JPH05316731A - One-chip type switching power source - Google Patents

One-chip type switching power source

Info

Publication number
JPH05316731A
JPH05316731A JP18139192A JP18139192A JPH05316731A JP H05316731 A JPH05316731 A JP H05316731A JP 18139192 A JP18139192 A JP 18139192A JP 18139192 A JP18139192 A JP 18139192A JP H05316731 A JPH05316731 A JP H05316731A
Authority
JP
Japan
Prior art keywords
voltage
switching
power supply
switching power
voltage conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18139192A
Other languages
Japanese (ja)
Other versions
JP3019611B2 (en
Inventor
Akira Saito
明 斉藤
Yasuaki Motoi
康朗 本井
Tsuneo Watanabe
恒夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4181391A priority Critical patent/JP3019611B2/en
Priority to US08/025,422 priority patent/US5355301A/en
Publication of JPH05316731A publication Critical patent/JPH05316731A/en
Application granted granted Critical
Publication of JP3019611B2 publication Critical patent/JP3019611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the size and rationalize a switching power source by improving high frequency characteristics of a transformer for the poser source, and eliminating the need of using a printed circuit board in the case of assembling it. CONSTITUTION:A switching power source is formed in a chip by forming a magnetic induction element such as a transformer 31, etc., for a voltage converter 30 in a thin film laminated structure, reducing its size by improving its high frequency characteristics, integrating all active elements such as a switching element 43, a voltage controller 47, etc., in a semiconductor ship 10, and assembling the converter 30 on the chip 10 in connection with the element through an arranged layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜積層構造の変圧器や
リアクトル等の磁気誘導素子を半導体チップに搭載して
なる極小形のワンチップ形スイッチング電源装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a miniature one-chip type switching power supply device in which a magnetic induction element such as a thin film laminated transformer or a reactor is mounted on a semiconductor chip.

【0002】[0002]

【従来の技術】電子装置類に対する直流の定電圧電源な
いし安定化電源として広く採用されるスイッチング電源
装置にはいわゆるフォワード形, フライバック形, チョ
ッパ形等の多くの回路方式のものがあるが、いずれの方
式でもその入力側と出力側とを変圧器やインダクタ等の
磁気誘導素子ないし装置を介して結合し、よく知られて
いるようこの磁気誘導素子の入力側電流をトランジスタ
等のスイッチング素子により断続させてそのデューティ
比を制御しながら、その出力側の直流電圧を常に一定値
に維持するものである。
2. Description of the Related Art A switching power supply device widely used as a DC constant voltage power supply or a stabilized power supply for electronic devices includes so-called forward type, flyback type, chopper type, etc. In either method, the input side and the output side are coupled via a magnetic induction element or device such as a transformer or inductor, and as is well known, the input side current of this magnetic induction element is switched by a switching element such as a transistor. The DC voltage on the output side is constantly maintained at a constant value while intermittently controlling the duty ratio.

【0003】このスイッチング電源装置にはかかる磁気
誘導素子やスイッチング素子のほかにも整流ダイオー
ド, 平滑キャパシタ, 制御用集積回路装置が必要なの
で、従来からこれらの回路部品をすべてプリント配線基
板に実装するのが通例であるが、電子装置が益々大規模
化ないし複雑化するともにそれを構成する電子回路ごと
に数〜10Wの小容量のスイッチング電源を組み込むこと
が多くなり、かかる目的に適したできるだけ小形で安価
なスイッチング電源が要求されている。この要求に対し
ては、最近の進んだ高集積化技術を利用して従来の制御
回路のほかスイッチング素子や整流ダイオードを含むス
イッチング電源装置に要するすべての半導体素子を集積
回路装置の10mm角以下の小形の単一チップ内に組み込む
ことが可能である。また、磁気誘導素子や平滑キャパシ
タについても、回路動作上のスイッチング周波数を数百
kHz以上に上げてそれらの実効リアクタンス値を高める
ことにより体格を従来と比べてほぼ半減させることが可
能である。
Since this switching power supply requires a rectifying diode, a smoothing capacitor, and an integrated circuit device for control in addition to the magnetic induction element and the switching element, conventionally, all of these circuit components are mounted on a printed wiring board. However, as electronic devices become larger and more complex, a small-capacity switching power supply of several to 10 W is often incorporated in each of the electronic circuits that make up the electronic device, and the electronic device should be as compact as possible for such purposes. Inexpensive switching power supplies are required. In order to meet this demand, all the semiconductor elements required for a switching power supply device including switching elements and rectifier diodes, in addition to conventional control circuits, have been developed by using the recently advanced high integration technology. It can be incorporated in a small single chip. Further, regarding the magnetic induction element and the smoothing capacitor, it is possible to halve the physical size of the magnetic induction element and the smoothing capacitor by increasing the effective reactance value thereof by increasing the switching frequency in circuit operation to several hundred kHz or more.

【0004】[0004]

【発明が解決しようとする課題】上述のように半導体素
子ないしは能動素子をすべて単一チップ内に集積化し、
かつスイッチング周波数を高めて変圧器や平滑キャパシ
タ等の受動素子を小形化することによって従来からスイ
ッチング電源装置の合理化が進められて来たが、かかる
解決手段も以下に説明するように性能面や信頼性の点で
ほぼ限界に近づきつつあるのが現状である。
As described above, semiconductor elements or active elements are all integrated in a single chip,
Moreover, rationalization of switching power supply devices has been conventionally promoted by increasing the switching frequency and downsizing passive elements such as transformers and smoothing capacitors.However, such a solution is also required in terms of performance and reliability as described below. The reality is that we are approaching the limit in terms of sex.

【0005】すなわち、装置の各構成部品を小形化しか
つ部品点数を減らしても、プリント配線基板上に実装す
る点に変わりはないので配線基板のサイズにより制約さ
れて装置全体の小形化に限界が生じ、部品点数が減って
も実装がなくなるわけでなくむしろ部品が小形になった
だけ作業が困難になるので実際に掛かる手間はあまり変
わらない。また、能動素子と受動素子をプリント基板の
配線を介して接続するので、スイッチング周波数が1M
Hzを越えると配線のインダクタンスにより回路動作が影
響されて装置性能がばらつきやすく、かつ配線が拾う外
来ノイズにより誤動作しやすくなって装置の信頼性が低
下する。このため、スイッチング周波数を10MHz程度に
まで上げるのは困難なのが実情である。
That is, even if each component of the device is miniaturized and the number of parts is reduced, it is still mounted on the printed wiring board, so that the size of the wiring board limits the size of the entire device. Even if the number of parts decreases, the mounting does not disappear, but rather the work becomes difficult because the parts are small, so the actual work does not change much. Moreover, since the active element and the passive element are connected through the wiring of the printed circuit board, the switching frequency is 1M.
If the frequency exceeds Hz, the circuit performance is affected by the inductance of the wiring, and the performance of the device tends to fluctuate, and the external noise picked up by the wiring tends to cause a malfunction, which lowers the reliability of the device. Therefore, it is difficult to raise the switching frequency to about 10 MHz.

【0006】もう一つの問題点は、スイッチング周波数
が1MHz以上になると磁気誘導素子の周波数特性が低下
しインダクタンス値が飽和して来ることである。すなわ
ち、100kHz付近の周波数領域では一定サイズの磁気誘
導素子から周波数の平方根に比例した出力を取り出せ、
かつ周波数に比例したリアクタンス値が得られるが、1
MHz以上の高周波領域では磁気誘導素子の磁気回路の高
周波損が増加し、その内部の分布静電容量の影響も大き
くなって来るため、インダクタンス値の周波数特性が次
第に低下してそれと角周波数の積であるリアクタンス値
が10MHz以上の高周波領域では飽和してほとんど増加し
なくなるので、磁気誘導素子をある限界以下には小形化
できなくなって来る。
Another problem is that when the switching frequency becomes 1 MHz or higher, the frequency characteristic of the magnetic induction element deteriorates and the inductance value becomes saturated. That is, in the frequency region near 100 kHz, an output proportional to the square root of the frequency can be taken out from the magnetic induction element of a fixed size.
And a reactance value proportional to the frequency is obtained,
In the high frequency region above MHZ, the high frequency loss of the magnetic circuit of the magnetic induction element increases, and the influence of the distributed capacitance inside the element also increases, so the frequency characteristic of the inductance value gradually decreases, and the product of it and the angular frequency. Since the reactance value is saturated in a high frequency region of 10 MHz or higher and hardly increases, it becomes impossible to miniaturize the magnetic induction element below a certain limit.

