JPH05318092A - Detection of slag outflow - Google Patents

Detection of slag outflow

Info

Publication number
JPH05318092A
JPH05318092A JP4127691A JP12769192A JPH05318092A JP H05318092 A JPH05318092 A JP H05318092A JP 4127691 A JP4127691 A JP 4127691A JP 12769192 A JP12769192 A JP 12769192A JP H05318092 A JPH05318092 A JP H05318092A
Authority
JP
Japan
Prior art keywords
time
sound wave
slag
base signal
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4127691A
Other languages
Japanese (ja)
Inventor
Hideyuki Hirabashi
英行 平橋
Kiminori Hajika
公則 羽鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4127691A priority Critical patent/JPH05318092A/en
Publication of JPH05318092A publication Critical patent/JPH05318092A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PURPOSE:To stably detect a transition point with good accuracy by determining the moving average value of the sound wave characteristic value detected during the preset time for decision of an evaluation signal when a sound wave characteristic value is smaller than a base signal level. CONSTITUTION:The time when the injection flow utilizing sound waves changes from a molten metal to slag is evaluated. The sound wave characteristic, for example, the moving average value of the sound pressure level obtd. by detecting the base signal level B(i) of the sound pressure level during the time t1 for decision of the base signal, is determined. The base signal level B(i) is determined as the evaluation signal E(i) at the point of this time when the sound pressure level value X(i) at the detection time t(1) is above the base signal level B(i). The moving average value of the sound pressure level detected during the preset time t2(<=t1) for decision of the evaluation signal is determined as the evaluation signal E(i) at the point of this time when the sound pressure level value X(i) is smaller than the base signal level B(i). As a result, the degradation in the quality by the intrusion of the slag is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、製鉄等のプロセスにお
いて、溶融金属、例えば溶鉄を別の容器に注入しながら
移し替える工程で、溶鉄の流出または注入の時期と、そ
の上に浮上しているスラグの流出時期との区別を判定す
るスラグ流出検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process of pouring molten metal, for example, molten iron into another container while transferring it in a process such as iron making. The present invention relates to a slag outflow detection method for determining the difference between the outflow timing of existing slag.

【0002】[0002]

【従来の技術】各種製鉄プロセスにおいて、転炉から取
鍋への出鋼工程、溶銑予備処理炉例えばH炉から取鍋へ
の出湯工程のように、溶鉄を別の容器に移し替える工程
では、出湯・出鋼工程の末期に溶銑の上方に浮遊してい
るスラグが流出してくる。このスラグ中には、一般に次
工程以降で有害となる成分が含まれているため、移し
替え後の溶鉄上に浮遊しているスラグをスラグドラッガ
ー又は真空吸引(VSC)で除去する方法、スラグ流
出開始時点で、溶鉄の移し替えを中止し、転炉例えばH
炉を炉傾動したり、出湯孔、出鋼孔に栓をしてスラグ流
出を抑制する方法が従来からスラグを分離するために実
施されている。
2. Description of the Related Art In various iron-making processes, in the process of transferring molten iron to another container, such as the process of tapping steel from a converter to a ladle, the process of tapping a hot metal pretreatment furnace such as an H furnace to a ladle, Slag floating above the hot metal flows out at the end of the tapping and tapping process. Since this slag generally contains harmful components in the subsequent steps, a method of removing the slag floating on the molten iron after transfer with a slag dragger or vacuum suction (VSC), slag outflow At the start, the transfer of molten iron was stopped and the converter, eg H
Conventionally, a method of tilting the furnace or plugging the tap hole and the tap hole to suppress the outflow of slag has been conventionally carried out for separating the slag.

【0003】ところで、上記の方法で、容器(便宜
上、取鍋で説明する)上に浮遊しているスラグ除去を実
施する場合には、スラグ除去作業時に溶鉄も一部流出除
去してしまうことによる鉄歩留りの低下、スラグ除去作
業に伴う溶鉄温度の低下、スラグ除去作業に伴う溶鉄滞
留時間の増加による生産性の低下および取鍋耐火物の溶
損量増加があり、しかも高価な設備を導入する必要があ
る。
By the way, when the slag floating on the container (which will be described as a ladle for convenience) is removed by the above-mentioned method, a part of the molten iron is also removed during the slag removal work. Introducing expensive equipment because of lower iron yield, lower molten iron temperature due to slag removal work, lower productivity due to increased molten iron retention time due to slag removal work, and increased melting loss of ladle refractory. There is a need.

