JP3215567B2 - Power control method and apparatus for consumable electrode type gas shielded arc welding - Google Patents

Power control method and apparatus for consumable electrode type gas shielded arc welding

Info

Publication number
JP3215567B2
JP3215567B2 JP01500594A JP1500594A JP3215567B2 JP 3215567 B2 JP3215567 B2 JP 3215567B2 JP 01500594 A JP01500594 A JP 01500594A JP 1500594 A JP1500594 A JP 1500594A JP 3215567 B2 JP3215567 B2 JP 3215567B2
Authority
JP
Japan
Prior art keywords
welding
output voltage
arc
voltage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01500594A
Other languages
Japanese (ja)
Other versions
JPH07214315A (en
Inventor
博司 田上
常夫 三田
孝之 鹿島
常夫 品田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Via Mechanics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Via Mechanics Ltd filed Critical Hitachi Via Mechanics Ltd
Priority to JP01500594A priority Critical patent/JP3215567B2/en
Publication of JPH07214315A publication Critical patent/JPH07214315A/en
Application granted granted Critical
Publication of JP3215567B2 publication Critical patent/JP3215567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding Control (AREA)
  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、消耗電極式ガスシール
ドアーク溶接の出力制御方法およびその装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for controlling the output of gas-shielded arc welding using consumable electrodes.

【0002】[0002]

【従来の技術】シールドガスとしてCO2あるいはAr
を主成分とするArとCO2との混合ガス(いわゆるマ
グガス。)を用いる消耗電極式ガスシールドアーク溶接
では、作業状況やワーク形状に応じて溶接電流値を選定
する。ところで、良好な溶接結果を得るためには、溶接
電流値に応じた適切なアーク電圧が得られるように溶接
機の出力電圧を設定する必要がある。しかし、適切なア
ーク電圧は溶接電流値だけでなく、作業環境や形態によ
っても異なる。このため、選定した溶接電流値に対し、
適正なアーク電圧が得られるように溶接機の出力電圧を
設定するにはかなりの熟練と技能の向上とが必要であ
り、初心者が容易に修得できるものではない。そこで、
初心者でも熟練者と同等の溶接結果が得られるようにす
るため、特開昭56−158281号公報(以下、第1
の従来技術という)には、予め溶接電流と適正出力電圧
の関係をデータベース化しておき、溶接電流が選定され
ると溶接機の出力電圧が一元的に設定される機能を設け
た技術が開示されている。また、特開昭60−1283
40号公報(以下、第2の従来技術という)ならびに特
開昭60−162577号公報(以下、第3の従来技術
という)には、溶接中の電流と電圧波形の観測結果を所
定の関数で演算し、演算した値が最小となるように出力
電圧を設定する技術が開示されている。◆ところで、た
とえば大形構造物を溶接する時には、溶接ケーブルを延
長することが多い。この場合、適切なアーク電圧とする
ためには、溶接機の出力電圧を高くし、延長した溶接ケ
ーブルで発生する電圧降下の影響を補正する必要があ
る。しかし、上記第1の従来技術の場合、適切なアーク
電圧として自動設定される出力電圧は、所定の基準条件
ならびに標準作業環境のもとでデータとして選定された
ものであるため、標準作業環境から外れる場合は適正値
とはならない。なお、アーク電圧を検出するための検出
線を溶接部まで配線すれば適正値を得ることができる
が、配線が増加すると操作性は低下する。さらに、デー
タとして選定されたものは特定の熟練溶接作業者によっ
て選定されたものであり、必ずしも不偏的な適正値であ
るとは言えない。また、上記第2ないし第3の従来技術
の場合、延長ケーブル使用時の電圧降下を補正すること
は可能であるが、所定の関数で演算される値を最小とす
るには、出力電圧を操作して少なくとも3個の演算値を
求める必要があり、適正なアーク電圧を得る迄に時間を
要する。◆上記した課題を解決するため、本願出願人
は、比較的電流の小さい小電流域および中間電流域を対
象として、特願平4−128570号(以下、第4の従
来技術という)において、溶接中に測定される短絡期間
およびアーク期間の標準偏差sTs,sTaの値を前件部、
また出力電圧の操作量を後件部とし、予め定めた制御規
則に従ってファジィ推論を実行することにより、出力電
圧設定の増減操作量を決定するようにした消耗電極式ガ
スシールドアーク溶接の出力制御方法を提案した。また
大電流域を対象として、特願平5−179673号(以
下、第5の従来技術という)において、溶接中に測定さ
れるアーク期間の標準偏差sTa及びその平均値mTaの値
を前件部としたファジィ推論を実行することにより、出
力電圧設定の増減操作量を決定するようにした消耗電極
式ガスシールドアーク溶接の出力制御方法を提案した。
2. Description of the Related Art CO 2 or Ar is used as a shielding gas.
In consumable electrode type gas shielded arc welding using a mixed gas of Ar and CO 2 (a so-called mag gas) whose main component is a welding current value is selected according to the working conditions and the shape of the work. Incidentally, in order to obtain a good welding result, it is necessary to set the output voltage of the welding machine so as to obtain an appropriate arc voltage according to the welding current value. However, an appropriate arc voltage depends not only on the welding current value but also on the working environment and form. Therefore, for the selected welding current value,
Setting the output voltage of the welding machine so as to obtain an appropriate arc voltage requires considerable skill and skill improvement, and is not something that a beginner can easily learn. Therefore,
In order that even a beginner can obtain a welding result equivalent to that of a skilled person, Japanese Patent Application Laid-Open No. 56-158281
(Hereinafter referred to as the prior art) discloses a technique in which a relation between a welding current and an appropriate output voltage is stored in a database in advance, and when a welding current is selected, an output voltage of a welding machine is unitarily set. ing. Also, Japanese Patent Application Laid-Open No. Sho 60-1283
Japanese Patent Publication No. 40 (hereinafter referred to as a second prior art) and Japanese Patent Application Laid-Open No. Sho 60-162577 (hereinafter referred to as a third prior art) disclose observation results of current and voltage waveforms during welding by a predetermined function. There is disclosed a technique of calculating and setting an output voltage so that the calculated value is minimized. ◆ By the way, when welding large structures, for example, the welding cable is often extended. In this case, in order to obtain an appropriate arc voltage, it is necessary to increase the output voltage of the welding machine and correct the effect of the voltage drop generated in the extended welding cable. However, in the case of the first prior art, the output voltage automatically set as an appropriate arc voltage is selected as data under a predetermined reference condition and a standard work environment, and therefore, the output voltage is determined based on the standard work environment. If not, the value will not be correct. An appropriate value can be obtained by arranging a detection line for detecting the arc voltage to the welded portion, but the operability is reduced when the number of wires increases. Further, the data selected as data is selected by a specific skilled welding worker, and is not necessarily an unbiased appropriate value. Further, in the case of the second and third prior arts, it is possible to correct the voltage drop when using the extension cable, but in order to minimize the value calculated by the predetermined function, the output voltage must be manipulated. Therefore, it is necessary to obtain at least three calculated values, and it takes time to obtain an appropriate arc voltage. In order to solve the above-mentioned problem, the applicant of the present application disclosed in Japanese Patent Application No. 4-128570 (hereinafter, referred to as a fourth prior art) a small current region and an intermediate current region having relatively small currents. The values of the standard deviations sTs and sTa of the short circuit period and the arc period measured during
Further, the output voltage operation amount is taken as a consequent part, and the output control method of the consumable electrode type gas shielded arc welding is configured to determine the increase or decrease operation amount of the output voltage setting by executing fuzzy inference according to a predetermined control rule. Suggested. In a large current region, Japanese Patent Application No. 5-179673 (hereinafter referred to as a fifth prior art) describes a standard deviation sTa of an arc period measured during welding and a value of an average value mTa thereof in an antecedent part. By performing the fuzzy inference, the output control method of the consumable electrode type gas shielded arc welding that determines the amount of increase / decrease of the output voltage setting was proposed.