【0007】さらにもう一つの問題点は、スイッチング
周波数を高めるにつれスイッチング素子の高周波損失が
増加して来ることである。例えばフライバック方式のス
イッチング電源装置を1MHzのスイッチング周波数で動
作させた時の損失を分析して見た結果では全損失中の35
%がスイッチング素子, 20%が磁気誘導素子, 残りの45
%がその他の部分でそれぞれ発生しており、スイッチン
グ素子の損失が最大でありこれが周波数を高めるととも
に隘路になって来る。本発明の目的は、以上のような従
来の限界ないし隘路を克服して、一層の小形化が可能で
かつ変換効率ができるだけ高いスイッチング電源装置を
提供することにある。
Still another problem is that the high frequency loss of the switching element increases as the switching frequency increases. For example, the result of analyzing the loss when operating a flyback type switching power supply device at a switching frequency of 1 MHz shows that
% Switching elements, 20% magnetic induction elements, remaining 45
% Occurs in each of the other parts, and the loss of the switching element is the maximum, and this becomes a bottleneck as the frequency is increased. It is an object of the present invention to provide a switching power supply device that overcomes the above-mentioned conventional limitations or bottleneck, can be further downsized, and has the highest conversion efficiency.

【0008】[0008]

【課題を解決するための手段】この目的は本発明によれ
ば、薄膜を積層した構造の磁気誘導素子からなる電圧変
換部と、電圧変換部の入力側電流を断続するスイッチン
グ素子と、電圧変換部の出力側電圧を所望値に一定に制
御するようスイッチング素子の断続を制御する電圧制御
部とを含み、スイッチング素子と電圧制御部の回路要素
を含む能動素子を単一の半導体チップに組み込み、この
半導体チップの上に能動素子を相互接続する配線層およ
びそれと接続された電圧変換部を順次に絶縁膜を介して
積層したワンチップ形スイッチング電源装置によって達
成される。
According to the present invention, the object is to provide a voltage conversion section comprising a magnetic induction element having a structure in which thin films are laminated, a switching element for interrupting an input side current of the voltage conversion section, and a voltage conversion section. A voltage control unit for controlling the on / off of the switching element so as to control the output side voltage of the unit to a desired value constantly, and the active element including the switching element and the circuit element of the voltage control unit is incorporated in a single semiconductor chip, This is achieved by a one-chip type switching power supply device in which a wiring layer interconnecting active elements and a voltage converter connected to the active layer are sequentially laminated on an insulating film on the semiconductor chip.

【0009】なお、上記構成のスイッチング電源装置の
回路方式には前述のフォワード形,フライバック形, チ
ョッパ形等のいずれも採用できるが、電圧変換部の磁気
誘導素子にフライバック形変圧器を用いるのが出力側電
圧の定電圧性能を高く維持しながら全体構成を簡単化す
る上でとくに有利である。スイッチング素子には電界効
果トランジスタや絶縁ゲートバイポーラトランジスタ等
の絶縁ゲート制御形の素子を用いるのが入出力間を絶縁
する上で有利であり、それにより電圧変換部の入力側電
流を断続するスイッチング周波数は1MHz以上,望まし
くは10MHz程度ないしそれ以上とするのが装置を小形化
する上でとくに有利である。なお、出力電圧の平滑用等
にキャパシタを組み込む場合は配線用のアルミ膜や絶縁
膜を利用して配線層内に作り込むのがよい。
Although any of the above-mentioned forward type, flyback type, chopper type and the like can be adopted as the circuit system of the switching power supply device having the above-mentioned configuration, a flyback type transformer is used as the magnetic induction element of the voltage conversion section. Is particularly advantageous in simplifying the overall configuration while maintaining high constant voltage performance of the output side voltage. It is advantageous to use an insulated gate control type element such as a field effect transistor or an insulated gate bipolar transistor for the switching element in order to insulate between the input and output, and thereby the switching frequency that interrupts the input side current of the voltage conversion unit. Is more than 1 MHz, preferably about 10 MHz or more, which is particularly advantageous for downsizing the device. When a capacitor is incorporated for smoothing the output voltage, it is preferable to use an aluminum film or an insulating film for wiring to form it in the wiring layer.

【0010】また、スイッチング素子の高周波損失を減
少させ装置の変換効率を上げるためには電圧変換部の少
なくとも入力側を複数個に分割して、各分割入力部に流
れる入力側電流を電圧制御部により共通に制御されるス
イッチング素子により個別に断続させるのが有利であ
る。この場合、電圧変換部の磁気誘導素子は単一として
その入力側のみを複数個に分割することも可能である
が、むしろ磁気誘導素子を複数個設けてそれらの入力側
電流をスイッチング素子によって個別に断続させ、かつ
複数個の磁気誘導素子の出力側を直列に接続して出力側
電圧を取り出すのが入力側と出力側との磁気結合を強め
る上で有利である。
Further, in order to reduce the high frequency loss of the switching element and increase the conversion efficiency of the device, at least the input side of the voltage converter is divided into a plurality of parts, and the input side current flowing through each divided input part is controlled by the voltage controller. It is advantageous to make individual connections by switching elements that are commonly controlled by. In this case, the magnetic induction element of the voltage conversion unit may be single, and only the input side thereof may be divided into a plurality of pieces, but rather, a plurality of magnetic induction elements may be provided and the input side currents thereof may be individually separated by the switching elements. It is advantageous to connect the output side of a plurality of magnetic induction elements in series and take out the output side voltage in order to strengthen the magnetic coupling between the input side and the output side.

【0011】なお、このように磁気誘導素子を複数個と
する場合はそれらの各サイズを極力小さくする必要があ
り、このためにはその入力側と出力側のコイルの薄膜導
体を上下方向の複数層,ふつうは2層に分割してそれら
を層間接続するのが、各磁気誘導素子の面積を縮小し、
薄膜導体間の交差部を減少させ、かつ複数の磁気誘導素
子の出力側を直列接続する場合に各磁気誘導素子の巻数
がかなり異なる入力側コイルと出力側コイル間の磁気結
合係数を高める上で有利である。
When a plurality of magnetic induction elements are used as described above, it is necessary to reduce the size of each element as much as possible. For this purpose, the thin film conductors of the coils on the input side and the output side are arranged in the vertical direction. Layers, usually divided into two layers and connecting them between layers reduces the area of each magnetic induction element,
To reduce the number of crossings between thin film conductors and to increase the magnetic coupling coefficient between the input side coil and the output side coil where the number of turns of each magnetic induction element is significantly different when the output sides of multiple magnetic induction elements are connected in series. It is advantageous.

【0012】磁気誘導素子としての変圧器やリアクトル
のコイル用の薄膜導体のパターンは渦巻き状ないしつづ
ら折れ状とするのが面積効率を高める上でよく、後者は
磁気回路の高周波損失を減少させ得る利点があるが、と
くに前者は構造が最も簡単で変圧器の場合に入力側コイ
ルと出力側コイル間の磁気結合を強めて一定サイズの変
圧器から取り出し得る出力を高める上で有利である。磁
気誘導素子の鉄心には軟磁性をもつ強磁性体金属の磁性
薄膜を用いるのがよく、この磁性薄膜によってコイル用
の薄膜導体を両側から挟み込んで磁気誘導素子をいわゆ
る外鉄形構造にするのが磁気漏洩の問題を減少させる上
で有利である。また、この磁性薄膜には非晶質の磁性金
属を用い、かつコイル用の薄膜導体と直交する方向に多
数の狭いスリットを切るのが磁気回路の高周波損失を減
少させて磁気誘導素子のインダクタンス値の高周波特性
を向上するためにとくに有利である。
The pattern of the thin film conductor for the transformer or the coil of the reactor as the magnetic induction element may be formed in a spiral shape or a zigzag shape in order to improve the area efficiency, and the latter may reduce the high frequency loss of the magnetic circuit. Among the advantages, the former is the simplest in structure and is advantageous in enhancing the magnetic coupling between the input side coil and the output side coil in the case of a transformer to increase the output that can be taken out from a transformer of a certain size. It is preferable to use a magnetic thin film of a ferromagnetic metal having soft magnetism for the iron core of the magnetic induction element, and a thin film conductor for a coil is sandwiched from both sides by this magnetic thin film to form the magnetic induction element into a so-called outer iron structure. Is advantageous in reducing the problem of magnetic leakage. In addition, amorphous magnetic metal is used for this magnetic thin film, and cutting a number of narrow slits in the direction orthogonal to the coil thin film conductor reduces the high frequency loss of the magnetic circuit and reduces the inductance value of the magnetic induction element. It is particularly advantageous for improving the high frequency characteristics of.