【0004】また、の方法でスラグ流入防止を図ろう
とした場合、スラグ流出時期を的確に判断する必要があ
る。この判断を目視によって実施した場合には、観察者
によって、判断のばらつきが生じるし、出鋼(出銑)時
の発塵により、目視観察が困難な場合があり、特に、溶
銑を移し替える場合や、取鍋中に合金鉄等を添加した場
合には、この傾向が顕著であって、溶鉄の移し替え中止
時期が早過ぎたり、遅過ぎたりする事態が生じる。その
結果、判断時期が早過ぎたときは、例えば出鋼終了後の
転炉内に溶鉄が残留しスラグと混在して廃却されること
による鉄歩留りの低下が生じ、逆に、遅過ぎたときに
は、取鍋内にスラグが流入し、有害成分の混入による品
質の低下の問題が生じて、の方法によるスラグ除去作
業が結局必要となり、それに伴い前述する諸弊害が発生
するといった問題がある。
Further, when the slag inflow prevention is attempted by the method (1), it is necessary to accurately determine the slag outflow timing. When this judgment is made visually, there are variations in the judgment depending on the observer, and visual observation may be difficult due to dust generation during tapping (piping), especially when hot metal is transferred. In addition, when alloy iron or the like is added to the ladle, this tendency is remarkable, and the situation in which the molten iron transfer is stopped too early or too late occurs. As a result, when the judgment time is too early, for example, molten iron remains in the converter after the completion of tapping, is mixed with slag, and is discarded, causing a decrease in iron yield, and conversely, it is too late. Occasionally, slag flows into the ladle, which causes a problem of deterioration of quality due to mixing of harmful components, which eventually necessitates the slag removal work by the above method, which causes the above-mentioned various problems.

【0005】以上の如き問題点を解決するために、スラ
グの流出時期を正確に検出する方法として、本出願人は
さきに特願平2−283149号を提案した。本件発明
は、溶鉄の注入流と取鍋内に溜まった溶鉄表面から発生
する音波を検出して、注入流が溶鉄流であるときの音圧
レベルの移動平均値M1と、注入流がスラグ流であると
きの音圧レベルの移動平均値M2とを測定し、その差か
らスラグ流出時期を検出する方法に関するものであり、
このときの音圧レベルの評価方法としては、例えば、音
波の振幅強度で評価する手段がある。
In order to solve the above problems, the present applicant has previously proposed Japanese Patent Application No. 2-283149 as a method for accurately detecting the outflow timing of slag. The present invention detects the moving flow of molten iron and the sound wave generated from the surface of molten iron accumulated in the ladle, and detects the moving average value M1 of the sound pressure level when the flowing flow is the molten iron flow and the slag flow of the flowing flow. And a moving average value M2 of the sound pressure level, and detects the slag outflow timing from the difference between the moving average value M2 and the moving average value M2.
As a method of evaluating the sound pressure level at this time, there is, for example, a means for evaluating the amplitude intensity of the sound wave.

【0006】[0006]

【発明が解決しようとする課題】スラグの流出時期を、
溶鉄の注入流と取鍋内に溜まった溶鉄表面から発生する
音波を利用して検出しようとする場合、注入流からスラ
グ流への遷移領域における音圧レベルの変化を明確に捕
らえる必要がある。ところが、例えば転炉における出鋼
流の形状および取鍋内の溶鉄の表面形状は、出鋼孔の径
の大きさ、長さ、取鍋内に溜まっている溶鉄の量(取鍋
の場合、この値は時間と共に変化していく)の要因によ
って変化し、音圧レベルもそれに応じて変動することに
なる。
[Problems to be Solved by the Invention]
In order to detect using the injection flow of molten iron and the sound waves generated from the surface of molten iron accumulated in the ladle, it is necessary to clearly capture the change in sound pressure level in the transition region from the injection flow to the slag flow. However, for example, the shape of the tap steel flow in the converter and the surface shape of the molten iron in the ladle are the size of the diameter of the tap hole, the length, the amount of molten iron accumulated in the ladle (in the case of a ladle, This value changes with time), and the sound pressure level also changes accordingly.

【0007】また、音波検出に当たり、マイクロフォン
で集音した信号は、最終的に計算機で処理、解析、評価
されるまでに、増幅器、A/D変換器等の電気機器を経
由してくるが、その途中過程においても、当然、電気的
な雑信号が混入し、マイクロフォンからの原信号に変動
要因が加わることになる。
Further, in detecting a sound wave, a signal collected by a microphone passes through an electric device such as an amplifier and an A / D converter until it is finally processed, analyzed and evaluated by a computer. In the middle of the process, of course, electrical miscellaneous signals are mixed in, and a fluctuation factor is added to the original signal from the microphone.

【0008】このような変動に基づく悪影響は、注入流
からスラグ流への遷移領域における音圧レベルの変化量
が相対的に小さい場合には、特に大きなものとなって表
れ、注入流からスラグ流への遷移時期の判定を誤らせる
原因となることが考えられ、実用に際してはこの面につ
いて何らかの対策を構じる必要がある。
The adverse effect due to such fluctuations becomes particularly large when the change amount of the sound pressure level in the transition region from the injection flow to the slag flow is relatively small, and the adverse effect from the injection flow to the slag flow appears. It may cause an error in the determination of the transition time to, and it is necessary to take some measures for this in practical use.

【0009】本発明は、上述する事実に鑑みて成される
に至ったものであり、本発明の目的は、注入流からスラ
グ流への遷移時期を科学的に的確に検出し得て、製品品
質を高めるとともに生産性の向上を図ることが可能なス
ラグ流出検出方法を提供することにある。
The present invention has been made in view of the above-mentioned facts, and an object of the present invention is to detect the transition time from the injection flow to the slag flow scientifically and to obtain a product. It is an object of the present invention to provide a slag outflow detection method capable of improving quality and productivity.