【0003】[0003]

【発明が解決しようとする課題】上記した第4および第
5の従来技術は、シールドガスとしてCO2を用いた場
合には有効であるが、シールドガス組成を変化させる
と、ワイヤ先端に形成される溶融金属(以下、溶滴とい
う。)の母材への移行形態が多少変化するため、上記第
4および第5の従来技術をそのまま適用することはでき
ない。◆図12は、CO2をシールドガスとして用いた
溶接におけるアーク期間の標準偏差sTaのアーク電圧に
対する変化を示した一例であり、アーク電圧に対するs
Taの変化量は比較的大きい。しかし、Ar+20%C
2をシールドガスとして用いた溶接では、図13に示
すように、sTaの変化量が上記図12の場合に比べて少
ないため、前件部にアーク期間の標準偏差sTaを用いる
ファジィ推論では良好な結果が得られない。◆本発明の
目的は、上記した課題を解決し、Arを主成分とするA
r+CO2混合ガスをシールドガスとする溶接(以下マ
グ溶接という。)において適正なアーク電圧を自動設定
し、作業性を向上させることができる消耗式ガスシール
ドアーク溶接の制御方法を提供することにある。
The above-mentioned fourth and fifth prior arts are effective when CO 2 is used as a shielding gas. Since the transfer form of the molten metal (hereinafter, referred to as a droplet) to the base material slightly changes, the fourth and fifth prior arts cannot be directly applied. FIG. 12 is an example showing a change in the standard deviation sTa of the arc period with respect to the arc voltage in welding using CO 2 as a shielding gas.
The change amount of Ta is relatively large. However, Ar + 20% C
In the welding using O 2 as a shielding gas, as shown in FIG. 13, since the variation of sTa is smaller than that in the case of FIG. 12, the fuzzy inference using the standard deviation sTa of the arc period in the antecedent is good. Results cannot be obtained. The object of the present invention is to solve the above-mentioned problems and to solve the problem of A containing Ar as a main component.
An object of the present invention is to provide a consumable gas shielded arc welding control method capable of automatically setting an appropriate arc voltage in welding using an r + CO 2 mixed gas as a shielding gas (hereinafter referred to as “mag welding”) and improving workability. .

【0004】[0004]

【発明が解決しようとする手段】上記した課題は、マグ
溶接においてワイヤを略定速度で送給し、短絡とアーク
を繰り返しながら溶接をする消耗式ガスシールドアーク
溶接の出力制御方法において、溶接中に測定される短絡
期間の標準偏差sTsおよびアーク期間の平均値mTaを前
件部、また出力電圧の操作量を後件部とし、予め定めた
制御規則に従ってファジィ推論を実行して出力電圧設定
の増減操作量を決定することにより解決される。
SUMMARY OF THE INVENTION An object of the present invention is to provide a power control method for consumable gas shielded arc welding in which a wire is fed at a substantially constant speed in mag welding and welding is performed while repeating a short circuit and an arc. The standard deviation sTs of the short-circuit period and the average value mTa of the arc period measured as the antecedent part, and the manipulated variable of the output voltage as the consequent part, execute fuzzy inference according to a predetermined control rule, and set the output voltage. The problem is solved by determining the increase / decrease operation amount.

【0005】[0005]

【作用】外部特性が定電圧特性である溶接装置におい
て、Arを主成分とするAr+CO2の混合ガスをシー
ルドガスとして用い、ワイヤ送給速度すなわち溶接電流
を一定の値に維持した状態で溶接電源の出力電圧すなわ
ちアーク電圧を変化させると、図2および図3に示すよ
うに、アーク電圧に対する短絡期間の標準偏差sTsおよ
びアーク期間の平均値mTaは大きく変化する。そこで、
短絡期間およびアーク期間を測定し、その結果から算出
した短絡期間の標準偏差sTsおよびアーク期間の平均値
mTaの値を所定のメンバシップ関数とファジィ推論規則
に基づいて処理し、適正なアーク電圧を得るための操作
量を演算して出力電圧を増減させれば、常に適切な出力
電圧が維持できる。
In a welding apparatus whose external characteristics are constant voltage characteristics, a welding power source is used while maintaining a wire feed speed, that is, a welding current at a constant value, by using a mixed gas of Ar + CO 2 containing Ar as a main component as a shielding gas. 2 and 3, the standard deviation sTs of the short-circuit period with respect to the arc voltage and the average value mTa of the arc period greatly change as shown in FIGS. Therefore,
The short circuit period and the arc period were measured, and the standard deviation sTs of the short circuit period calculated from the results and the average value of the arc period
If the value of mTa is processed based on a predetermined membership function and a fuzzy inference rule, and an operation amount for obtaining an appropriate arc voltage is calculated to increase or decrease the output voltage, an appropriate output voltage can always be maintained.

【0006】[0006]

【実施例】図1は、本発明を実施するための溶接装置の
構成例図である。◆同図において、1は商用交流を直流
に変換するための入力側整流器、2はパワー半導体素子
で、構成されたインバータ回路で、上記直流を高周波交
流に変換する。3は溶接トランスで、その入力側はイン
バータ回路2に接続されている。4は溶接トランス3の
出力側に接続された出力側整流器で、上記インバータ回
路2で作り出す高周波交流を再び直流に変換する。5は
直流リアクタで、出力側整流器4で整流された直流出力
を平滑する。6はワイヤで、ワイヤ送給装置7により溶
接部に供給される。8は母材。9は溶接電流設定器で、
ワイヤ6の送給速度を設定するためのものである。な
お、インバータ回路2は外部特性が定電圧特性となるよ
うに制御される。◆10は出力電圧設定器で、出力電圧
0を設定するためのものである。11は加減算回路
で、出力電圧設定器10で設定される出力電圧V0と、
後述するファジィ制御器22から出力される出力電圧の
操作量△Vとを合成し、その結果を新たな出力電圧V0
として記憶すると共にパルス幅制御回路12に出力す
る。パルス幅制御回路12は加減算回路11からの信号
に基づき駆動回路13を介してインバータ回路2の出力
を制御する。◆14は電圧検出器。15は電圧検出器1
4のサンプリング条件設定器。16は判定電圧設定器。
17は短絡かアークかを判定する判定器で、サンプリン
グ条件設定器15で設定されるサンプリング間隔および
サンプリング時間に従って、電圧検出器14で計測され
る溶接電圧υと判定電圧設定器16で設定された判定電
圧Vjの大小を比較する。そして、判定器17は、υ≦
Vjのときには短絡期間であることの判定信号をTs測定
器18へ、またυ>Vjのときにはアーク期間であるこ
との判定信号をTa測定器19へ、それぞれ出力する。
◆上記Ts測定器18およびTa測定器19は、短絡と
アークが交互に繰返される各短絡周期毎に、それぞれの
時間の計測値(TsおよびTaの値)を短絡期間の標準
偏差sTsの演算器20とアーク期間の平均値mTaの演算
器21に入力する。なお、演算器20は上記Ts測定器
18の出力を用いてTsの総和ΣTsおよび平方和ΣT
2の演算ならびにTsの個数Nのカウントを行い、標
準偏差sTsの値を下記の式1により算出し、その値をフ
ァジィ制御器22へ出力する。また、演算器21は上記
Ta測定器19の出力を用いてTaの総和ΣTaの演算
ならびにTaの個数Nのカウントを行い、平均値mTaの
値を下記の式2より算出し、その値をファジィ制御器2
2へ出力する。◆
FIG. 1 is a structural example of a welding apparatus for carrying out the present invention. In the figure, reference numeral 1 denotes an input-side rectifier for converting commercial AC to DC, and 2 denotes a power semiconductor element, which is an inverter circuit configured to convert the DC to a high-frequency AC. Reference numeral 3 denotes a welding transformer whose input side is connected to the inverter circuit 2. Reference numeral 4 denotes an output-side rectifier connected to the output side of the welding transformer 3, which converts the high-frequency AC generated by the inverter circuit 2 into DC again. A DC reactor 5 smoothes the DC output rectified by the output rectifier 4. Reference numeral 6 denotes a wire, which is supplied to a welding portion by a wire feeding device 7. 8 is the base material. 9 is a welding current setting device,
This is for setting the feeding speed of the wire 6. Note that the inverter circuit 2 is controlled so that the external characteristics become constant voltage characteristics. ◆ 10 is an output voltage setter is used for setting the output voltage V 0. Reference numeral 11 denotes an addition / subtraction circuit, which includes an output voltage V 0 set by the output voltage setting device 10,
An operation amount ΔV of an output voltage output from a fuzzy controller 22 described later is synthesized, and the result is combined with a new output voltage V 0.
And outputs it to the pulse width control circuit 12. The pulse width control circuit 12 controls the output of the inverter circuit 2 via the drive circuit 13 based on the signal from the addition / subtraction circuit 11. ◆ 14 is a voltage detector. 15 is a voltage detector 1
4. Sampling condition setting device. 16 is a judgment voltage setting device.
Reference numeral 17 denotes a judgment unit for judging whether a short circuit or an arc occurs. According to the sampling interval and sampling time set by the sampling condition setting unit 15, the welding voltage 計 測 measured by the voltage detector 14 and the judgment voltage setting unit 16 are set. The magnitude of the judgment voltage Vj is compared. Then, the determiner 17 determines that υ ≦
When Vj, a short-circuit period determination signal is output to the Ts measuring device 18, and when υ> Vj, an arc period determining signal is output to the Ta measuring device 19, respectively.
The Ts measuring device 18 and the Ta measuring device 19 calculate the standard deviation sTs of the short-circuit period at each short-circuit cycle in which the short circuit and the arc are alternately repeated. 20 and the average value mTa of the arc period are input to a calculator 21. The computing unit 20 uses the output of the Ts measuring unit 18 to calculate the total sum of TsΣTs and the sum of squaresΣTs
The calculation of s 2 and the counting of the number N of Ts are performed, the value of the standard deviation sTs is calculated by the following equation 1, and the value is output to the fuzzy controller 22. The arithmetic unit 21 calculates the total sum of Ta, Ta, and counts the number N of Ta using the output of the Ta measuring device 19, calculates the value of the average value mTa from the following equation 2, and calculates the value of the average value mTa by fuzzy. Controller 2
Output to 2. ◆