【0013】[0013]

【作用】本発明は、スイッチング素子を含むすべての能
動素子を単一の半導体チップ内に集積化するとともに、
スイッチング電源装置に不可欠な電圧変換部の磁気誘導
素子に薄膜積層構造を採用してスイッチング周波数を従
来の限界より高めることによりサイズを集積回路のチッ
プに搭載可能な程度にまで小形化し、この薄形の電圧変
換部を配線層を介して集積回路の半導体チップに搭載し
てワンチップ形の装置にまとめることにより、プリント
配線基板にまつわる従来の問題点を解消しながらスイッ
チング電源装置を小形化し、かつ部品の実装や装置の組
立の必要をなくしてその大幅な合理化を可能にするもの
である。
The present invention integrates all active elements including switching elements in a single semiconductor chip, and
By adopting a thin film laminated structure for the magnetic induction element of the voltage conversion unit, which is indispensable for the switching power supply unit, the switching frequency has been increased from the conventional limit, and the size has been reduced to the level that it can be mounted on an integrated circuit chip. By mounting the voltage conversion part of the device on the semiconductor chip of the integrated circuit via the wiring layer and integrating it into a one-chip type device, the switching power supply device can be downsized while eliminating the conventional problems related to the printed wiring board, and It enables the drastic rationalization by eliminating the need for mounting and assembling the device.

【0014】さらに、かかる小形化のほかにスイッチン
グ電源装置では高周波損失を抑えて変換効率を極力高め
る必要があり、装置の各構成部分中でもスイッチング素
子の損失が前述のように最大なので、電圧変換部の入力
側を複数個に分割して各分割入力部に流れる入力側電流
をスイッチング素子に個別に断続させることにより、ス
イッチング素子の電流定格を下げてその動作速度を高め
てスイッチング損失を減少させるのがとくに有利であ
る。
In addition to such downsizing, it is necessary to suppress high frequency loss in the switching power supply device to maximize the conversion efficiency, and the loss of the switching element is the largest among the constituent parts of the device as described above. The input side current of each switching element is divided into multiple parts and the input side currents flowing in each divided input part are individually interrupted to the switching element, thereby lowering the current rating of the switching element and increasing its operating speed to reduce switching loss. Is particularly advantageous.

【0015】[0015]

【実施例】以下、図を参照しで本発明の実施例を説明す
る。図1は本発明のスイッチング電源装置の構成を主な
回路方式について示す構成回路図、図2はそのワンチッ
プ構造を例示する一部断面の斜視図、図3はその電圧変
換部の磁気誘導素子の薄膜積層構造を高周波用の変圧器
について例示する一部切り欠き上面図とその要部の断面
図、図4はスイッチング素子と電圧変換部の磁気誘導素
子とを複数個設ける実施例の回路図、図5は図4の実施
例に対応する磁気誘導素子等の配置例を示すチップの上
面図、図6はその各磁気誘導素子のコイル用の薄膜導体
の上下2層に分割したパターン例を示す平面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration circuit diagram showing a configuration of a switching power supply device of the present invention for a main circuit system, FIG. 2 is a partial cross-sectional perspective view illustrating the one-chip structure, and FIG. 3 is a magnetic induction element of a voltage conversion unit. FIG. 4 is a partially cut-away top view illustrating the thin film laminated structure of FIG. 2 for a high frequency transformer and a cross-sectional view of the main part thereof. FIG. FIG. 5 is a top view of a chip showing an arrangement example of magnetic induction elements and the like corresponding to the embodiment of FIG. 4, and FIG. 6 is a pattern example in which upper and lower two layers of a thin film conductor for a coil of each magnetic induction element are divided. It is a top view shown.

【0016】図1(a) にフライバック形,図1(b) にフ
ォワード形,図1(c) にチョッパ形のスイッチング電源
装置の回路が示されているので、よく知られていること
ではあるがまず回路構成を簡単に説明する。図1(a) の
回路では図の上側に示す電圧変換部30の磁気誘導素子が
フライバック形の変圧器31であって、本発明ではその鉄
心ないしは磁気回路32に磁性薄膜,その一次コイル34と
二次コイル35に導電体薄膜をそれぞれ用いる。図の例で
は入力端子Tiに交流電圧を受け、整流回路41でこれを整
流してキャパシタ42で平滑化した直流電圧を変圧器31の
一次コイル34に与え、通例のようにそれに流れる電流を
スイッチング素子43で断続制御しながら変圧器31の二次
コイル35が発生する交流電圧を整流ダイオード44で整流
し、かつキャパシタ46で平滑した上で出力端子Toから安
定化された直流電圧として負荷に出力するようになって
いる。
1 (a) shows a flyback type switching circuit, FIG. 1 (b) shows a forward type switching circuit, and FIG. 1 (c) shows a chopper type switching power supply circuit. First, the circuit configuration will be briefly described. In the circuit of FIG. 1 (a), the magnetic induction element of the voltage conversion unit 30 shown on the upper side of the drawing is a flyback type transformer 31, and in the present invention, the iron core or the magnetic circuit 32 has a magnetic thin film and its primary coil 34. Conductor thin films are used for the secondary coil 35 and the secondary coil 35, respectively. In the example shown in the figure, an AC voltage is received at the input terminal Ti, a DC voltage smoothed by the rectifier circuit 41 and smoothed by the capacitor 42 is applied to the primary coil 34 of the transformer 31, and the current flowing through it is switched as usual. The AC voltage generated by the secondary coil 35 of the transformer 31 is rectified by the rectifier diode 44 while being controlled intermittently by the element 43, smoothed by the capacitor 46, and output to the load as a stabilized DC voltage from the output terminal To. It is supposed to do.

【0017】本発明では、スイッチング素子43には図の
ような電界効果トランジスタや絶縁ゲートバイポーラト
ランジスタ等の絶縁ゲート制御形の半導体素子を用いる
のがよく、電圧制御部47によりそのゲートを制御してス
イッチング動作させる。電圧制御部47には通例のように
このスイッチング周波数を決める発振回路が含まれ、本
発明ではこの周波数を少なくとも1MHz以上, 望ましく
は10MHzないしはそれ以上に設定するのがよい。また、
この電圧制御部47は図の例では1対の抵抗からなる電圧
検出回路48で検出した出力電圧の実際値を入力し、通例
のようにこれを所望値に保つようにスイッチング素子45
を制御する役目を果たすもので、例えばCMOS形の集
積回路とされる。
In the present invention, it is preferable to use an insulated gate control type semiconductor element such as a field effect transistor or an insulated gate bipolar transistor as the switching element 43, and the gate is controlled by the voltage control section 47. Switch operation. The voltage control unit 47 includes an oscillation circuit that determines this switching frequency as usual, and in the present invention, this frequency is set to at least 1 MHz or higher, preferably 10 MHz or higher. Also,
This voltage control unit 47 inputs the actual value of the output voltage detected by the voltage detection circuit 48 consisting of a pair of resistors in the example of the figure, and switches the switching element 45 so as to keep it at a desired value as usual.
For example, a CMOS integrated circuit.

【0018】図1(b) のフォワード形のスイッチング電
源回路では変圧器31に通常のものを用い、その二次の交
流電圧をダイオード44で整流した直流電圧をリアクトル
37とキャパシタ46で平滑化した上で出力端子Toから出力
する。この場合にはいわゆるフリーホイーリング用にダ
イオード45が接続される。図1(c) のチョッパ形電源回
路では電圧変換部30の磁気誘導素子としてリアクトル37
を用い、それに流れる直流電流をスイッチング素子43に
より断続してその内部電圧降下を制御しながらキャパシ
タ46により安定化された直流電圧を出力端子Toから出力
する。この場合にもダイオード45がフリーホイーリング
用に接続される。
In the forward type switching power supply circuit shown in FIG. 1 (b), a normal transformer is used as the transformer 31, and the DC voltage obtained by rectifying the secondary AC voltage with the diode 44 is used as the reactor.
It is smoothed by 37 and capacitor 46 and then output from output terminal To. In this case, the diode 45 is connected for so-called freewheeling. In the chopper type power supply circuit of FIG. 1 (c), the reactor 37 is used as the magnetic induction element of the voltage conversion unit 30.
, The DC current flowing through it is interrupted by the switching element 43 to control the internal voltage drop thereof, and the DC voltage stabilized by the capacitor 46 is output from the output terminal To. In this case as well, the diode 45 is connected for freewheeling.

【0019】なお、以上の回路方式中では、図1(c) の
チョッパ形が回路構成が最も簡単でスイッチング電源装
置のワンチップ化には有利であるが、出力電圧を一定化
する性能面では若干劣り、図1(b) のフォワード形は逆
に性能面では最も優れるが、磁気誘導素子として変圧器
31のほかリアクトル37が必要なのでワンチップ化には若
干不利である。図1(a) のフライバック形は性能面でも
優れ、かつ変圧器31の二次コイル35がもつリアクタンス
を出力電圧の平滑化に利用してフォワード形のリアクト
ル37を省略できるので、電圧変換部30が簡単になってワ
ンチップ化にも有利である。この点から、本発明を実施
する上では図1(a) のフライバック形のスイッチング電
源装置が最も有利になる。
In the above circuit system, the chopper type shown in FIG. 1 (c) has the simplest circuit structure and is advantageous for making the switching power supply device into one chip, but in terms of the performance of making the output voltage constant. Although it is slightly inferior, the forward type shown in Fig. 1 (b), on the contrary, is the best in terms of performance.
In addition to 31, the reactor 37 is required, so it is slightly disadvantageous for one chip. The flyback type shown in FIG. 1 (a) is also excellent in performance, and the reactance of the secondary coil 35 of the transformer 31 is used for smoothing the output voltage, so that the forward type reactor 37 can be omitted. 30 is easy and it is also advantageous for one chip. From this point, the flyback type switching power supply device of FIG. 1 (a) is most advantageous in implementing the present invention.

【0020】本発明では、前述のいずれの回路方式のス
イッチング電源装置をワンチップ化するに際しても、ス
イッチング素子43と電圧制御部47を含むすべての能動素
子を図では便宜上一点鎖線で囲んで示した半導体チップ
10に集積化し、このチップの表面上に配設される図では
一点鎖線の大きな枠で示した配線層20内で能動素子を相
互に接続した上で、さらにその上に電圧変換部30の磁気
誘導素子を搭載する。なお、図中の整流回路41とキャパ
シタ42をスイッチング電源装置に組み込む必要はとくに
なく、そのかわりに直流の電圧を入力端子Tiに供給すれ
ばよく、場合によっては出力端子To側の安定化用のキャ
パシタ46も電源装置の負荷側に接続することもできる。
キャパシタ42や46を電源装置内に組み込む場合は、配線
層20内にそれに必要なアルミ膜や絶縁膜を利用して作り
込むのが有利である。
In the present invention, when the switching power supply device of any of the above-mentioned circuit systems is integrated into one chip, all the active elements including the switching element 43 and the voltage control section 47 are shown surrounded by a chain line for the sake of convenience. Semiconductor chip
In the figure, which is integrated on the surface of this chip and is arranged on the surface of this chip, the active elements are connected to each other in the wiring layer 20 shown by the large frame of the dashed-dotted line. Equipped with an inductive element. It is not necessary to incorporate the rectifier circuit 41 and the capacitor 42 in the figure into the switching power supply device, and instead, a DC voltage may be supplied to the input terminal Ti, and in some cases, for stabilizing the output terminal To side. The capacitor 46 can also be connected to the load side of the power supply.
When the capacitors 42 and 46 are incorporated in the power supply device, it is advantageous to form them in the wiring layer 20 by utilizing the aluminum film or insulating film necessary for the same.

【0021】図2に本発明によるスイッチング電源装置
のワンチップ化構造例を図1(a) に対応するフライバッ
ク形について示す。図のように集積回路の半導体チップ
10の上に配線層20と電圧変換部30を順次に積層した構造
である。図の実施例の半導体チップ10はそれに作り込ま
れる能動素子間の動作上の相互干渉を防止するために誘
電体分離されたいわゆる基板接合形ウエハを利用してい
る。よく知られているように、このウエハは上下1対の
半導体基板1と2を酸化シリコン膜3を挟んで相互に接
合し、半導体基板2の表面から溝を酸化シリコン膜3に
達するまで深く掘り込んでそれを複数の半導体領域に分
割した上で溝面を誘電体膜4で覆いかつ溝に多結晶シリ
コン5を充填してなり、基板2を誘電体分離した各半導
体領域の中に能動素子ないし能動素子群が作り込まれ
る。
FIG. 2 shows an example of a one-chip structure of the switching power supply device according to the present invention for a flyback type corresponding to FIG. 1 (a). Integrated circuit semiconductor chip as shown
It has a structure in which a wiring layer 20 and a voltage conversion unit 30 are sequentially stacked on the wiring layer 10. The semiconductor chip 10 of the illustrated embodiment utilizes a so-called substrate-bonded wafer, which is dielectrically isolated, in order to prevent mutual interference in operation between the active devices formed therein. As is well known, this wafer is formed by bonding a pair of upper and lower semiconductor substrates 1 and 2 to each other with a silicon oxide film 3 sandwiched therebetween, and digging a groove from the surface of the semiconductor substrate 2 to reach the silicon oxide film 3. And then dividing it into a plurality of semiconductor regions, covering the groove surface with a dielectric film 4 and filling the groove with polycrystalline silicon 5, the active element is provided in each semiconductor region in which the substrate 2 is dielectrically separated. Or an active element group is built.

【0022】図2にはこの半導体チップ10に作り込まれ
る多数の能動素子中の代表例としてスイッチング素子43
と整流ダイオード44と電圧制御部47のnおよびpチャネ
ル形電界効果トランジスタ47aおよび47bが示されてい
る。主回路用のスイッチング素子43は縦形の電界効果ト
ランジスタで、整流ダイオード44も縦形構造とされてい
る。このチップ10の表面には、多結晶シリコンのゲート
を上側から覆うように燐シリケートガラス等の層間絶縁
膜11が通例のように被着される。
FIG. 2 shows a switching element 43 as a typical example among a large number of active elements built in the semiconductor chip 10.
The rectifier diode 44 and the n- and p-channel field effect transistors 47a and 47b of the voltage controller 47 are shown. The switching element 43 for the main circuit is a vertical field effect transistor, and the rectifier diode 44 also has a vertical structure. An interlayer insulating film 11 made of phosphosilicate glass or the like is usually deposited on the surface of the chip 10 so as to cover the polycrystalline silicon gate from above.

【0023】配線層20は多層配線構造とされるのが通例
であり、層間絶縁膜11に明けた窓の中で能動素子の半導
体層と導電接触して素子間を相互に接続するアルミ等の
金属からなる多層の配線膜21とそれらの層間に配設され
た酸化シリコン膜等からなる絶縁膜22との積層構造体で
ある。この実施例では配線層20の一部を図示のようにや
や上側に膨出させた部分に出力電圧の安定化用のキャパ
シタ46が作り込まれており、配線膜21と同じアルミ膜を
利用した複数層の電極膜23とそれらの相互間に挟まれた
酸化シリコン等からなる薄い誘電体膜24とからなり、配
線膜21を介して半導体チップ10内の整流ダイオード44等
に接続される。さらに、この配線層20の最上層は絶縁膜
25によって覆われる。
The wiring layer 20 is usually of a multi-layered wiring structure, and is made of aluminum or the like, which is in conductive contact with the semiconductor layer of the active element in the window opened in the interlayer insulating film 11 to connect the elements to each other. This is a laminated structure of a multilayer wiring film (21) made of metal and an insulating film (22) made of a silicon oxide film or the like arranged between the layers. In this embodiment, a capacitor 46 for stabilizing the output voltage is built in a part of the wiring layer 20 which is slightly bulged upward as shown in the figure, and the same aluminum film as the wiring film 21 is used. It is composed of a plurality of layers of electrode films 23 and a thin dielectric film 24 made of silicon oxide or the like sandwiched between them, and is connected to the rectifying diode 44 and the like in the semiconductor chip 10 via the wiring film 21. Furthermore, the uppermost layer of this wiring layer 20 is an insulating film.
Covered by 25.

【0024】電圧変換部30用の磁気誘導素子であるこの
例ではフライバック形の変圧器31は配線層20のこの絶縁
膜25の上側に作り込まれ、その具体構造例は図3を参照
して後述するが図2ではその外輪郭のみが簡略に示され
ている。配線層20とこの電圧変換部30の表面は最終的に
は窒化シリコン等からなる保護膜50によって覆われ、そ
の適宜な個所に明けた開口51内に配線膜21のアルミを露
出させて図1の入出力端子TiやTo用の接続パッドとす
る。
In this example, which is a magnetic induction element for the voltage conversion unit 30, a flyback type transformer 31 is formed on the insulating layer 25 of the wiring layer 20, and its concrete structure is shown in FIG. As will be described later, in FIG. 2, only the outer contour is simply shown. The surface of the wiring layer 20 and the voltage conversion portion 30 is finally covered with a protective film 50 made of silicon nitride or the like, and aluminum of the wiring film 21 is exposed in an opening 51 opened at an appropriate portion thereof, as shown in FIG. Use as input / output terminal Ti and connection pads for To.

【0025】変圧器31の構造例を示す図3では、同図
(a) にその上面図が, 同図(b) にそのX−X矢視断面図
がそれぞれ示されている。この実施例の変圧器31は図3
(b) に示すように、簡略に示された前述の配線層20の絶
縁膜25の上に順次に積層された下側の磁性薄膜32と, 絶
縁膜33と, 薄膜導体からなる一次および二次コイル34と
35と, 絶縁膜36と, 上側の磁性薄膜32からなり、上下の
磁性薄膜32によりコイル34と35を外側から囲む閉じた磁
気回路を形成するいわゆる外鉄形構造とされる。図3
(a) に示すようにこの実施例では一次コイル34と二次コ
イル35は渦巻き状に形成され、それらの両端の端子34a,
34b や35a,35b が図2のアルミの配線膜21を介してスイ
ッチング素子43やダイオード44と接続される。なお、図
の例では一次コイル34と二次コイル35の巻数はそれぞれ
6回と 2.5回,従って巻数比は 2.4であって、両者は巻
き方向が逆になるように接続される。
FIG. 3 showing an example of the structure of the transformer 31 is shown in FIG.
The top view is shown in (a), and the cross-sectional view taken along the line XX is shown in (b). The transformer 31 of this embodiment is shown in FIG.
As shown in (b), the magnetic thin film 32 on the lower side sequentially laminated on the insulating film 25 of the wiring layer 20 shown in a simplified form, the insulating film 33, and the primary and secondary layers made of thin film conductors. With the next coil 34
The upper and lower magnetic thin films 32, 35, the insulating film 36, and the upper and lower magnetic thin films 32 form a closed magnetic circuit that surrounds the coils 34 and 35 from the outside, which is a so-called outer iron structure. Figure 3
As shown in (a), in this embodiment, the primary coil 34 and the secondary coil 35 are formed in a spiral shape, and the terminals 34a,
34b, 35a and 35b are connected to the switching element 43 and the diode 44 via the aluminum wiring film 21 of FIG. In the illustrated example, the number of turns of the primary coil 34 and the number of turns of the secondary coil 35 are 6 and 2.5, respectively. Therefore, the turn ratio is 2.4, and the two are connected so that the winding directions are opposite.

【0026】これらのコイル34と35はアルミ, 銅, 銀等
の高導電性金属をスパッタ法ないし蒸着法によって数〜
数十μmの膜厚に成膜した薄膜導体からなり、これに半
導体製造技術を利用したフォトエッチングを施して図3
(a) のような数十〜100 μm幅の渦巻き状パターンに形
成する。磁性薄膜32はこの渦巻き状のコイル34と35を前
述のように上下から囲むように配設されるが、図1(a)
では図示の都合上からその一部のみが示されている。こ
の磁性薄膜32は例えばパーマロイ系等の軟磁性をもつ強
磁性体金属をスパッタ法等によって望ましくはアモルフ
ァス状態で成膜した10〜数十μmの膜厚の薄膜であり、
その高周波損を極力減少させるため図のようにスリット
32aがコイル34と35の各ターンと直交する方向に切られ
る。このスリット32aの間隔は10〜数十μmとされる。
The coils 34 and 35 are made of a highly conductive metal such as aluminum, copper, silver, etc., by a sputtering method or a vapor deposition method.
It consists of a thin film conductor with a film thickness of several tens of μm, and this is photoetched using semiconductor manufacturing technology.
A spiral pattern with a width of several tens to 100 μm as shown in (a) is formed. The magnetic thin film 32 is arranged so as to surround the spiral coils 34 and 35 from above and below, as shown in FIG.
For convenience of illustration, only a part thereof is shown. The magnetic thin film 32 is a thin film having a thickness of 10 to several tens of μm, which is formed by sputtering a ferromagnetic metal having soft magnetism such as permalloy, preferably in an amorphous state,
To reduce the high frequency loss as much as possible, slit as shown
32a is cut in a direction orthogonal to each turn of coils 34 and 35. The interval between the slits 32a is 10 to several tens of μm.

【0027】このように、本発明では磁気誘導素子を磁
性薄膜と導電体薄膜の積層構造体で構成するので内部の
高周波損が少なくなり、スイッチング周波数が1MHz以
上の高周波領域内の周波数特性を従来より向上して10M
Hzの周波数でも数μH程度の高インダクタンス値をもた
せることができる。従って、本発明ではスイッチング周
波数を従来より高めて磁気誘導素子のサイズを数〜20mm
角の半導体チップ10に容易に搭載できる程度にまで縮小
でき、積層構造体の全体厚みも薄膜構造なので100μm
以下に納めることができる。
As described above, according to the present invention, since the magnetic induction element is composed of the laminated structure of the magnetic thin film and the conductive thin film, the internal high frequency loss is reduced, and the frequency characteristic in the high frequency region where the switching frequency is 1 MHz or higher is conventionally obtained. Better than 10M
It is possible to have a high inductance value of about several μH even at a frequency of Hz. Therefore, in the present invention, the switching frequency is increased as compared with the conventional one, and the size of the magnetic induction element is several to 20 mm.
It can be reduced to a size that can be easily mounted on the corner semiconductor chip 10, and the overall thickness of the laminated structure is 100 μm because it is a thin film structure.
Can be paid below.

【0028】かかる薄膜構造の変圧器31からなる電圧変
換部30はもちろん半導体チップ10がまだウエハの状態の
内に図2に示すように配線層20上に搭載ないし組み込ま
れ、ウエハを保護膜50で覆った後に各チップに分離され
る。このように本発明では、ワンチップ形スイッチング
電源装置をすべて半導体プロセス技術を利用して製造す
ることができる。本発明のスイッチング電源装置はごく
小形のワンチップ形であり、しかも電圧変換部30がすで
に組み込まれているので従来のようにプリント配線基板
を介する接続は全く不要であり、例えばチップ実装の形
でそのまま電子装置や電子回路内に組み込んで前述の接
続パッドを介してそれと接続するだけで直ちに使用に供
することができる。
As shown in FIG. 2, the semiconductor chip 10 as well as the voltage converter 30 including the thin film transformer 31 is mounted or incorporated on the wiring layer 20 as shown in FIG. After covering with, each chip is separated. As described above, in the present invention, all the one-chip type switching power supply devices can be manufactured by using the semiconductor process technology. The switching power supply device of the present invention is a very small one-chip type, and since the voltage conversion unit 30 has already been incorporated, no connection via a printed wiring board is conventionally required at all, for example, in the form of chip mounting. It can be used immediately by simply incorporating it into an electronic device or an electronic circuit and connecting to it via the aforementioned connection pad.

【0029】図4にスイッチング素子43中の損失を減少
させる上で有利な本発明の実施例を図1(a) に対応する
フライバック形のスイッチング電源装置の回路により示
す。本発明のこの態様では電圧変換部30の入力側だけで
も複数個に分割して、各分割入力部に流れる入力側電流
をスイッチング素子43により個別に断続させる。このた
めには電圧変換部30を複数個の入力コイルを備える単一
の変圧器で構成してもよいが、この図4の実施例では電
圧変換部30用の磁気誘導素子として変圧器31を複数個,
例えば10個程度設け、図のようにそれらの一次コイル34
に流れる電流をそれぞれに専用のスイッチング素子43に
より個別に断続させる。
FIG. 4 shows an embodiment of the present invention, which is advantageous in reducing the loss in the switching element 43, by a circuit of a flyback type switching power supply device corresponding to FIG. 1 (a). In this aspect of the present invention, only the input side of the voltage conversion unit 30 is divided into a plurality of pieces, and the input side current flowing through each divided input portion is individually interrupted by the switching element 43. For this purpose, the voltage converter 30 may be composed of a single transformer having a plurality of input coils, but in the embodiment of FIG. 4, the transformer 31 is used as a magnetic induction element for the voltage converter 30. Multiple,
For example, about 10 pieces are provided, and as shown in the figure, those primary coils 34
The current flowing in each of them is individually interrupted by a dedicated switching element 43.

【0030】また、これら複数個の一次コイル34には図
1(a) の場合と同様に入力端子Tiに受ける交流電圧を整
流回路41で整流しかつキャパシタ42で平滑化した直流電
圧を与え、それらに流れる電流を電圧制御部47から複数
のスイッチング素子43に対しスイッチング指令SSを共通
に与えて一斉に断続させ、変圧器31の二次コイル35はす
べて直列に接続する。この二次側の交流電圧を整流ダイ
オード44により整流しかつキャパシタ46により安定化さ
せた上で直流の出力電圧として出力端子Toから取り出す
のは前の図1(a) の場合と同じである。
Further, as in the case of FIG. 1 (a), an AC voltage received at the input terminal Ti is rectified by the rectifier circuit 41 and a DC voltage smoothed by the capacitor 42 is applied to the plurality of primary coils 34, The voltage control unit 47 commonly applies a switching command SS to the plurality of switching elements 43 to cause the currents flowing therethrough to be interrupted all at once, and the secondary coils 35 of the transformer 31 are all connected in series. The secondary side AC voltage is rectified by the rectifying diode 44, stabilized by the capacitor 46, and then taken out from the output terminal To as a DC output voltage, as in the case of FIG. 1A.

【0031】この図4の実施例ではスイッチング素子43
が断続すべき電流が約1桁減少するので、各スイッチン
グ素子43の損失が単にこの電流値に比例して減少するだ
けでなく、電流値に応じて素子43のサイズを縮小できる
のでその動作速度を高めて、このオンオフ動作に伴う損
失,とくに半導体領域内の空乏層が広がる体積にほぼ比
例して発生するいわゆるターンオフ損失を電流値に比例
する以上に減少させることができる。この損失減少効果
は素子43のスイッチング周波数が1MHz以上の周波数領
域で有利に発揮され、とくに素子43用の小形トランジス
タが動作可能な限界周波数に近づいて来る10MHzないし
はそれ以上の高周波領域で顕著になる。これからわかる
ように、図4の実施例はスイッチング電源を容易にワン
チップ化できる程度にまで小形にするためにそのスイッ
チング周波数を1MHzないしそれ以上に高める上で有利
である。
In the embodiment of FIG. 4, the switching element 43
Since the current to be intermittently reduced by about one digit, not only the loss of each switching element 43 is reduced in proportion to this current value, but also the size of the element 43 can be reduced according to the current value, so its operating speed is reduced. It is possible to reduce the loss associated with this on / off operation, particularly the so-called turn-off loss that is generated almost in proportion to the volume in which the depletion layer in the semiconductor region spreads, more than in proportion to the current value. This loss reduction effect is advantageously exerted in the frequency region where the switching frequency of the element 43 is 1 MHz or more, and is particularly remarkable in the high frequency region of 10 MHz or higher approaching the limit frequency at which the small transistor for the element 43 can operate. .. As can be seen, the embodiment of FIG. 4 is advantageous in increasing the switching frequency to 1 MHz or higher in order to make the switching power supply small enough to be easily integrated into one chip.

【0032】なお、スイッチング周波数を高めて行くと
電圧制御部47内の出力段のスイッチング素子43に対する
駆動回路の損失も増加して来る傾向があり、1MHzでは
この駆動回路の損失はスイッチング電源内の全損失の15
%程度であるが、それ以上の高周波ではこの比率が増加
して来る。これは、駆動回路にはふつうCMOSインバ
ータ回路を用い1対のトランジスタを交互にオンオフさ
せるが、この動作中に両トランジスタがともにオン状態
となって短絡電流が流れる時間があり、高周波ではトラ
ンジスタの速応性が不充分になるため短絡時間が増えて
短絡損失が増大するからである。従って、数MHz以上の
周波数ではこの図4の実施例の変形態様として、駆動回
路をスイッチング素子43ごとあるいは2〜3個ごとに付
属させ、そのインバータ用のトランジスタのサイズを小
形化して動作速度を高めることにより駆動回路内の短絡
損失を減少させるのが有利である。
As the switching frequency is increased, the loss of the drive circuit for the switching element 43 at the output stage in the voltage control section 47 tends to increase, and at 1 MHz, the loss of the drive circuit is within the switching power supply. 15 of total loss
%, But this ratio increases at higher frequencies. This is because normally a CMOS inverter circuit is used in the drive circuit to alternately turn on and off a pair of transistors. During this operation, both transistors are both turned on and there is a short-circuit current flow time. This is because the response becomes insufficient and the short-circuit time increases and the short-circuit loss increases. Therefore, at a frequency of several MHz or more, as a modification of the embodiment of FIG. 4, a driving circuit is attached to each switching element 43 or every two to three elements, and the size of the transistor for the inverter is reduced to improve the operating speed. It is advantageous to reduce short-circuit losses in the drive circuit by increasing.

【0033】図5に図4の回路に対応するチップ10上へ
の電圧変換部30等の配置例を示す。図の例では電圧変換
部30は9個の各2〜4mm角のサイズの変圧器31を正方形
状に配列してなり、その側方に入力側のキャパシタ42と
出力側のキャパシタ46が搭載され、さらにチップ10の右
側周縁部に入力端子Tiや出力端子To用の端子領域60が設
定される。これからわかるように電圧変換部30を図4の
ように複数の変圧器31から構成する場合はそれぞれをか
なり小形化する必要があり、このために有利な態様を図
6にそのコイルの薄膜導体のパターン例で示す。
FIG. 5 shows an arrangement example of the voltage conversion unit 30 and the like on the chip 10 corresponding to the circuit of FIG. In the example shown in the figure, the voltage conversion unit 30 is formed by arranging nine transformers 31 each having a size of 2 to 4 mm square in a square shape, and an input side capacitor 42 and an output side capacitor 46 are mounted on the sides thereof. Further, a terminal region 60 for the input terminal Ti and the output terminal To is set on the right peripheral portion of the chip 10. As can be seen from this, when the voltage converter 30 is composed of a plurality of transformers 31 as shown in FIG. 4, it is necessary to downsize each transformer 31. An advantageous mode for this is shown in FIG. An example of a pattern is shown.

【0034】この図6の例では変圧器31の一次コイル34
と二次コイル35を前の図3と同様に渦巻き状に形成する
が、面積を縮小するためそれらの薄膜導体を上下2層に
分割して両層を重ね合わせて積層した上で両層間を相互
に接続する。図6(a) はその下層側の, 図6(b) は上層
側の薄膜導体のパターンをそれぞれ示し、図3に対応す
る部分には同じ符号が付されている。図4からわかるよ
うに各変圧器31の一次コイル34と二次コイル35の巻き数
をかなり異ならせる必要があるから、図6の例では二次
コイル35用の薄膜導体を一次コイル34用の薄膜導体の内
径側のターンと外径側のターンの間に配設して両コイル
間の磁気結合を強める。
In the example of FIG. 6, the primary coil 34 of the transformer 31 is
The secondary coil 35 and the secondary coil 35 are spirally formed as in the case of FIG. 3, but in order to reduce the area, the thin film conductors are divided into upper and lower two layers, and both layers are laminated and laminated. Connect to each other. FIG. 6 (a) shows the pattern of the lower layer and FIG. 6 (b) shows the pattern of the thin layer conductor on the upper layer, respectively, and the portions corresponding to FIG. Since it is necessary to make the number of turns of the primary coil 34 and the secondary coil 35 of each transformer 31 considerably different as seen from FIG. 4, in the example of FIG. 6, the thin film conductor for the secondary coil 35 is used for the primary coil 34. The thin film conductor is arranged between the inner diameter side turn and the outer diameter side turn to strengthen the magnetic coupling between both coils.

【0035】図のように一次コイル34はその図6(a) の
下層側の薄膜導体の上に図6(b) の上層側の薄膜導体が
重なるよう形成され、これら上下層間にはもちろん絶縁
膜が配設される。この一次コイル34は図6(a) の下層側
の一方の端子34aから始まり連絡端子34cを介して図6
(b) の上層側に移って他方の端子34bで終わり、その巻
き数は図の例では 9.5回である。二次コイル35もその下
層側の薄膜導体の上に上層側の薄膜導体が重なり、上層
側の一方の端子35aから始まり連絡端子35cを介して下
層側に移って他方の端子35bで終わり、その巻き数は図
の例では 1.5回である。従って、両コイル34と35の巻き
数比はこの例では 6.3になるが、図4の変圧器31がフラ
イバック形なのでその二次コイル35は巻き方向が一次コ
イル34と逆になるように接続される。
As shown in the figure, the primary coil 34 is formed so that the thin film conductor on the lower layer side in FIG. 6 (a) is overlapped with the thin film conductor on the upper layer side in FIG. 6 (b). A membrane is provided. The primary coil 34 starts from one terminal 34a on the lower layer side of FIG.
It moves to the upper layer side of (b) and ends at the other terminal 34b, and the number of turns is 9.5 times in the example of the figure. Also in the secondary coil 35, the thin film conductor on the upper layer side overlaps the thin film conductor on the lower layer side, starts from one terminal 35a on the upper layer side, moves to the lower layer side via the connecting terminal 35c, and ends at the other terminal 35b. The number of turns is 1.5 in the example shown. Therefore, the winding ratio of both coils 34 and 35 is 6.3 in this example, but since the transformer 31 in FIG. 4 is a flyback type, the secondary coil 35 is connected so that the winding direction is opposite to that of the primary coil 34. To be done.

【0036】以上のように形成された両コイル34と35は
前の図3の場合と同様に図6(a) に細線で一部がごく簡
略に示された磁性薄膜32により両側から挟み込まれる。
この磁気回路の高周波損失を減少させるには、図3の場
合と同様に磁性薄膜32に狭いスリット32aを両コイル34
と35の薄膜導体と直交する方向に切るのがよい。この図
6のように両コイル34と35の薄膜導体を2層に配設する
ことにより変圧器31の面積を縮小でき、かつそれらの下
層側と上層側の薄膜導体を重ね合わせることにより薄膜
導体間の交差部をなくすことができる。また、巻き数が
少ない方の二次コイル35の薄膜導体を一次コイル34の薄
膜導体の内径側と外径側の間に配設することにより、前
述のように両コイル34と35の間の磁気結合を強めて変圧
器31から取り出し得る出力を高めることができる。
Both coils 34 and 35 formed as described above are sandwiched from both sides by a magnetic thin film 32, a part of which is shown in a thin line in FIG. 6 (a), as in the case of FIG. 3 above. ..
In order to reduce the high frequency loss of this magnetic circuit, a narrow slit 32a is formed in the magnetic thin film 32 as in the case of FIG.
It is better to cut in the direction orthogonal to the thin film conductors of 35 and 35. By arranging the thin film conductors of both coils 34 and 35 in two layers as shown in FIG. 6, the area of the transformer 31 can be reduced, and the thin film conductors of the lower layer side and the upper layer side can be superposed. Intersections between can be eliminated. Further, by disposing the thin-film conductor of the secondary coil 35 having the smaller number of turns between the inner diameter side and the outer diameter side of the thin-film conductor of the primary coil 34, as described above, between the coils 34 and 35. The magnetic coupling can be strengthened to increase the power output from the transformer 31.

【0037】以上説明した本発明によるスイッチング電
源装置は量産される1〜10W程度の比較的小容量の安定
化電源装置にとくに適し、本発明の実施によりスイッチ
ング周波数が1〜10MHz,チップサイズが数〜20mm角,
厚みが1mm以下,変換効率が70〜80%の種々の電子回路
に組み込みが容易な極小形のワンチップスイッチング電
源装置を安価に提供できる。今後の一層の改良によって
スイッチング周波数をさらに高めて一層の小形化が可能
になるものと期待される。
The switching power supply device according to the present invention described above is particularly suitable for a mass-produced stabilized power supply device having a relatively small capacity of about 1 to 10 W, and by implementing the present invention, the switching frequency is 1 to 10 MHz and the chip size is several. ~ 20mm square,
It is possible to inexpensively provide a miniature one-chip switching power supply device that has a thickness of 1 mm or less and a conversion efficiency of 70 to 80% that can be easily incorporated into various electronic circuits. It is expected that further improvements in the future will further increase the switching frequency and enable further miniaturization.

【0038】[0038]

【発明の効果】以上説明したように本発明では、電圧変
換部の磁気誘導素子を薄膜構造とし、その入力側電流を
断続するスイッチング素子と出力側電圧を一定に制御す
るようスイッチング素子を断続制御する電圧制御部とを
含むすべての能動素子を単一の半導体チップに組み込
み、そのチップ上に能動素子を相互接続する配線層と電
圧変換部を順次に積層してワンチップ形スイッチング電
源装置とすることにより、次の効果を得ることができ
る。
As described above, according to the present invention, the magnetic induction element of the voltage conversion section has a thin film structure, and the switching element for intermittently controlling the input side current and the output side voltage are controlled intermittently. All active elements including a voltage control section are integrated into a single semiconductor chip, and a wiring layer for interconnecting active elements and a voltage conversion section are sequentially laminated on the chip to form a one-chip type switching power supply device. As a result, the following effects can be obtained.

【0039】(a) スイッチング電源装置にとって不可欠
な電圧変換部の磁気誘導素子を薄膜構造にして高周波損
失を減少させることにより、そのインダクタンス値の周
波数特性を向上してサイズを半導体チップに搭載可能な
程度に縮小できるので、ワンチップ化によりスイッチン
グ電源装置を従来より格段に小形化できる。 (b) 能動素子を集積化した半導体チップに電圧変換部を
配線層を介してそれと接続した状態で搭載するので、従
来のプリント配線基板に基づく性能のばらつきや外来ノ
イズによる誤動作等の問題がすべて解消され、性能がよ
く揃い信頼性の高いスイッチング電源装置を提供でき
る。
(A) The magnetic induction element of the voltage converter, which is indispensable for the switching power supply device, has a thin film structure to reduce high frequency loss, so that the frequency characteristic of the inductance value can be improved and the size can be mounted on the semiconductor chip. Since the size can be reduced to a certain extent, the switching power supply device can be made much smaller than the conventional one by using one chip. (b) Since the voltage converter is mounted on a semiconductor chip with active devices integrated via a wiring layer, it is possible to eliminate all problems such as performance variations and malfunctions due to external noise based on conventional printed wiring boards. It is possible to provide a highly reliable switching power supply device that has been eliminated and has good performance.

【0040】(c) 装置の組立や部品の実装の必要なくす
べて半導体プロセス技術を利用してスイッチング電源装
置を製造できるので、その量産が容易になりかつ製造工
程の合理化によって製造コストを大幅に低減できる。 (d) 磁気誘導素子の薄膜化によりスイッチング周波数を
従来の限界より高めることができるので、キャパシタを
スイッチング電源装置に組み込む場合にもその静電容量
値を減少させてごく小形のもので済ませることができ
る。
(C) Since the switching power supply device can be manufactured using all semiconductor process technology without the need of assembling the device and mounting the parts, mass production thereof is facilitated and the manufacturing cost is greatly reduced by rationalizing the manufacturing process. it can. (d) Since the switching frequency can be increased from the conventional limit by thinning the magnetic induction element, even when incorporating a capacitor into a switching power supply device, it is possible to reduce the capacitance value and use a very small size. it can.

【0041】(e) 電圧変換部の入力側を分割しないしは
磁気誘導素子を複数個設けて入力側電流を個別にスイッ
チング素子により断続する態様では、各スイッチング素
子に流れる電流を減少させて動作速度を高め、オンオフ
動作に伴う損失を減少させて変換効率を向上させること
ができ、かつスイッチング周波数を高めることによりス
イッチング電源装置の一層の小形化を進めることができ
る。
(E) In the mode in which the input side of the voltage conversion section is not divided or a plurality of magnetic induction elements are provided and the input side current is individually interrupted by the switching elements, the operation is performed by reducing the current flowing in each switching element. The conversion efficiency can be improved by increasing the speed and reducing the loss associated with the on / off operation, and by further increasing the switching frequency, the switching power supply device can be further downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のワンチップ形スイッチング電源装置の
回路構成例を若干の回路方式について示し、同図(a) は
フライバック形、同図(b) はフォワード形、同図(c) は
チョッパ形のスイッチング電源装置の構成回路図であ
る。
FIG. 1 shows a circuit configuration example of a one-chip type switching power supply device of the present invention with respect to some circuit systems. FIG. 1 (a) is a flyback type, FIG. 1 (b) is a forward type, and FIG. It is a configuration circuit diagram of a chopper type switching power supply device.

【図2】本発明のスイッチング電源装置のワンチップ構
造例をフライバック形について示すその一部断面斜視図
である。
FIG. 2 is a partial cross-sectional perspective view showing an example of a one-chip structure of a switching power supply device of the present invention for a flyback type.

【図3】電圧変換部の磁気誘導素子の薄膜積層構造例を
フライバック形変圧器について示し、同図(a) はその一
部切り欠き上面図、同図(b) はその要部断面図であり、
同図(b) は同図(a) のX−X矢視断面に相当する。
3A and 3B show an example of a thin film laminated structure of a magnetic induction element of a voltage conversion unit for a flyback type transformer, FIG. 3A is a partially cutaway top view thereof, and FIG. 3B is a cross-sectional view of its main part. And
The figure (b) is equivalent to the XX arrow cross section of the figure (a).

【図4】スイッチング素子と電圧変換部の磁気誘導素子
を複数個設ける本発明の異なる実施例の回路図である。
FIG. 4 is a circuit diagram of a different embodiment of the present invention in which a plurality of switching elements and magnetic induction elements of a voltage conversion unit are provided.

【図5】図4の実施例に対応する複数個の磁気誘導素子
とその関連部分の配置例を示すチップの上面図である。
5 is a top view of a chip showing an arrangement example of a plurality of magnetic induction elements and their related portions corresponding to the embodiment of FIG. 4. FIG.

【図6】図4の実施例の磁気誘導素子のコイルを上下2
層に分割する場合の薄膜導体のパターン例を示し、同図
(a) はその下層側、同図(d) はその上層側の薄膜導体の
上面図である。
FIG. 6 is a schematic diagram showing the coil of the magnetic induction element of the embodiment of FIG.
The figure shows an example of a thin-film conductor pattern when it is divided into layers.
(a) is a top view of the thin film conductor on the lower layer side, and (d) is a top view of the thin film conductor on the upper layer side.

【符号の説明】[Explanation of symbols]

10 半導体チップ 20 配線層 30 電圧変換部 31 磁気誘導素子としての変圧器 32 磁性薄膜 32a 磁性薄膜のスリット 34 一次コイルないしはそれ用の薄膜導体 35 二次コイルないしはそれ用の薄膜導体 43 スイッチング素子 46 出力電圧の安定化用キャパシタ 47 電圧制御部 10 Semiconductor chip 20 Wiring layer 30 Voltage converter 31 Transformer as magnetic induction element 32 Magnetic thin film 32a Slit of magnetic thin film 34 Primary coil or thin film conductor for it 35 Secondary coil or thin film conductor for it 43 Switching element 46 Output Voltage stabilizing capacitor 47 Voltage control unit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】薄膜構造の磁気誘導素子からなる電圧変換
部と、電圧変換部の入力側電流を断続するスイッチング
素子と、電圧変換部の出力側電圧を所望値に一定に制御
するようにスイッチング素子の断続を制御する電圧制御
部とを含み、スイッチング素子と電圧制御部の回路要素
を含む能動素子を単一の半導体チップに組み込み、この
半導体チップの上に能動素子を相互接続する配線層およ
びそれと接続された電圧変換部を絶縁膜を介して順次に
積層してなることを特徴とするワンチップ形スイッチン
グ電源装置。
1. A voltage conversion unit composed of a thin film magnetic induction element, a switching element for connecting and disconnecting an input side current of the voltage conversion unit, and a switching for controlling an output side voltage of the voltage conversion unit to a desired value. A voltage control section for controlling the on / off of the element, an active element including a switching element and a circuit element of the voltage control section is incorporated in a single semiconductor chip, and a wiring layer for interconnecting the active element on the semiconductor chip and A one-chip type switching power supply device characterized in that voltage conversion units connected thereto are sequentially laminated through an insulating film.
【請求項2】請求項1に記載の装置において、スイッチ
ング素子により電圧変換部の入力側電流を断続させるス
イッチング周波数を1MHz以上としたことを特徴とする
ワンチップ形スイッチング電源装置。
2. The one-chip type switching power supply device according to claim 1, wherein a switching frequency for interrupting an input side current of the voltage conversion section by a switching element is 1 MHz or higher.
【請求項3】請求項1に記載の装置において、電圧変換
部の磁気誘導素子としてフライバック形変圧器を用いる
ことを特徴とするワンチップ形スイッチング電源装置。
3. The one-chip type switching power supply device according to claim 1, wherein a flyback transformer is used as the magnetic induction element of the voltage conversion unit.
【請求項4】請求項1に記載の装置において、電圧変換
部の少なくとも入力側を複数個に分割し、各分割入力部
に流れる入力側電流を電圧制御部により制御されるスイ
ッチング素子によって個別に断続させるようにしたこと
を特徴とするワンチップ形スイッチング電源装置。
4. The device according to claim 1, wherein at least an input side of the voltage conversion section is divided into a plurality of pieces, and an input side current flowing through each divided input section is individually controlled by a switching element controlled by a voltage control section. A one-chip type switching power supply device characterized by being intermittently connected.
【請求項5】請求項4に記載の装置において、電圧変換
部の磁気誘導素子を複数個設け、それらの入力側電流を
スイッチング素子によって個別に断続させ、かつ出力側
を直列に接続して出力側電圧を取り出すようにしたこと
を特徴とするワンチップ形スイッチング電源装置。
5. The device according to claim 4, wherein a plurality of magnetic induction elements of the voltage conversion unit are provided, the input side currents thereof are individually interrupted by switching elements, and the output side is connected in series to output. A one-chip type switching power supply device characterized by extracting the side voltage.
JP4181391A 1992-02-28 1992-07-09 One-chip switching power supply Expired - Lifetime JP3019611B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4181391A JP3019611B2 (en) 1992-03-13 1992-07-09 One-chip switching power supply
US08/025,422 US5355301A (en) 1992-02-28 1993-03-01 One-chip type switching power supply device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-53961 1992-03-13
JP5396192 1992-03-13
JP4181391A JP3019611B2 (en) 1992-03-13 1992-07-09 One-chip switching power supply

Publications (2)

Publication Number Publication Date
JPH05316731A true JPH05316731A (en) 1993-11-26
JP3019611B2 JP3019611B2 (en) 2000-03-13

Family

ID=26394699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4181391A Expired - Lifetime JP3019611B2 (en) 1992-02-28 1992-07-09 One-chip switching power supply

Country Status (1)

Country Link
JP (1) JP3019611B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520991A (en) * 1998-07-13 2002-07-09 グリーン、パワー、テクノロジーズ、リミテッド Module device for controlling harmonics of current flowing from power supply line
JP2002369511A (en) * 2001-06-08 2002-12-20 Sanyo Electric Co Ltd Integrated circuit for switching power supply
JP2002369512A (en) * 2001-06-08 2002-12-20 Sanyo Electric Co Ltd Integrated circuit for switching power supply
JP2002369525A (en) * 2001-06-08 2002-12-20 Sanyo Electric Co Ltd Integrated circuit for switching power supply
JP2004080985A (en) * 2002-06-17 2004-03-11 Hitachi Ltd Power supply device and hard disk device using it, integrated circuit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520991A (en) * 1998-07-13 2002-07-09 グリーン、パワー、テクノロジーズ、リミテッド Module device for controlling harmonics of current flowing from power supply line
JP2002369511A (en) * 2001-06-08 2002-12-20 Sanyo Electric Co Ltd Integrated circuit for switching power supply
JP2002369512A (en) * 2001-06-08 2002-12-20 Sanyo Electric Co Ltd Integrated circuit for switching power supply
JP2002369525A (en) * 2001-06-08 2002-12-20 Sanyo Electric Co Ltd Integrated circuit for switching power supply
JP4694043B2 (en) * 2001-06-08 2011-06-01 三洋電機株式会社 Integrated circuit for switching power supply
JP4694044B2 (en) * 2001-06-08 2011-06-01 三洋電機株式会社 Integrated circuit for switching power supply
JP4733860B2 (en) * 2001-06-08 2011-07-27 三洋電機株式会社 Integrated circuit for switching power supply
JP2004080985A (en) * 2002-06-17 2004-03-11 Hitachi Ltd Power supply device and hard disk device using it, integrated circuit

Also Published As

Publication number Publication date
JP3019611B2 (en) 2000-03-13

Similar Documents

Publication Publication Date Title
US5355301A (en) One-chip type switching power supply device
US5548265A (en) Thin film magnetic element
KR101296238B1 (en) Dc-dc converter
JP3141562B2 (en) Thin film transformer device
US5604383A (en) Stabilized power supply device using a flip chip as an active component
TWI430302B (en) Electronic parts, electronic parts manufacturing methods
US6529363B2 (en) Capacitor integrated into transformer by multi-layer foil winding
JP2001085248A (en) Transformer
JP4518013B2 (en) Electronic components
JP2002270428A (en) Laminated chip inductor
JP3196187B2 (en) Mounting structure of electromagnetic circuit
KR100475477B1 (en) Inductance element and semiconductor device
US20040195651A1 (en) Center-tap transformers in integrated circuits
JP3019611B2 (en) One-chip switching power supply
US20030234436A1 (en) Semiconductor device with a spiral inductor and magnetic material
JP2002299130A (en) Composite element for power source
JP3324151B2 (en) DC voltage stabilized power supply
JPS60136363A (en) Semiconductor device
JPH05109557A (en) High frequency thin film transformer and high frequency thin film inductor
US20020097128A1 (en) Electronic component and method of manufacturing
JPH11135344A (en) Compact transformer
JP2001167930A (en) Coil for inductor and its manufacturing method
JPH0629134A (en) Thin-film transformer for high-frequency switching power supply
JPH05101937A (en) Semiconductor chip mounting electromagnetic apparatus
JPH0624984Y2 (en) Power conversion transformer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100107

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120107

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20130107