【0010】[0010]

【課題を解決するための手段】本発明は、上記の目的を
達成するため以下に述べる構成としたものである。即
ち、本発明は、浮上分離したスラグ相を伴う溶融金属
を、別の容器に注入しながら移し替える工程において、
溶融金属の注入流と前記容器に溜まった溶融金属表面と
の衝突点から発生する音波を検出し、その音圧レベルま
たは平均周波数で表される音波特性が減少側に変化する
状況より、注入流が溶融金属からスラグに変わる時期を
評価するスラグ流出検出方法であって、検出時刻t
(i)における音波特性のベース信号レベルB(i)
を、その直前のベース信号判定時間t1中に検出した音
波特性値の移動平均値で求めるとともに、検出時刻t
(i)における音波特性値X(i)が前記ベース信号レ
ベルB(i)以上である場合には、このベース信号レベ
ルB(i)をその時点における評価信号E(i)と定
め、一方、前記音波特性値X(i)が前記ベース信号レ
ベルB(i)よりも小さい場合には、ベース信号判定時
間t1に比して短い予め設定した評価信号判定時間t2
中に検出した音波特性値の移動平均値をその時点におけ
る評価信号E(i)と定めることを特徴とするスラグ流
出検出方法である。
The present invention has the following constitution in order to achieve the above object. That is, the present invention, in the step of transferring the molten metal with the floated and separated slag phase while pouring it into another container,
The sound wave generated from the collision point between the injected flow of the molten metal and the surface of the molten metal accumulated in the container is detected, and the sound flow characteristic represented by the sound pressure level or the average frequency thereof changes to the decreasing side. It is a slag outflow detection method for evaluating the time when molten metal changes from molten metal to slag at a detection time t.
Base signal level B (i) of the sound wave characteristic in (i)
Is calculated as the moving average value of the sound wave characteristic values detected during the immediately preceding base signal determination time t1, and the detection time t
When the sound wave characteristic value X (i) in (i) is equal to or higher than the base signal level B (i), this base signal level B (i) is defined as the evaluation signal E (i) at that time, while When the sound wave characteristic value X (i) is smaller than the base signal level B (i), a preset evaluation signal determination time t2 shorter than the base signal determination time t1.
The slag outflow detection method is characterized in that the moving average value of the sound wave characteristic values detected therein is set as the evaluation signal E (i) at that time.

【0011】また本発明は、浮上分離したスラグ相を伴
う溶融金属を、別の容器に注入しながら移し替える工程
において、溶融金属の注入流と前記容器に溜まった溶融
金属表面との衝突点から発生する音波を検出し、その音
圧レベルまたは平均周波数で表される音波特性が増加側
に変化する状況より、注入流が溶融金属からスラグに変
わる時期を評価するスラグ流出検出方法であって、検出
時刻t(i)における音波特性のベース信号レベルB
(i)を、その直前のベース信号判定時間t1中に検出
した音波特性値の移動平均値で求めるとともに、検出時
刻t(i)における音波特性値X(i)が前記ベース信
号レベルB(i)以下である場合には、このベース信号
レベルB(i)をその時点における評価信号E(i)と
定め、一方、前記音波特性値X(i)が前記ベース信号
レベルB(i)よりも大きい場合には、ベース信号判定
時間t1に比して短い予め設定した評価信号判定時間t
2中に検出した音波特性値の移動平均値をその時点にお
ける評価信号E(i)と定めることを特徴とするスラグ
流出検出方法である。
Further, according to the present invention, in the step of transferring the molten metal accompanied by the floated and separated slag phase while pouring it into another container, from the point of collision between the injection flow of the molten metal and the surface of the molten metal accumulated in the container. Detecting sound waves generated, from the situation where the sound pressure level represented by the sound pressure level or average frequency changes to the increasing side, a slag outflow detection method for evaluating the time when the injection flow changes from molten metal to slag, Base signal level B of sound wave characteristics at detection time t (i)
(I) is obtained by the moving average value of the sound wave characteristic values detected during the immediately preceding base signal determination time t1, and the sound wave characteristic value X (i) at the detection time t (i) is the base signal level B (i). ) Or less, the base signal level B (i) is defined as the evaluation signal E (i) at that time, while the sound wave characteristic value X (i) is higher than the base signal level B (i). If it is larger, the preset evaluation signal determination time t is shorter than the base signal determination time t1.
The slag outflow detecting method is characterized in that the moving average value of the sound wave characteristic values detected in 2 is set as the evaluation signal E (i) at that time.

【0012】[0012]

【作用】普通、スラグ相は、比重差によって溶鉄の上方
に浮遊している。そのため、溶融金属例えば溶鉄が流出
した後に、あるいはその末期にスラグが流出し始めるよ
うになる。例えば、転炉を例にとると、出鋼中のスラグ
は溶鋼の上に浮遊しているが、出鋼の末期に転炉内の溶
鋼量が減少し、スラグが流出し始めるようになる。する
と、既に取鍋内に堆積した溶鋼に対して、落下衝突して
くる注入流が、溶鋼流からスラグ流に変化する。ここ
で、溶鋼の密度は、約7g/cm3 であるのに対して、
スラグの密度は、約3〜4g/cm3 となっており、物
性が当然異なる。
Operation: Normally, the slag phase floats above the molten iron due to the difference in specific gravity. Therefore, the slag starts to flow out after the molten metal such as molten iron flows out, or at the final stage of the molten metal. For example, in the case of a converter, the slag in tapping is floating on the molten steel, but at the end of tapping, the amount of molten steel in the converter decreases and the slag begins to flow out. Then, the injection flow that collides with the molten steel that has already accumulated in the ladle changes from the molten steel flow to the slag flow. Here, while the density of molten steel is about 7 g / cm 3 ,
The density of the slag is about 3 to 4 g / cm 3 , and the physical properties are naturally different.

【0013】この結果、注入流の溶鋼からスラグへの相
変化に伴い、注入流と取鍋内溶鋼表面の衝突点から発生
する音波の特性は変化することになる。本発明は、この
注入流の溶鋼からスラグへの相変化に伴う音波の特性の
変化量が、音波信号自体の変動幅に比較して、あまり大
きくない場合においても、相変化の遷移点を精度良く検
出しようとする点に特徴がある。
As a result, the characteristics of the sound waves generated from the collision point between the injection flow and the surface of the molten steel in the ladle change as the phase of the injection flow changes from molten steel to slag. The present invention, even if the amount of change in the characteristics of the sound wave accompanying the phase change from the molten steel to the slag of the injection flow is not so large as compared with the fluctuation range of the sound wave signal itself, the transition point of the phase change is accurately determined. It has a feature in trying to detect it well.

【0014】即ち、音波の検出は出湯落下流の衝突点に
向けて、高指向性マイクロフォンを配置し、出湯中の音
波特性レベル例えば音圧レベルと、スラグ流出中の音圧
レベルとの測定を行う。この場合、検出時刻t(i)に
おける音圧レベルX(i)のベース信号レベルB(i)
を、時刻(t(i)−t1)からt(i)までの期間、
即ち、その直前のベース信号判定時間t1の間にスキャ
ニングにより検出した音波特性値の移動平均値で求める
ようにする。この値は、その時刻における音圧レベルの
値の平均レベルを示すものであって、検出信号の変動誤
差の影響を受けない値であり、下記式〔数1〕によって
求められる。
That is, the sound wave is detected by arranging a highly directional microphone toward the collision point of the discharged hot water drop and measuring the sound wave characteristic level, for example, the sound pressure level during the hot water discharge, and the sound pressure level during the slag outflow. To do. In this case, the base signal level B (i) of the sound pressure level X (i) at the detection time t (i)
From the time (t (i) -t1) to t (i),
That is, the moving average value of the sound wave characteristic values detected by scanning during the immediately preceding base signal determination time t1 is obtained. This value indicates the average level of the sound pressure level values at that time, is a value that is not affected by the fluctuation error of the detection signal, and is calculated by the following formula [Equation 1].

【0015】[0015]

【数1】 [Equation 1]

【0016】従って、この移動平均値を基準としてスラ
グ流出開始時期を判断するものであり、検出時刻t
(i)における音圧レベルX(i)の値が、過去t1秒
間における移動平均値B(i)よりも大きくなる場合に
は、過去t1秒間の平均値である〔数1〕の式の値B
(i)をその時点における評価信号E(i)として採用
する。なお、音圧レベルX(i)の信号レベルが高くな
る方向の評価は本来不要であり、また、高くなる方向の
評価を考慮すると、必然的に(注入流の物性変化による
ものではなく)、単に信号の誤差変動要因による音圧レ
ベルの減衰波形部が発生してしまうことになり、これ
は、遷移点を誤検出する原因となるからに他ならない。
Therefore, the slag outflow start time is determined based on this moving average value, and the detection time t
When the value of the sound pressure level X (i) in (i) becomes larger than the moving average value B (i) in the past t1 seconds, the value of the formula of [Equation 1] which is the average value in the past t1 seconds. B
(I) is adopted as the evaluation signal E (i) at that time. Note that the evaluation in the direction in which the signal level of the sound pressure level X (i) becomes high is essentially unnecessary, and in consideration of the evaluation in the direction in which it becomes high, it is inevitable (not due to the change in the physical properties of the injection flow) that A sound pressure level attenuation waveform portion simply occurs due to a signal error variation factor, and this is nothing more than a cause of erroneous detection of a transition point.

【0017】一方、検出時刻t(i)における音圧レベ
ルX(i)の値が、過去t1秒間における移動平均値B
(i)に比して小さくなる場合には、(音圧レベルX
(i)の信号レベルが低くなる方向の評価を行う必要が
あるので、)過去の評価信号判定時間t2の間のX
(i)の移動平均値を下記式〔数2〕によって求め、そ
の時点における評価値E(i)とする。この場合の評価
信号判定時間t2は、一般に数秒〜数十秒の値であっ
て、普通、t1>t2であり、製鉄プロセスに応じた最
適値を採用することにより、音圧レベルの変動によって
生じた微小な音圧レベルの減少に対しては、(この減少
は、周期的な変動波形の減衰側によって発生するため)
鈍感になり、また、注入流の相変化によって生じる比較
的大きな音圧レベルの減少に対しては、(この減少は連
続的に発生するため)敏感に検出することが可能とな
る。
On the other hand, the value of the sound pressure level X (i) at the detection time t (i) is the moving average value B in the past t1 seconds.
If it is smaller than (i), the sound pressure level X
Since it is necessary to evaluate (i) in the direction in which the signal level decreases, X during the previous evaluation signal determination time t2
The moving average value of (i) is obtained by the following formula [Equation 2], and is set as the evaluation value E (i) at that time. The evaluation signal determination time t2 in this case is generally a value of several seconds to several tens of seconds, and is usually t1> t2. By adopting the optimum value according to the steelmaking process, the evaluation signal determination time t2 is caused by the fluctuation of the sound pressure level. For small reductions in sound pressure level (because this reduction is caused by the decay side of the periodic fluctuation waveform)
In addition, it becomes insensitive, and a relatively large decrease in sound pressure level caused by the phase change of the injection flow can be detected sensitively (since this decrease occurs continuously).

【0018】[0018]

【数2】 [Equation 2]

【0019】以上は、溶融金属流の音圧レベルがスラグ
流の音圧レベルよりも大きくなる事実により決定される
検出方法であり、逆にスラグ流の音圧レベルが溶融金属
流の音圧レベルよりも大きくなるプロセスに本発明を適
用する場合には、検出時刻t(i)における音圧レベル
X(i)の値が、過去t1秒間における移動平均値B
(i)よりも小さくなる条件では、過去t1秒間の平均
値を、その時点における評価信号E(i)として採用
し、一方、検出時刻t(i)における音圧レベルX
(i)の値が、過去t1秒間における移動平均値B
(i)に比して大きくなる条件では、過去の評価信号判
定時間t2の間のX(i)の移動平均値をその時点にお
ける評価信号E(i)とすることが必要である。なお、
本発明に関して、遷移点を検出する音波特性レベルとし
ては、音圧レベルによる評価の他に、音波の平均周波数
差によっても良い。
The above is the detection method determined by the fact that the sound pressure level of the molten metal flow is higher than the sound pressure level of the slag flow. Conversely, the sound pressure level of the slag flow is the sound pressure level of the molten metal flow. When the present invention is applied to a process that becomes larger than the above, the value of the sound pressure level X (i) at the detection time t (i) is the moving average value B in the past t1 seconds.
Under the condition of being smaller than (i), the average value in the past t1 seconds is adopted as the evaluation signal E (i) at that time, while the sound pressure level X at the detection time t (i)
The value of (i) is the moving average value B in the past t1 seconds.
Under the condition of becoming larger than (i), it is necessary to use the moving average value of X (i) during the past evaluation signal determination time t2 as the evaluation signal E (i) at that time. In addition,
In the present invention, the sound wave characteristic level for detecting the transition point may be an average frequency difference of sound waves in addition to the evaluation by the sound pressure level.

【0020】[0020]

【実施例】本発明の実施例について以下に説明する。出
湯時の音圧レベルの変化を、本発明による方法(本発
明)と、比較のため音圧レベルの絶対値の差で単純に検
出する方法(比較例)との2種類の方法について、溶銑
予備処理炉(H炉)で、出湯時の取鍋内へのスラグ流出
時期の検出を行い、遷移点における検出波形を比較し
た。
EXAMPLES Examples of the present invention will be described below. Regarding two types of methods, a method according to the present invention (the present invention) and a method for simply detecting the change in the sound pressure level at the time of tapping by the difference in the absolute value of the sound pressure level for comparison (comparative example), In the pretreatment furnace (H furnace), the slag outflow timing into the ladle at the time of tapping was detected, and the detection waveforms at the transition points were compared.

【0021】(1)処理条件、90tの溶銑をH炉に装
入、溶銑脱P・脱S処理を実施後、出湯作業を実施し
た。本発明と比較例は、同一チャージの測定音信号に対
し、本発明と比較例の2種類の方法で評価し、比較し
た。この比較調査を合計50チャージについて実施し
た。
(1) Treatment conditions: 90 t of hot metal was charged into an H furnace, hot metal de-P and de-S treatments were carried out, and then tapping work was carried out. In the present invention and the comparative example, two types of methods, the present invention and the comparative example, were evaluated and compared for the measurement sound signals of the same charge. This comparative survey was conducted for a total of 50 charges.

【0022】(2)測定方法、出湯流と取鍋内の溶銑と
の衝突点に向け、高指向性マイクロフォンを設置し、出
湯中の音圧レベルX(i)の測定を行った。 〔本発明におけるX(i),B(i),E(i)の決定
方法〕X(i)は、下記式〔数3〕により求めた。この
場合、4m秒(0.004秒)毎に、マイクロフォンか
らの音信号の読み取りを行い、0.004秒間における
音圧レベルの変化量の絶対値をその瞬間における音圧レ
ベルS(k)とし、その値を1秒間に亘って、平均化し
た値をその時刻(秒単位)におけるX(i)の値とし
た。即ち、
(2) Measuring method: A sound pressure level X (i) during tapping was measured by installing a highly directional microphone toward the collision point between the tapping flow and the hot metal in the ladle. [Method of Determining X (i), B (i), E (i) in the Present Invention] X (i) was obtained by the following formula [Equation 3]. In this case, the sound signal is read from the microphone every 4 msec (0.004 sec), and the absolute value of the change amount of the sound pressure level in 0.004 sec is set as the sound pressure level S (k) at that moment. The value obtained by averaging the values over 1 second was taken as the value of X (i) at that time (second unit). That is,

【0023】[0023]

【数3】 [Equation 3]

【0024】ここで、kは、(i−1)秒から、i秒ま
でを、0.004秒周期で増加させる。厳密には、k
は、K=(i−1+0.004)秒から、K=i秒迄で
ある。B(i)は、下記式〔数4〕により求めた。(t
i=10秒とした。)但し、kは、(i−9)秒より、
i秒までを、1秒周期で増加させる。
Here, k increases from (i-1) seconds to i seconds in 0.004 second cycles. Strictly speaking, k
Is from K = (i-1 + 0.004) seconds to K = i seconds. B (i) was calculated by the following formula [Equation 4]. (T
i = 10 seconds. However, k is from (i-9) seconds,
Increase up to i seconds in 1 second cycles.

【0025】[0025]

【数4】 [Equation 4]

【0026】E(i)は、以下の式により求めた。(t
i=3秒とした。)X(i)≧B(i)の場合、E
(i)=B(i)であり、X(i)<B(i)の場合は
下記式〔数5〕の通りである。
E (i) was calculated by the following equation. (T
i = 3 seconds. ) If X (i) ≧ B (i), then E
In the case of (i) = B (i) and X (i) <B (i), the following formula [Equation 5] is given.

【0027】[0027]

【数5】 [Equation 5]

【0028】但し、kは、(i−2)秒より、1秒まで
を1秒周期で増加させる。
However, k is increased from (i-2) seconds to 1 second in a cycle of 1 second.

【0029】〔比較例におけるX(i),B(i),E
(i)の決定方法〕X(i)は、本発明と同様の方法で
求めた。一方、E(i)は、前記〔数5〕の式と同じ式
により求めた。なお、 比較例の従来方法においては、
B(i)は考慮しない。
[X (i), B (i), E in Comparative Example
Method for determining (i)] X (i) was determined by the same method as in the present invention. On the other hand, E (i) was obtained by the same equation as the equation [5]. In the conventional method of the comparative example,
B (i) is not considered.

【0030】(3)評価方法、出湯流が溶銑流からスラ
グ流に変化する際の評価信号E(i)の波形は、図1の
ようになる。この図において示したA(溶銑),B(減
衰差)は、以下の内容を示す。即ち、A(溶銑)は、出
湯流が溶銑流である期間中で溶銑流からスラグ流に変化
する遷移点からの、過去1分間における雑信号(評価信
号波形の変動部分)の最大振幅であり、B(減衰差)
は、出湯流が「完全な溶銑流である期間」と「完全なス
ラグ流である期間」との間の評価信号レベルの差であ
る。各測定実施チャージにおいて、A(溶銑),B(減
衰差)を測定し、次式、検出力=B(減衰差)/A(溶
銑)に従って検出力を求めた。なお、マイクロフォンか
ら、評価信号算出までの信号処理回路は、本発明方法,
従来方法ともに同一条件とした。
(3) Evaluation method, the waveform of the evaluation signal E (i) when the molten metal flow changes from the hot metal flow to the slag flow is as shown in FIG. A (hot metal) and B (attenuation difference) shown in this figure have the following contents. That is, A (hot metal) is the maximum amplitude of the miscellaneous signal (change portion of the evaluation signal waveform) in the past 1 minute from the transition point where the hot metal flow changes from the hot metal flow to the slag flow during the period when the hot metal flow is hot metal flow. , B (attenuation difference)
Is the difference in evaluation signal level between the "period in which the molten metal flow is a complete hot metal flow" and the "period in which it is a complete slag flow". A (hot metal) and B (attenuation difference) were measured at each measurement charge, and the detection power was obtained according to the following formula: detection power = B (attenuation difference) / A (hot metal). The signal processing circuit from the microphone to the evaluation signal calculation is the method of the present invention,
The same conditions were used for both conventional methods.

【0031】(4)評価結果、下記表に示す通りであ
り、また、本発明方法における評価信号E(i)の代表
波形および従来方法における評価信号E(i)の代表波
形については、それぞれ図2および図3に示される通り
である。
(4) The evaluation results are shown in the following table, and the representative waveform of the evaluation signal E (i) in the method of the present invention and the representative waveform of the evaluation signal E (i) in the conventional method are shown in the respective figures. 2 and FIG. 3.

【0032】 [0032]

【0033】上記表と、また図2および図3から、本発
明方法と従来方法との間で比較すると、本発明において
は、注入流が溶鉄流→スラグ流取鍋遷移する際に音圧レ
ベルが減衰する状況を、より効率良く検出することが出
来るようになる結果、検出力の平均値が向上するととも
に、その精度(σ)も高くなっていることが判る。
From the above table and also from FIGS. 2 and 3, comparing the method of the present invention with the conventional method, in the present invention, the sound pressure level when the injection flow makes a transition from the molten iron flow to the slag ladle. As a result of being able to more efficiently detect the situation where A is attenuated, it is understood that the average value of the detection power is improved and the accuracy (σ) is also increased.

【0034】[0034]

【発明の効果】以上の説明の通り、本発明によれば、溶
銑流の脈動,電気回路からの電気的雑音等の、より音圧
レベルの変動が大きい場合においても、遷移点を安定し
て精度良く検出することが出来る。また、マイクロフォ
ン等集音器から入力される注入流音自体が小さい場合
や、遷移点における音圧レベルの変化が小さいような場
合においても、同様に遷移点を安定的、かつ高精度に検
出することが出来る。
As described above, according to the present invention, the transition point can be stabilized even when the fluctuation of the sound pressure level is large, such as the pulsation of the hot metal flow and the electrical noise from the electric circuit. It can be detected accurately. Further, even when the injected flow sound itself input from the sound collector such as a microphone is small, or when the change in the sound pressure level at the transition point is small, the transition point is detected stably and with high accuracy. You can

【0035】この結果、注入流が溶鉄流からスラグ流に
遷移する時点をより精度良く検出することが可能とな
り、スラグ除去作業がひき続いて実施されることによる
コスト上昇,生産性の低下、スラグ混入による次工程で
の品質の低下といった従来の諸弊害を解消し得る優れた
効果が奏される。
As a result, it becomes possible to detect the time point at which the injection flow transitions from the molten iron flow to the slag flow with higher accuracy, and the slag removal work continues to be performed, resulting in increased costs, decreased productivity, and slag. An excellent effect that can solve the conventional problems such as the deterioration of quality in the next process due to the mixing is exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】溶鉄流からスラグ流に変化する際の検出音波に
おける評価信号E(i)波形図である。
FIG. 1 is a waveform diagram of an evaluation signal E (i) in a detected sound wave when changing from a molten iron flow to a slag flow.

【図2】本発明方法の実施によるスラグ流出検出時にお
ける評価信号E(i)波形図である。
FIG. 2 is a waveform diagram of an evaluation signal E (i) when slag outflow is detected by implementing the method of the present invention.

【図3】比較する従来方法によるスラグ流出検出時にお
ける評価信号E(i)波形図である。
FIG. 3 is a waveform diagram of an evaluation signal E (i) when a slag outflow is detected by a conventional method for comparison.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 浮上分離したスラグ相を伴う溶融金属
を、別の容器に注入しながら移し替える工程において、
溶融金属の注入流と前記容器に溜まった溶融金属表面と
の衝突点から発生する音波を検出し、その音圧レベルま
たは平均周波数で表される音波特性が減少側に変化する
状況より、注入流が溶融金属からスラグに変わる時期を
評価するスラグ流出検出方法であって、検出時刻t
(i)における音波特性のベース信号レベルB(i)
を、その直前のベース信号判定時間t1中に検出した音
波特性値の移動平均値で求めるとともに、検出時刻t
(i)における音波特性値X(i)が前記ベース信号レ
ベルB(i)以上である場合には、このベース信号レベ
ルB(i)をその時点における評価信号E(i)と定
め、一方、前記音波特性値X(i)が前記ベース信号レ
ベルB(i)よりも小さい場合には、ベース信号判定時
間t1に比して短い予め設定した評価信号判定時間t2
中に検出した音波特性値の移動平均値をその時点におけ
る評価信号E(i)と定めることを特徴とするスラグ流
出検出方法。
1. In the step of transferring the molten metal with the floated and separated slag phase while pouring it into another container,
The sound wave generated from the collision point between the molten metal injection flow and the surface of the molten metal accumulated in the container is detected, and the sound flow level represented by the sound pressure level or the average frequency of the sound wave characteristics changes to the decreasing side. It is a slag outflow detection method for evaluating the time when molten metal changes from molten metal to slag at a detection time t.
Base signal level B (i) of the sound wave characteristic in (i)
Is calculated by the moving average value of the sound wave characteristic values detected during the immediately preceding base signal determination time t1, and the detection time t
When the sound wave characteristic value X (i) in (i) is equal to or higher than the base signal level B (i), this base signal level B (i) is defined as the evaluation signal E (i) at that time, and When the sound wave characteristic value X (i) is smaller than the base signal level B (i), a preset evaluation signal determination time t2 shorter than the base signal determination time t1.
A slag outflow detection method, characterized in that a moving average value of the sound wave characteristic values detected therein is set as an evaluation signal E (i) at that time.
【請求項2】 浮上分離したスラグ相を伴う溶融金属
を、別の容器に注入しながら移し替える工程において、
溶融金属の注入流と前記容器に溜まった溶融金属表面と
の衝突点から発生する音波を検出し、その音圧レベルま
たは平均周波数で表される音波特性が増加側に変化する
状況より、注入流が溶融金属からスラグに変わる時期を
評価するスラグ流出検出方法であって、検出時刻t
(i)における音波特性のベース信号レベルB(i)
を、その直前のベース信号判定時間t1中に検出した音
波特性値の移動平均値で求めるとともに、検出時刻t
(i)における音波特性値X(i)が前記ベース信号レ
ベルB(i)以下である場合には、このベース信号レベ
ルB(i)をその時点における評価信号E(i)と定
め、一方、前記音波特性値X(i)が前記ベース信号レ
ベルB(i)よりも大きい場合には、ベース信号判定時
間t1に比して短い予め設定した評価信号判定時間t2
中に検出した音波特性値の移動平均値をその時点におけ
る評価信号E(i)と定めることを特徴とするスラグ流
出検出方法。
2. In the step of transferring the molten metal with the floated and separated slag phase while pouring it into another container,
The sound wave generated from the collision point between the molten metal injection flow and the surface of the molten metal accumulated in the container is detected, and the sound flow characteristic represented by the sound pressure level or the average frequency changes to the increasing side, It is a slag outflow detection method for evaluating the time when molten metal changes from molten metal to slag at a detection time t.
Base signal level B (i) of the sound wave characteristic in (i)
Is calculated as the moving average value of the sound wave characteristic values detected during the immediately preceding base signal determination time t1, and the detection time t
When the sound wave characteristic value X (i) in (i) is equal to or lower than the base signal level B (i), this base signal level B (i) is defined as the evaluation signal E (i) at that time, and When the sound wave characteristic value X (i) is larger than the base signal level B (i), a preset evaluation signal determination time t2 shorter than the base signal determination time t1.
A slag outflow detection method, characterized in that a moving average value of the sound wave characteristic values detected therein is set as an evaluation signal E (i) at that time.
JP4127691A 1992-05-20 1992-05-20 Detection of slag outflow Pending JPH05318092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4127691A JPH05318092A (en) 1992-05-20 1992-05-20 Detection of slag outflow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4127691A JPH05318092A (en) 1992-05-20 1992-05-20 Detection of slag outflow

Publications (1)

Publication Number Publication Date
JPH05318092A true JPH05318092A (en) 1993-12-03

Family

ID=14966325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4127691A Pending JPH05318092A (en) 1992-05-20 1992-05-20 Detection of slag outflow

Country Status (1)

Country Link
JP (1) JPH05318092A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209220A (en) * 1995-02-03 1996-08-13 Kobe Steel Ltd Device for predicting occurrence of slopping
CN110681835A (en) * 2019-11-18 2020-01-14 华北理工大学 Continuous casting mold flux temperature control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209220A (en) * 1995-02-03 1996-08-13 Kobe Steel Ltd Device for predicting occurrence of slopping
CN110681835A (en) * 2019-11-18 2020-01-14 华北理工大学 Continuous casting mold flux temperature control device
CN110681835B (en) * 2019-11-18 2023-09-08 天津理工大学 Continuous casting mold flux temperature control device

Similar Documents

Publication Publication Date Title
US4398948A (en) Methods for controlling blowing, controlling the slag formation and predicting slopping in the blowing of molten pig iron in LD converter
CN102791399B (en) Converter splash prediction and oxygen lance optimization system
JPH05318092A (en) Detection of slag outflow
JP7036142B2 (en) Sloping prediction method of converter, operation method of converter and sloping prediction system of converter
JP2720611B2 (en) Steel continuous casting method
JP2697535B2 (en) Operating method of smelting furnace
JPH09236461A (en) Decision method and device for slug outflow
JPH0617110A (en) Method for deciding completion of metal tapping
JP2006176849A (en) Method and unit for measuring molten material surface level in blast furnace
JPH1183330A (en) Melting progress evaluation method for arc melting furnace
JPS637616B2 (en)
JP3082656B2 (en) Detection method of boiling in continuous casting machine mold
JPH10310807A (en) Operation of blast furnace
JP2000117407A (en) Method for detecting flow-out of slag
JP4313701B2 (en) Method for leveling the level in the blast furnace
JPH06248321A (en) Method for predicting slopping in refining furnace
JPH0633128A (en) Method for automatically stopping steel-tapping in converter
JPH02251362A (en) Method and instrument for detecting flowing-out of slag
JPH09118908A (en) Method for controlling blowing in converter
JPH09316514A (en) Method for estimating carbon and chromium contents in molten steel in converter process of chromium-containing steel and device therefor and method for tapping molten steel thereof
JP2017102040A (en) Operation method for steelmaking furnace
JP2023092002A (en) Slag formation determination method and slag formation determination apparatus
JPH07120160A (en) Furnace state-detecting method for direct current electric furnace
JPS61242746A (en) Detection of slag in outflow molten metal
JP2648425B2 (en) How to control the amount of slag flowing out of converter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090709

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100709