【0007】[0007]

【数1】 (Equation 1)

【0008】設定器23は、ファジィ推論の前件部を構
成する因子である標準偏差sTs、平均値mTaおよび後件
部を構成する因子△V(出力電圧操作量)のメンバシッ
プ関数ならびにこれらの因子についてのファジィ推論規
則を入力するためのものである。そして、ファジイ制御
器22は、上記設定器23により設定されるメンバシッ
プ関数と推論規則に基づき、入力された標準偏差sTsお
よび平均値mTaの推論規則への適合度を求め、その適合
度に見合った推論結果を各規則ごとに算出する。そし
て、各推論規則ごとに得られた推論結果を重心法で統合
し、全体としての推論結果△Vを求め、上記加減算回路
11へ出力する。
The setter 23 has a membership function of a standard deviation sTs and an average value mTa, which are factors constituting the antecedent part of fuzzy inference, and a factor △ V (output voltage manipulated variable) which constitutes a consequent part, and their membership functions. This is for inputting fuzzy inference rules for factors. Then, based on the membership function and the inference rule set by the setting unit 23, the fuzzy controller 22 obtains the degree of conformity of the input standard deviation sTs and the average value mTa to the inference rule, and matches the degree of conformity. The inference result is calculated for each rule. Then, the inference results obtained for each of the inference rules are integrated by the centroid method, the inference result ΔV as a whole is obtained, and output to the addition / subtraction circuit 11.

【0009】以下、ファジィ制御器22における推論方
法をさらに詳しく説明する。◆ (1)溶滴の母材への移行形態が短絡移行の場合。◆ 溶滴の移行形態が短絡移行の場合、ワイヤの送給速度は
比較的遅く、溶接電流は小さい。そして、このときの標
準偏差sTsおよび平均値mTaは、アーク電圧に応じてそ
れぞれ図2および図3に示すように変化する。◆そこ
で、標準偏差sTsおよび平均値mTaおよび出力電圧の操
作量△Vのメンバシップ関数を、それぞれ図4〜図6の
ように定めるとともに、表1に示す合計15個の推論規
則を設定する。◆
Hereinafter, the inference method in the fuzzy controller 22 will be described in more detail. ◆ (1) When the transfer form of the droplet to the base material is short-circuit transfer. ◆ When the transfer form of the droplet is short-circuit transfer, the wire feeding speed is relatively slow and the welding current is small. Then, the standard deviation sTs and the average value mTa at this time change as shown in FIGS. 2 and 3, respectively, according to the arc voltage. Therefore, the membership functions of the standard deviation sTs, the average value mTa, and the manipulated variable ΔV of the output voltage are determined as shown in FIGS. 4 to 6, respectively, and a total of 15 inference rules shown in Table 1 are set. ◆

【0010】[0010]

【表1】 [Table 1]

【0011】次に、表1における推論規則のうち、R
1,R2,R3を代表例にとり、以下に説明する。な
お、括弧内の記号は表1に示すものである。◆ R1;もしsTsが小さく(S)、かつmTaがやや小さい
(SM)ときには出力電圧を変化させない(△V=Z
0)◆ R2;もしsTsが小さく(S)、かつmTaが極めて大き
い(BB)ときには出力電圧を大幅に低下させる(△V
=NB)◆ R3;もしsTsが大きく(B)、かつmTaがやや大きい
(MB)ときには出力電圧を大幅に上昇させる(△V=
PB)◆ すなわち出力電圧設定器10で設定された出力電圧V0
が適正電圧に対して低過ぎた場合、上記図2および図3
に示したように、sTsの値が大きくまたmTaの値がやや
大きくなるため、上記の推論規則R3が適用されて出力
電圧を大幅に上昇させるという推論結果(△V=PB)
を得る。◆また、出力電圧設定器10で設定された出力
電圧V0が適正であった場合、sTsの値が小さくまたmT
aの値がやや小さくなるため、上記の推論規則R1が適
用され、出力電圧を変化させないという推論結果(△V
=Z0)を得る。◆さらに、出力電圧設定器10で設定
された出力電圧V0が適正電圧に対して高過ぎた場合、s
Tsの値が小さくまたmTaの値が極めて大きくなるた
め、上記推論規則R2が適用され、出力電圧を大幅に低
下させるという推論結果(△V=NB)を得る。◆な
お、その他のケースの場合も上記R1,R2,R3の場
合と同様に、出力電圧の設定値が適正電圧より低い場合
には、適正電圧からのズレ量に応じた出力電圧の増加量
が、また出力電圧の設定値が適正電圧より高い場合に
は、その程度に応じた出力電圧の減少量がファジィ推論
結果△Vとして与えられる。すなわち、当初の出力電圧
の設定がどのような値であっても、その設定値のもとで
所定の時間テスト溶接を行い、その時のsTsおよびmTa
の値を用いて上述のファジィ推論を行えば、出力電圧を
常に適正な値に設定できる。
Next, among the inference rules in Table 1, R
1, R2 and R3 will be described below as typical examples. The symbols in parentheses are shown in Table 1. ◆ R1: If sTs is small (S) and mTa is slightly small (SM), the output voltage is not changed (ΔV = Z
0) ◆ R2; If sTs is small (S) and mTa is extremely large (BB), the output voltage is greatly reduced (△ V
= NB) ◆ R3; If sTs is large (B) and mTa is slightly large (MB), the output voltage is greatly increased (△ V =
PB) ◆ That is, the output voltage V 0 set by the output voltage setting device 10
2 and 3 are too low for the proper voltage.
As shown in the above, since the value of sTs is large and the value of mTa is slightly large, the inference result that the above inference rule R3 is applied to greatly increase the output voltage (ΔV = PB)
Get. If the output voltage V 0 set by the output voltage setting device 10 is appropriate, the value of sTs is small and mT
Since the value of a is slightly smaller, the above inference rule R1 is applied, and the inference result (△ V
= Z0). ◆ Further, when the output voltage V 0 set by the output voltage setting device 10 is too high with respect to the appropriate voltage, s
Since the value of Ts is small and the value of mTa is extremely large, the above-mentioned inference rule R2 is applied, and an inference result (ΔV = NB) that the output voltage is greatly reduced is obtained. In the other cases, similarly to the cases of R1, R2, and R3, when the set value of the output voltage is lower than the appropriate voltage, the amount of increase in the output voltage according to the deviation from the appropriate voltage is reduced. When the set value of the output voltage is higher than the proper voltage, the amount of decrease of the output voltage according to the degree is given as the fuzzy inference result ΔV. That is, no matter what value the initial output voltage setting is, test welding is performed for a predetermined time under the set value, and sTs and mTa at that time are used.
If the above-described fuzzy inference is performed using the value of, the output voltage can always be set to an appropriate value.

【0012】(2)溶滴の母材への移行形態がグロビュ
ール移行の場合。◆ 溶滴の移行形態がグロビュール移行の場合、ワイヤ送給
速度は比較的速く、溶接電流は中程度ないし比較的大き
い。そして、この時の標準偏差sTsおよび標準偏差mTa
は、アーク電圧に応じてそれぞれ図7および図8に示す
ように変化する。◆そこで、標準偏差sTsおよび標準偏
差mTaおよび出力電圧の操作量△Vのメンバシップ関数
をそれぞれ図9〜図11のように定めるとともに、表2
に示す推論規則を設定する。すると、上記(1)の短絡
移行の場合と同様に、当初の出力電圧の設定がどのよう
な値であっても、その設定値のもとで所定の時間テスト
溶接を行い、その時のsTsおよびmTaの値を用いて上述
のファジィ推論を行えば、出力電圧を常に適正な値に設
定できる。◆
(2) When the transfer form of the droplet to the base material is globule transfer. ◆ When the droplet transfer mode is globule transfer, the wire feeding speed is relatively high, and the welding current is moderate to relatively large. The standard deviation sTs and standard deviation mTa at this time are
Changes according to the arc voltage as shown in FIGS. 7 and 8, respectively. Therefore, the membership functions of the standard deviation sTs and the standard deviation mTa and the manipulated variable ΔV of the output voltage are determined as shown in FIGS.
The inference rules shown in are set. Then, as in the case of the short circuit transition in the above (1), regardless of the initial output voltage setting, test welding is performed for a predetermined time under the set value, and sTs and If the above fuzzy inference is performed using the value of mTa, the output voltage can always be set to an appropriate value. ◆

【0013】[0013]

【表1】 [Table 1]

【0014】以下(A),(B)に、良好な結果が得ら
れたメンバシップ関数の例を、図4〜6ならびに図9〜
11に基づいて示す。なおこの例は、シールドガスとし
てAr+20%CO2混合ガスを用い、ワイヤの材質が
軟鋼で、直径が1.2mmのソリッドワイヤを用いてマ
グ溶接をした場合である。◆ (A)溶滴の母材への移行形態が短絡移行の場合。◆ なお、ワイヤ送給速度は3m/minである。◆図4に
おいて、◆ a1=1.2ms、a2=1.5ms、a3=2.0ms、a
4=2.4ms、◆a5=2.7ms、a6=3.2ms、a
7=3.5ms、◆ 図5において、◆b1=0.0ms、b2=0.5ms、b
3=3.0ms、b4=3.8ms、◆b5=4.7ms、b
6=7.2ms、b7=b8=8.0ms、b9=11.3m
s、b10=13.0ms、b11=15.5ms、b12=1
8.0ms、◆b13=19.7ms◆ 図6において、◆ c1=c2=−6.5V、c3=c4=c5=−4.3V、◆
6=c7=c8=−2.2V、◆c9=c10=c11=0
V、c12=c13=c14=2.2V、◆c15=c16=c17
=4.3V、c18=c19=6.5V◆ (B)溶滴の母材への移行形態がグロビュール移行の場
合。◆ なお、ワイヤ送給速度は7.5m/minである。◆図
9において◆ a´1=a´2=1.4ms、a´3=a´4=a´5=1.
6ms、◆a´6=a´7=1.9ms◆ 図10において◆ b´1=6ms、b´2=7ms、b´3=10ms、b´4
12ms、◆b´5=13ms、b´6=17ms、b´7
18ms、b´8=20ms、◆b´9=23ms、b´10
=24ms、b´11=25ms、b´12=28ms、b´
13=29ms◆ 図11において◆ c´1=c´2=−6.5V、c´3=c´4=c´5=−
4.3V、◆c´6=c´7=c´8=−2.2V、c´9
c´10=c´11=0V、◆c´12=c´13=c´14
2.2V、c´15=c´16=c´17=4.3V◆ c´18=c´19=6.5Vである。
FIGS. 4A and 4B and FIGS. 4A and 4B show examples of membership functions with good results.
11 is shown. Note that this example is a case where MAG welding is performed using a solid wire having a diameter of 1.2 mm and a material of mild steel using Ar + 20% CO 2 mixed gas as a shielding gas. ◆ (A) When the transfer form of the droplet to the base material is a short-circuit transfer. ◆ The wire feeding speed is 3 m / min. ◆ In FIG. 4, ◆ a 1 = 1.2 ms, a 2 = 1.5 ms, a 3 = 2.0 ms, a
4 = 2.4 ms, ◆ a 5 = 2.7 ms, a 6 = 3.2 ms, a
7 = 3.5 ms, に お い て In FIG. 5, ◆ b 1 = 0.0 ms, b 2 = 0.5 ms, b
3 = 3.0 ms, b 4 = 3.8 ms, ◆ b 5 = 4.7 ms, b
6 = 7.2 ms, b 7 = b 8 = 8.0 ms, b 9 = 11.3 m
s, b 10 = 13.0 ms, b 11 = 15.5 ms, b 12 = 1
8.0 ms, {b 13 = 19.7 ms} In FIG. 6, ◆ c 1 = c 2 = -6.5 V, c 3 = c 4 = c 5 = -4.3 V, ◆
c 6 = c 7 = c 8 = −2.2 V, Δc 9 = c 10 = c 11 = 0
V, c 12 = c 13 = c 14 = 2.2 V, Δc 15 = c 16 = c 17
= 4.3 V, c 18 = c 19 = 6.5 V ◆ (B) When the transfer form of the droplet to the base material is globule transfer. ◆ The wire feeding speed is 7.5 m / min. ◆ In FIG. 9, ◆ a ′ 1 = a ′ 2 = 1.4 ms, a ′ 3 = a ′ 4 = a ′ 5 = 1.
6 ms, {a ′ 6 = a ′ 7 = 1.9 ms} In FIG. 10 ◆ b ′ 1 = 6 ms, b ′ 2 = 7 ms, b ′ 3 = 10 ms, b ′ 4 =
12 ms, ◆ b ′ 5 = 13 ms, b ′ 6 = 17 ms, b ′ 7 =
18ms, b'8 = 20ms, ◆ b'9 = 23ms, b'10
= 24ms, b'11 = 25ms, b'12 = 28ms, b'
13 = 29 ms ◆ In FIG. 11, c ′ 1 = c ′ 2 = −6.5 V, c ′ 3 = c ′ 4 = c ′ 5 = −
4.3 V, Δc ′ 6 = c ′ 7 = c ′ 8 = −2.2 V, c ′ 9 =
c ′ 10 = c ′ 11 = 0 V, ◆ c ′ 12 = c ′ 13 = c ′ 14 =
2.2V, which is c'15 = c'16 = c'17 = 4.3V ◆ c'18 = c'19 = 6.5V.

【0015】表3は、短絡期間とアーク期間の標準偏差
sTs、sTaを前件部としてファジィ推論を行った場合す
なわち上記した第5の従来技術により溶接した場合と、
本発明により溶接した場合とを比較したものである。同
表から明らかなように、適正アーク電圧±0.5Vの範
囲に自動設定できたものは、第5の従来技術が50%で
あるのに対し本発明では85%に改善されている。ま
た、適正アーク電圧±0.7Vあるいは±1.0Vの範
囲においても本発明の方が第5の従来技術よりも良好な
結果を得ることができた。◆
Table 3 shows the standard deviation between the short-circuit period and the arc period.
A case where fuzzy inference is performed with sTs and sTa as antecedents, that is, a case where welding is performed by the above-mentioned fifth conventional technique,
It is a comparison with the case of welding according to the present invention. As is clear from the table, in the case where the automatic arc voltage can be automatically set in the range of the appropriate arc voltage ± 0.5 V, the ratio is improved to 85% in the present invention, while it is 50% in the fifth prior art. Further, even in the range of the appropriate arc voltage of ± 0.7 V or ± 1.0 V, the present invention was able to obtain better results than the fifth prior art. ◆

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】以上詳述したように、本発明によれば、
シールドガスをArを主成分とするAr+CO2の混合
ガスとしたマグ溶接において、当初の出力電圧の設定が
どのような値であっても、出力電圧を適正な値に自動的
に変更することができる。従って、延長ケーブルの付
加、電源電圧、ワイヤ突き出し長さの変化などが生じて
も、従来熟練が必要とされている出力電圧の微調整を行
う必要はなく、非熟練者でも熟練者と同様、常に良好な
溶接結果を得ることができるという効果がある。
As described in detail above, according to the present invention,
In the case of MAG welding in which the shielding gas is a mixed gas of Ar + CO 2 containing Ar as a main component, the output voltage can be automatically changed to an appropriate value regardless of the initial output voltage setting. it can. Therefore, even if the addition of an extension cable, a power supply voltage, a change in the wire protrusion length, and the like occur, it is not necessary to make fine adjustments to the output voltage, which is conventionally required for the skilled person. There is an effect that a good welding result can always be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するための溶接装置の構成例図。FIG. 1 is a structural example diagram of a welding device for carrying out the present invention.

【図2】マグ溶接の短絡移行領域における短絡期間の標
準偏差sTsとアーク電圧の関係を示す図。
FIG. 2 is a diagram showing a relationship between a standard deviation sTs of a short circuit period and an arc voltage in a short circuit transition region of MAG welding.

【図3】マグ溶接の短絡移行領域におけるアーク期間の
標準偏差mTaとアーク電圧の関係を示す図。
FIG. 3 is a diagram showing a relationship between a standard deviation mTa of an arc period and an arc voltage in a short-circuit transition region of MAG welding.

【図4】短絡移行領域を対象としたsTsのメンバシップ
関数の一例。
FIG. 4 is an example of a membership function of sTs for a short-circuit transition region.

【図5】短絡移行領域を対象としたmTaのメンバシップ
関数の一例。
FIG. 5 is an example of a membership function of mTa for a short-circuit transition region.

【図6】短絡移行領域を対象とした△Vのメンバシップ
関数の一例。
FIG. 6 shows an example of a membership function of ΔV for a short-circuit transition region.

【図7】グロビュール移行領域でのsTsとアーク電圧の
関係を示す図。
FIG. 7 is a diagram showing a relationship between sTs and an arc voltage in a globule transition region.

【図8】グロビュール移行領域でのmTaとアーク電圧の
関係を示す図。
FIG. 8 is a diagram showing a relationship between mTa and an arc voltage in a globule transition region.

【図9】グロビュール移行領域を対象としたsTsのメン
バシップ関数の一例。
FIG. 9 is an example of a membership function of sTs for a globule transition area.

【図10】グロビュール移行領域を対象としたmTaのメ
ンバシップ関数の一例。
FIG. 10 shows an example of a membership function of mTa for a globule transition region.

【図11】グロビュール移行領域を対象とした△Vのメ
ンバシップ関数の一例。
FIG. 11 is an example of a membership function of △ V for a globule transition area.

【図12】CO2溶接における短絡移行領域でのアーク
期間の標準偏差sTaとアーク電圧の関係を示す図。
FIG. 12 is a diagram showing a relationship between a standard deviation sTa of an arc period and an arc voltage in a short-circuit transition region in CO 2 welding.

【図13】マグ溶接における短絡移行領域でのアーク期
間の標準偏差sTaとアーク電圧の関係を示す図。
FIG. 13 is a diagram showing a relationship between arc voltage and standard deviation sTa of an arc period in a short-circuit transition region in MAG welding.

【符号の説明】[Explanation of symbols]

2 インバータ回路 6 ワイヤ 10 出力電圧設定器 11 加減算回
路 12 パルス幅制御回路 14 電圧検出
器 16 判定電圧設定器 17 判定器 18 Ts測定器 19 Ta測定
器 20,21 演算器 23 設定器 15 サンプリング条件設定器 22 ファジィ制御器
2 Inverter circuit 6 Wire 10 Output voltage setting device 11 Addition / subtraction circuit 12 Pulse width control circuit 14 Voltage detector 16 Judgment voltage setting device 17 Judging device 18 Ts measuring device 19 Ta measuring device 20, 21 Computing device 23 Setting device 15 Sampling condition setting Vessel 22 Fuzzy controller

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−322882(JP,A) 特開 平5−42367(JP,A) 特開 昭51−45643(JP,A) (58)調査した分野(Int.Cl.7,DB名) B23K 9/037 B23K 9/095 B23K 9/12 B23K 9/16 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-4-322882 (JP, A) JP-A-5-42367 (JP, A) JP-A-51-45643 (JP, A) (58) Field (Int.Cl. 7 , DB name) B23K 9/037 B23K 9/095 B23K 9/12 B23K 9/16

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】シールドガスとしてArを主成分とするA
rとCO2との混合ガスを用い、ワイヤを略定速度で送
給して溶接をする消耗電極式ガスシールドアーク溶接の
出力制御方法において、溶接中に測定される短絡期間の
標準偏差およびアーク期間の平均値を前件部、また出力
電圧の操作量を後件部とし、予め定めた制御規則に従っ
てファジィ推論を実行して出力電圧設定の増減操作量を
決定することを特徴とする消耗電極式ガスシールドアー
ク溶接の出力制御方法。
1. A shielding gas containing Ar as a main component.
In a power control method of a consumable electrode type gas shielded arc welding in which a wire is fed at a substantially constant speed to perform welding by using a mixed gas of r and CO 2 , a standard deviation of a short-circuit period and an arc measured during welding are measured. A consumable electrode characterized in that the average value of the period is the antecedent part, and the manipulated variable of the output voltage is the consequent part, and fuzzy inference is executed according to a predetermined control rule to determine the amount of increase or decrease in the output voltage setting. Output control method of gas shielded arc welding.
【請求項2】シールドガスとしてArを主成分とするA
rとCO2との混合ガスを用い、ワイヤを略定速度で送
給して溶接をする消耗電極式ガスシールドアーク溶接の
溶接装置において、溶接中に測定される短絡期間の標準
偏差とアーク期間の平均値の算出手段と、その算出手段
の算出結果を入力として予め定めた制御規則に従って所
定のアーク状態を得るための出力電圧の操作量を推論す
るファジィ制御器と、上記ファジィ制御器の出力に応じ
て溶接電源の出力電圧設定値の増減を行なう手段とを備
えたことを特徴とする消耗電極式ガスシールドアーク溶
接の溶接装置。
2. A gas containing Ar as a main component as a shielding gas.
The standard deviation of the short-circuit period and the arc period measured during welding in a consumable electrode type gas shielded arc welding welding device that uses a mixed gas of r and CO 2 to feed a wire at a substantially constant speed for welding. A fuzzy controller for inferring an operation amount of an output voltage for obtaining a predetermined arc state in accordance with a predetermined control rule with a calculation result of the calculation means as an input, and an output of the fuzzy controller Means for increasing and decreasing the output voltage set value of the welding power source in accordance with the welding power supply.
JP01500594A 1994-02-09 1994-02-09 Power control method and apparatus for consumable electrode type gas shielded arc welding Expired - Fee Related JP3215567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01500594A JP3215567B2 (en) 1994-02-09 1994-02-09 Power control method and apparatus for consumable electrode type gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01500594A JP3215567B2 (en) 1994-02-09 1994-02-09 Power control method and apparatus for consumable electrode type gas shielded arc welding

Publications (2)

Publication Number Publication Date
JPH07214315A JPH07214315A (en) 1995-08-15
JP3215567B2 true JP3215567B2 (en) 2001-10-09

Family

ID=11876786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01500594A Expired - Fee Related JP3215567B2 (en) 1994-02-09 1994-02-09 Power control method and apparatus for consumable electrode type gas shielded arc welding

Country Status (1)

Country Link
JP (1) JP3215567B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19539038A1 (en) * 1995-10-20 1997-04-24 Ewm High Tech Precision Schwei Arc welder with an AC powered rectifier
CN1293981C (en) * 2004-11-25 2007-01-10 上海交通大学 Dynamic displaying method for COz short-circuit transient process parameter wave form
CN1293980C (en) * 2004-11-25 2007-01-10 上海交通大学 Digital controlling system for communicating structure of short-circuit transient COz weld
CN1293979C (en) * 2004-11-25 2007-01-10 上海交通大学 Digital controlling method for communicating structure of short-circuit transient COz weld
JP6100607B2 (en) * 2013-05-20 2017-03-22 株式会社ダイヘン Output control method of pulse arc welding

Also Published As

Publication number Publication date
JPH07214315A (en) 1995-08-15

Similar Documents

Publication Publication Date Title
JP3209821B2 (en) Power control method of consumable electrode type gas shielded arc welding and welding device therefor
JP3093798B2 (en) Automatic welding condition setting device
EP0774317A1 (en) Pulsed arc welding method and apparatus
US6639181B2 (en) Apparatus and method for assessing electrode tip wear
CN1496774A (en) Output control method of welding source device
JP3215567B2 (en) Power control method and apparatus for consumable electrode type gas shielded arc welding
JP3200154B2 (en) Power control method of consumable electrode type gas shielded arc welding and welding device therefor
JP3169295B2 (en) Power control method and apparatus for consumable electrode type gas shielded arc welding
JP3176168B2 (en) Power control method of consumable electrode type gas shielded arc welding and welding device therefor
JP3169288B2 (en) Power control method of consumable electrode type gas shielded arc welding and welding device therefor
JP3176167B2 (en) Power control method of consumable electrode type gas shielded arc welding
WO2021001974A1 (en) Machine learning device, numerical control device, wire electric discharge machine, machine learning method
JP3200159B2 (en) Consumable electrode type gas shielded arc welding welding method and welding apparatus
CN103128424A (en) Method for controlling single-point globular transfer thermal balance digital intelligent electrical arc welding
JP3202828B2 (en) Power control method of consumable electrode type gas shielded arc welding and welding device therefor
JPH06277841A (en) Method for controlling output of consumable nozzle type gas shield arc welding and its welding equipment
JP3241527B2 (en) Consumable electrode type gas shielded arc welding equipment
JP3724016B2 (en) Automatic control equipment for arc welding
CN1155460A (en) Method of resistance welding control
JPH07286218A (en) Device for deciding melt down of scrap
JP2591357B2 (en) Distance calculation device and consumable electrode type arc welding power supply device using the same
JPH07120160A (en) Furnace state-detecting method for direct current electric furnace
JP2023135362A (en) Arc-welding device, arc-welding method and computer program
JPH06226464A (en) Welding current control method for inverter type dc resistance welding machine and device therefor
JP2006088180A (en) Welding current control method in alternating current pulse arc welding

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010717

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070727

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees