmitting non-contact electric energy voltage-stabilizing system based on fuzzy feedback

Also Published As

Publication number Publication date
JP3200154B2 (en) 2001-08-20

Similar Documents

Publication Publication Date Title
JP3209821B2 (en) Power control method of consumable electrode type gas shielded arc welding and welding device therefor
CN109834367B (en) System and method for torch oscillation
US6639181B2 (en) Apparatus and method for assessing electrode tip wear
JPS59206162A (en) Controller for arc length of arc welder
CN101505903A (en) Control of a welding device
JPH0487722A (en) Control device of electric discharge machine
JPH05318114A (en) Method for controlling output of consumable electrode type gas shield arc welding and welding device therefor
EP0112579A1 (en) Method and apparatus for welding line tracer control
JP3215567B2 (en) Power control method and apparatus for consumable electrode type gas shielded arc welding
JP3200159B2 (en) Consumable electrode type gas shielded arc welding welding method and welding apparatus
Bicknell et al. Arc voltage sensor for monitoring of penetration in TIG welds
JP3176168B2 (en) Power control method of consumable electrode type gas shielded arc welding and welding device therefor
JP3176167B2 (en) Power control method of consumable electrode type gas shielded arc welding
JP3169288B2 (en) Power control method of consumable electrode type gas shielded arc welding and welding device therefor
JP3169295B2 (en) Power control method and apparatus for consumable electrode type gas shielded arc welding
JP2910051B2 (en) Electrode length adjustment method and electrode length measurement device in arc furnace
JP3202828B2 (en) Power control method of consumable electrode type gas shielded arc welding and welding device therefor
JP3241527B2 (en) Consumable electrode type gas shielded arc welding equipment
JP6338420B2 (en) Control method and control apparatus for resistance welding machine
JPH0644542Y2 (en) Inverter resistance welding machine control or measuring device
KR102160745B1 (en) Method for monitoring hybrid welder and hybrid welding system thereof
JP2000288732A (en) Method and device for optimum-controlling arc welding
WO2020153078A1 (en) Pulse arc welding profile control method, control device, welding system, welding program, and welding power supply
JP4348509B2 (en) Arc welding equipment
JPH07120160A (en) Furnace state-detecting method for direct current electric furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010605

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees