JPH053178B2 - - Google Patents

Info

Publication number
JPH053178B2
JPH053178B2 JP20432982A JP20432982A JPH053178B2 JP H053178 B2 JPH053178 B2 JP H053178B2 JP 20432982 A JP20432982 A JP 20432982A JP 20432982 A JP20432982 A JP 20432982A JP H053178 B2 JPH053178 B2 JP H053178B2
Authority
JP
Japan
Prior art keywords
signal
circuit
integrator
time constant
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20432982A
Other languages
Japanese (ja)
Other versions
JPS5994939A (en
Inventor
Kenzo Akagiri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP20432982A priority Critical patent/JPS5994939A/en
Publication of JPS5994939A publication Critical patent/JPS5994939A/en
Publication of JPH053178B2 publication Critical patent/JPH053178B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B14/00Transmission systems not characterised by the medium used for transmission
    • H04B14/02Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation
    • H04B14/06Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using differential modulation, e.g. delta modulation
    • H04B14/062Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using differential modulation, e.g. delta modulation using delta modulation or one-bit differential modulation [1DPCM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はデルタ変調信号復調回路に関する。[Detailed description of the invention] Industrial applications The present invention relates to a delta modulation signal demodulation circuit.

従来技術とその問題点 アナログ信号を標本化し、1ビツト(2レベ
ル)量子化器を用いて標本値を差動量子化して符
号伝送するようにしたデルタ変調方式がPCM伝
送系に用いられることがある。このデルタ変調伝
送系の復調器としては一般には積分器が用いられ
る。この方式では、伝送系で発生するビツトエラ
ーが積分器によつて蓄積され、再生品質が低下し
易いことが知られている。特に、複数チヤンネル
のデータをシリアル伝送して受信側で各チヤンネ
ルに分け、個々のチヤンネルが一連のデータとな
るようにつなぎ合わせるような伝送系では、伝送
系のエラーレートが高いと再生アナログ信号の各
接続点においてDCシフトが発生し、極めて低品
質の信号となる。また伝送系に回転ヘツド型
VTRを用いる場合、ヘツドの回転周期で不連続
なデータが伝送されるので、特にフアスト再生や
スロー再生などの変速再生を行うと、エラーレー
トが増大し、データの各接続点においてDCシフ
トが発生する。回転ヘツド型VTRでフアスト再
生やスロー再生を行うと、トラツクが間引いて走
査されたり、複数本のトラツクにまたがつて走査
されたり、或いは1本のトラツクが重複して走査
されたりするので、再生信号(例えばオーデイオ
信号)の時分割多重された各チヤンネルを復元す
る際に、個々のチヤンネルの接続点ごとに波形の
位相ずれ(不連続)が本質的に生じるが、同時に
変速再生時には伝送されているデルタ変調信号の
エラーレートがノイズや再生出力のレベル変動に
より増大し、復調出力のDCエラーが増加する。
このため各波形の接続点にDCシフトが生じ、波
形の不連続により再生品質が著しく悪化する。ま
た、DCエラー成分の蓄積が増大すると、再生回
路系が飽和したり、等価的なダイナミツクレンジ
が減少することがある。
Conventional technology and its problems A delta modulation method that samples an analog signal, differentially quantizes the sample value using a 1-bit (2-level) quantizer, and transmits the code is often used in PCM transmission systems. be. An integrator is generally used as a demodulator in this delta modulation transmission system. It is known that in this method, bit errors occurring in the transmission system are accumulated by the integrator, which tends to deteriorate the reproduction quality. In particular, in a transmission system where multiple channels of data are serially transmitted, separated into each channel on the receiving side, and then joined together to form a series of data from each individual channel, if the error rate of the transmission system is high, the reproduction analog signal will be affected. A DC shift occurs at each connection point, resulting in a very low quality signal. In addition, a rotating head type is used for the transmission system.
When using a VTR, data is transmitted discontinuously depending on the rotation period of the head, so when variable speed playback such as fast playback or slow playback is performed, the error rate increases and a DC shift occurs at each data connection point. do. When performing fast playback or slow playback on a rotating head VTR, tracks may be thinned out, scanned across multiple tracks, or one track may be scanned overlappingly, so playback When restoring each time-division multiplexed channel of a signal (for example, an audio signal), a waveform phase shift (discontinuity) essentially occurs at each connection point of each channel, but at the same time, during variable speed playback, the transmitted The error rate of the delta modulated signal increases due to noise and level fluctuations of the reproduced output, and the DC error of the demodulated output increases.
As a result, a DC shift occurs at the connection point of each waveform, and the discontinuity of the waveform significantly deteriorates the reproduction quality. Furthermore, as the accumulation of DC error components increases, the reproduction circuit system may become saturated or the equivalent dynamic range may decrease.

発明の目的 本発明は上述の問題にかんがみ、デルタ変調
PCM信号を復調する際のエラービツトによるDC
エラー成分の残留が少ない復調回路を提供するこ
とを目的とする。
Purpose of the invention In view of the above-mentioned problems, the present invention provides a method for delta modulation.
DC due to error bit when demodulating PCM signal
It is an object of the present invention to provide a demodulation circuit with less residual error components.

発明の概要 本発明のデルタ変調信号の復調回路は、再生装
置(VTR9)からの再生デルタ変調信号を復号
回路12で復号した後復調するデルタ変調信号復
調回路(第1図)であつて、復号デルタ変調信号
を積分してアナログ信号を得る差動アンプ17及
び帰還回路18から成る積分器と、上記積分器の
時定数帰還回路18の時定数を可変する抵抗R1
R2,CdS20などの時定数可変手段(第2図、第
4図)と、上記再生装置からの高倍速再生モード
信号F又は上記復号回路からのビツトエラーの増
加信号Eによつて、上記時定数可変手段を切換え
て上記積分器のDC負帰還量を増加させるスイツ
チ19などの切換え手段とから成る。このように
構成することにより、DCエラー成分が復調出力
に発生しても速かに消去される。
Summary of the Invention The delta modulation signal demodulation circuit of the present invention is a delta modulation signal demodulation circuit (FIG. 1) that decodes a reproduced delta modulation signal from a reproduction device (VTR 9) in a decoding circuit 12 and then demodulates the reproduced delta modulation signal. an integrator consisting of a differential amplifier 17 and a feedback circuit 18 to obtain an analog signal by integrating a delta modulated signal; a resistor R 1 for varying the time constant of the time constant feedback circuit 18 of the integrator;
The above-mentioned time constant can be adjusted by a time constant variable means (Figs. 2 and 4) such as R 2 and CdS20, and a high-speed playback mode signal F from the above-mentioned playback device or a bit error increase signal E from the above-mentioned decoding circuit. It consists of a switching means such as a switch 19 that changes the variable means to increase the DC negative feedback amount of the integrator. With this configuration, even if a DC error component occurs in the demodulated output, it is quickly erased.

実施例 以下本発明を実施例に沿つて説明する。Example The present invention will be described below with reference to Examples.

第1図は本発明が適用されるオーデイオ信号の
デルタ変調PCM伝送系のブロツク図である。第
1図において、第1チヤンネル(CH−1)及び
第2チヤンネル(CH−2)の入力は、ローパス
フイルタ1,2を介してデルタ変調器3,4に与
えられ、現在標本値と直前の標本値との差(大
小)が1ビツトで量子化される。デルタ変調器
3,4の出力は、マルチプレケサ5でシリアル信
号にまとめられ、符号回路6で誤り訂正機能を持
つPCM信号に変換されてから、インターリーブ
回路7でデータインターリーブされる。更にビデ
オ変調回路8でビデオフオーマツトの信号に変換
され、回転ヘツド型VTR9で記録される。
FIG. 1 is a block diagram of a delta modulation PCM transmission system for audio signals to which the present invention is applied. In Fig. 1, the inputs of the first channel (CH-1) and the second channel (CH-2) are given to delta modulators 3 and 4 via low-pass filters 1 and 2, and the current sample value and the previous sample value are input to delta modulators 3 and 4. The difference (size) from the sample value is quantized by 1 bit. The outputs of the delta modulators 3 and 4 are combined into a serial signal by a multiplexer 5, converted into a PCM signal with an error correction function by a coding circuit 6, and then data interleaved by an interleaving circuit 7. Further, the signal is converted into a video format signal by a video modulation circuit 8, and recorded by a rotary head type VTR 9.

VTR9の再生出力は、ビデオ復調回路10、
デインターリーブ回路11、復号回路12を経て
2チヤンネルのデルタ変調信号に復調され、更に
デルタ復調器13,14でアナログ信号にD/A
変換されてから、ローパスフイルタ15,16を
通して第1チヤンネル及び第2チヤンネルのオー
デイオ信号として外部に導出される。
The playback output of the VTR 9 is provided by a video demodulation circuit 10,
It is demodulated into a two-channel delta modulated signal via a deinterleaving circuit 11 and a decoding circuit 12, and then converted into an analog signal by delta demodulators 13 and 14.
After the conversion, the signals are passed through low-pass filters 15 and 16 and output as first and second channel audio signals to the outside.

第1図のデルタ復調器13,14としては第2
図のような積分器が通常用いられる。この積分器
を構成する差動アンプ17の反転入力には、正負
パルスに変換されたデルタ変調信号が与えられ、
差動アンプ17の出力が、積分コンデンサC及び
Cに並列接続された抵抗R1,R2の直列回路から
成る帰還回路18を介して反転入力に帰還され
る。抵抗R1,R2は積分器のDCオフセツトを所定
の時定数で消去するために設けられ、これによつ
て積分器の低域利得は有限な値となつている。帰
還回路18はハイパスフイルタであり、従つて、
その遮断周波数c以上では負帰還量が増大し、差
動アンプ17の出力レベルは低下する。すなわち
第2図の回路は第3図に示すような積分特性を示
し、この積分作用によつて入力のデルタ変調信号
の1ビツトごとの重みがアナログレベルに変換さ
れる。
As the delta demodulators 13 and 14 in FIG.
An integrator as shown in the figure is usually used. A delta modulation signal converted into positive and negative pulses is applied to the inverting input of the differential amplifier 17 constituting this integrator.
The output of the differential amplifier 17 is fed back to the inverting input via a feedback circuit 18 consisting of a series circuit of resistors R 1 and R 2 connected in parallel to integrating capacitors C and C. Resistors R 1 and R 2 are provided to cancel the DC offset of the integrator with a predetermined time constant, thereby making the low-frequency gain of the integrator a finite value. Feedback circuit 18 is a high pass filter and therefore:
Above the cutoff frequency c, the amount of negative feedback increases and the output level of the differential amplifier 17 decreases. That is, the circuit of FIG. 2 exhibits an integral characteristic as shown in FIG. 3, and by this integral action, the weight of each bit of the input delta modulation signal is converted into an analog level.

本発明の実施例では、第2図に示すように積分
器の遮断周波数cを変更するスイツチ19が設け
られている。このスイツチ19は帰還回路18の
抵抗R1と並列に接続され、スイツチ19が閉じ
られると、コンデンサCの並列抵抗分が小さくな
り、DC負帰還量が増加すると共に、高域側の帰
還量は相対的に減少する。すなわち、帰還回路1
8の低域側通過帯域が広がると共にゲインが低下
し、第3図の如く積分器としての遮断周波数は
c′のように上昇する。
In the embodiment of the present invention, a switch 19 is provided for changing the cutoff frequency c of the integrator, as shown in FIG. This switch 19 is connected in parallel with the resistor R1 of the feedback circuit 18, and when the switch 19 is closed, the parallel resistance of the capacitor C decreases, the amount of negative DC feedback increases, and the amount of feedback on the high frequency side decreases. Relatively decreasing. That is, feedback circuit 1
As the lower passband of 8 widens, the gain decreases, and the cutoff frequency as an integrator decreases as shown in Figure 3.
It rises like c′.

積分器のDCゲインを低下させれば、デルタ変
調信号のビツトエラーによつて積分器の出力に発
生するDCエラー成分はより急速に減衰される。
従つてDCエラー成分の蓄積(残留)が少なくな
り、再生信号の接続点で発生するDCシフトが軽
減され、再生信号の品質は向上する。
By reducing the DC gain of the integrator, the DC error component produced at the integrator output by bit errors in the delta modulation signal will be attenuated more rapidly.
Therefore, the accumulation (residual) of DC error components is reduced, the DC shift occurring at the connection point of the reproduced signal is reduced, and the quality of the reproduced signal is improved.

ところで積分器のダイナミツクレンジは第3図
に示すように低域ほど大である。従つて積分器の
高域遮断周波数を上昇させることは、再生アナロ
グ信号の低域ダイナミツクレンジを縮少させるこ
とになり、デルタ変調伝送の長所を損うことにな
る。このため本実施例では、通常のデルタ変調伝
送のときには、スイツチ19を開き、遮断周波数
を第3図のcの如くに低くして所要のダイナミツ
クレンジを確保し、デルタ変調のエラーレートが
増大するような伝送の場合には、スイツチ19を
閉じて、遮断周波数をc′の如くに高くしている。
Incidentally, as shown in FIG. 3, the dynamic range of the integrator is larger at lower frequencies. Therefore, increasing the high-frequency cutoff frequency of the integrator reduces the low-frequency dynamic range of the reproduced analog signal, which impairs the advantages of delta modulation transmission. Therefore, in this embodiment, during normal delta modulation transmission, the switch 19 is opened and the cutoff frequency is lowered as shown in c in Fig. 3 to ensure the required dynamic range, thereby increasing the error rate of delta modulation. In the case of such transmission, the switch 19 is closed and the cut-off frequency is raised to c'.

スイツチ19の開閉は、例えば第1図の如くに
VTR9からの高倍速再生モード信号Fによつて
行い、高倍速再生時にスイツチ19を閉じて、エ
ラービツトの増大に対処するようにする。或い
は、第1図の如く復号回路12からビツトエラー
検出に基ずくエラー増加信号Eを得て、この信号
Eでもつてデルタ復調器の積分時定数を変更して
もよい。
The switch 19 can be opened and closed, for example, as shown in Figure 1.
This is done using the high-speed playback mode signal F from the VTR 9, and the switch 19 is closed during high-speed playback to cope with an increase in error bits. Alternatively, as shown in FIG. 1, an error increase signal E based on bit error detection may be obtained from the decoding circuit 12, and this signal E may also be used to change the integration time constant of the delta demodulator.

第4図は積分常数を変更し得るようにしたデル
タ復調器の別の実施例を示すブロツク回路図であ
る。この例では、積分器の帰還回路18のコンデ
ンサCと並列にCdS20を接続し、このCdS20
への光照射量を制御して積分時定数が連続的に変
更されるようにしている。積分時定数の変更は、
第1図の復号回路12内で処理されているデルタ
変調PCM信号のエラー頻度に基いて行われる。
すなわち、デルタ変調PCM信号がエラー検出回
路21に供給され、このPCM信号に付されてい
るパリテイやCRCなどのチエツクビツトに基い
てエラービツトが検出される。検出されたエラー
はエラー頻度計数回路22に与えられ、計数値が
所定数に達するごとにエラー増大を示すパルス信
号が発生される。このパルス信号は時定数回路2
3で平滑されると共にLEDなどを用いて光信号
に変換され、この光信号でもつてCdS20の抵抗
値が制御される。この制御により、エラーの増加
量に応じてデルタ変調器の低域遮断周波数が上昇
され、D/A変換出力のDCエラーが速かに減衰
される。
FIG. 4 is a block circuit diagram showing another embodiment of a delta demodulator in which the integral constant can be changed. In this example, CdS20 is connected in parallel with the capacitor C of the integrator feedback circuit 18, and this CdS20
The integral time constant is continuously changed by controlling the amount of light irradiated to the area. To change the integration time constant,
This is done based on the error frequency of the delta modulated PCM signal being processed within the decoding circuit 12 of FIG.
That is, the delta modulated PCM signal is supplied to the error detection circuit 21, and error bits are detected based on check bits such as parity and CRC attached to this PCM signal. The detected error is given to the error frequency counting circuit 22, and every time the count value reaches a predetermined number, a pulse signal indicating an increase in the error is generated. This pulse signal is the time constant circuit 2
3 and converted into an optical signal using an LED or the like, and this optical signal also controls the resistance value of the CdS 20. Through this control, the low cutoff frequency of the delta modulator is increased in accordance with the amount of increase in error, and the DC error in the D/A conversion output is quickly attenuated.

以上の実施例に示したように、積分器の時定数
帰還回路18の時定数を可変にする抵抗R1,R2
(第2図)又はCdS20のような時定数可変手段
を設け、再生装置(VTR9)からの高倍速再生
モード信号F又は復号回路12からのビツトエラ
ーの増加信号Eによつて、時定数可変手段をスイ
ツチ19から成る切換え手段で切換えて積分器の
DC負帰還量を増加させる構成となつている。こ
れにより積分器のDCゲインを低下させ、復調出
力のDCエラー成分を減少せている。
As shown in the above embodiments, the resistors R 1 and R 2 make the time constant of the integrator time constant feedback circuit 18 variable.
Alternatively, a time constant variable means such as CdS20 is provided, and the time constant variable means is controlled by the high speed reproduction mode signal F from the reproduction device (VTR 9) or the bit error increase signal E from the decoding circuit 12. A switching means consisting of a switch 19 switches the integrator.
The configuration is such that the amount of DC negative feedback is increased. This lowers the DC gain of the integrator and reduces the DC error component of the demodulated output.

発明の効果 本発明は、上述の如く伝送されたデルタ変調信
号中にエラービツトによる復調出力のDC成分を
低減するために、D/A変換器として作用する復
調回路の積分器のDCゲインを低下させる手段を
設けたので、エラービツトが多く、従つて積分出
力にDCエラーが残留し易い再生(受信)状態の
場合でもDC成分が速かに減衰され、不連続な伝
送信号をつなぎ合わせるような伝送システムであ
つても、各接続点において発生するDCシフトが
小さく、良好な再生信号が得られる。またエラー
レートが小さい伝送系では、積分器の低減ゲイン
を高くすることにより、デルタ変調伝送特有の広
い低域ダイナミツクレンジを損うことなく、再生
復調を行うことができる。
Effects of the Invention The present invention reduces the DC gain of the integrator of the demodulation circuit that acts as a D/A converter in order to reduce the DC component of the demodulated output due to error bits in the delta modulated signal transmitted as described above. By providing a means for this, even in the reproduction (reception) state where there are many error bits and therefore DC errors tend to remain in the integral output, the DC component is quickly attenuated, creating a transmission system that connects discontinuous transmission signals. Even in this case, the DC shift occurring at each connection point is small and a good reproduced signal can be obtained. Furthermore, in a transmission system with a small error rate, by increasing the reduction gain of the integrator, regenerative demodulation can be performed without impairing the wide low-frequency dynamic range peculiar to delta modulation transmission.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用されるデルタ変調伝送シ
ステムのブロツク図、第2図は本発明によるデル
タ変調信号復調回路の実施例を示す回路図、第3
図は第2図の回路の積分特性を示すグラフ、第4
図は別の実施例を示すデルタ変調信号復調回路の
ブロツク回路図である。 なお図面に用いた符号において、3,4……デ
ルタ変調器、17……差動アンプ、18……帰還
回路、19……スイツチ、20……CdS、であ
る。
FIG. 1 is a block diagram of a delta modulation transmission system to which the present invention is applied, FIG. 2 is a circuit diagram showing an embodiment of a delta modulation signal demodulation circuit according to the present invention, and FIG.
The figure is a graph showing the integral characteristics of the circuit in Figure 2,
The figure is a block circuit diagram of a delta modulation signal demodulation circuit showing another embodiment. In the symbols used in the drawings, 3, 4...delta modulator, 17...differential amplifier, 18...feedback circuit, 19...switch, 20...CdS.

Claims (1)

【特許請求の範囲】 1 再生装置からの再生デルタ変調信号を復号回
路で復号した後復調するデルタ変調信号復調回路
であつて、 復号デルタ変調信号を積分してアナログ信号を
得る積分器と、 上記積分器の時定数帰還回路の時定数を可変す
る時定数可変手段と、 上記再生装置からの高倍速再生モード信号又は
上記復号回路からのビツトエラーの増加信号によ
つて、上記時定数可変手段を切換えて上記積分器
のDC負帰還量を増加させる切換え手段とから成
るデルタ変調信号復号回路。
[Scope of Claims] 1. A delta modulation signal demodulation circuit that decodes and demodulates a reproduced delta modulation signal from a reproduction device using a decoding circuit, the circuit comprising: an integrator that integrates the decoded delta modulation signal to obtain an analog signal; A time constant variable means for varying the time constant of a time constant feedback circuit of an integrator; and a time constant variable means that is switched by a high-speed playback mode signal from the playback device or a bit error increase signal from the decoding circuit. and switching means for increasing the DC negative feedback amount of the integrator.
JP20432982A 1982-11-19 1982-11-19 Demodulating circuit for delta modulating signal Granted JPS5994939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20432982A JPS5994939A (en) 1982-11-19 1982-11-19 Demodulating circuit for delta modulating signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20432982A JPS5994939A (en) 1982-11-19 1982-11-19 Demodulating circuit for delta modulating signal

Publications (2)

Publication Number Publication Date
JPS5994939A JPS5994939A (en) 1984-05-31
JPH053178B2 true JPH053178B2 (en) 1993-01-14

Family

ID=16488686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20432982A Granted JPS5994939A (en) 1982-11-19 1982-11-19 Demodulating circuit for delta modulating signal

Country Status (1)

Country Link
JP (1) JPS5994939A (en)

Also Published As

Publication number Publication date
JPS5994939A (en) 1984-05-31

Similar Documents

Publication Publication Date Title
CA1083488A (en) Pulse code modulated digital audio system
US4414668A (en) Apparatus for reproducing information signals recorded on a recording medium
US4509155A (en) Circuit arrangement for a disk player for reproducing information prerecorded in the form of pits
CS228522B2 (en) Apparatus for compact disc reproduction
JPH053178B2 (en)
US5848048A (en) Optical disc reproducing apparatus, signal processing apparatus and method of the same
JP3519110B2 (en) Signal regenerator for binary signal
JPH0544116B2 (en)
JPH0447799Y2 (en)
JP3849164B2 (en) Audio equipment
JP3403924B2 (en) 1-bit signal transmission or recording / reproducing device
JPH0351813Y2 (en)
JP3576675B2 (en) Playback device
JP3932663B2 (en) Magnetic recording / reproducing device
Busby Digital Audio Recording on Videotape: Some Choices
JP2003273740A (en) D/a conversion device
JP3195511B2 (en) Digital FM demodulator
SU1064296A1 (en) Device for recording and reproducing analog signals
JPH079681B2 (en) Integration detection circuit
JPH0621041Y2 (en) Magnetic tape recording / reproducing device
SU458865A1 (en) Magnetic recording apparatus playback channel
JP2558325B2 (en) Magnetic tape recording / playback device
JPH01298579A (en) Pulse width modulation signal reproducing circuit
JPS629506A (en) Reproducing device for information recording medium
JPH04315876A (en) Data regenerating processor