JPH05315073A - El element - Google Patents

El element

Info

Publication number
JPH05315073A
JPH05315073A JP3115485A JP11548591A JPH05315073A JP H05315073 A JPH05315073 A JP H05315073A JP 3115485 A JP3115485 A JP 3115485A JP 11548591 A JP11548591 A JP 11548591A JP H05315073 A JPH05315073 A JP H05315073A
Authority
JP
Japan
Prior art keywords
electrode
light emitting
brightness
emitting layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3115485A
Other languages
Japanese (ja)
Inventor
Hiroyuki Abe
宏幸 阿部
Ikue Kawashima
伊久衛 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Research Institute of General Electronics Co Ltd
Ricoh Co Ltd
Original Assignee
Ricoh Research Institute of General Electronics Co Ltd
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Research Institute of General Electronics Co Ltd, Ricoh Co Ltd filed Critical Ricoh Research Institute of General Electronics Co Ltd
Priority to JP3115485A priority Critical patent/JPH05315073A/en
Publication of JPH05315073A publication Critical patent/JPH05315073A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide even distribution of rightness by providing a voltage applying lead out part in many spots, many earth or individually separate electrodes, and a resistor and/or capacitor, when necessary, between an EL element and a driving circuit. CONSTITUTION:An Al lower part electrode 2 is provided in a Pyrex plate 1, and an Si3N4 lower part insulating layer 3 is formed by a reactive spattering method to pile a light emitting layer 4 by ZnS of adding TbO. Next, an Si3N4 upper pat insulating layer 5 and an ITO upper part electrode 6 are overlapped. The electrode 6, having sheet resistance, is patterned so as to provide a lead-out part 9 by each five spots from each side. By this constitution, since a voltage applying drawout electrode is set up in many spots, an influence of decreasing effective applied voltage to an EL element by resistance of a transparent conductive film is decreased, and uniformity of brightness can be obtained. A resistor or capacitor is provided between an individualized EL element and a driving circuit, to perform wiring, and when a resistance value is changed, film thickness distribution of the light emitting layer and insulating layer of the EL element and brightness distribution by nonuniformity of film material of the light emitting layer are adjusted to obtain uniform brightness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、EL素子に関する。TECHNICAL FIELD The present invention relates to an EL device.

【0002】[0002]

【従来技術】現在のEL素子の構成は、図1に示すよう
にEL発光層4に高電界を印加するためにEL発光層の
両側に、誘電体の絶縁膜3,5を設け、さらにEL発光
層と2層の絶縁膜を夾む形で、上下に電極2,6が形成
された二重絶縁構成になっている。EL素子をディスプ
レイや光源として用いるために、上下電極の少なくとも
一方は透明導電膜又は、半透明の金属薄膜が使われるの
が一般的である。そしてEL素子の輝度のバラツキ原因
としては、大きく分けて3つある。1つは、発光層中に
存在し、発光中心となる不純物の濃度分布や、発光層の
結晶性の不均一性等の発光層の膜質によるものである。
これについては、成膜方式、成膜条件の最適化によりあ
る程度抑えることができる。2つめは、発光層、絶縁層
の膜厚分布が原因で起こるものであり、膜が薄い場所
は、電圧印加時の電界強度が強いために輝度が高くな
る。これについても成膜方式、成膜条件の検討により、
ある程度抑えることはできるが、大面積のディスプレイ
や面光源長尺の線状光源を作る場合には、大面積又は長
尺基板への成膜が必要で、この場合には膜厚分布の幅を
小さくするにも限界があり、場合によっては数+パーセ
ントの輝度分布の幅が生じる場合もある。したがって、
大面積あるいは長尺のEL光源又はELディスプレイを
作成する場合には、上記の発光層の膜質及び膜厚分布に
よる輝度分布の幅を何らかの形で小さくする必要があ
る。3つめは、EL発光層駆動用の電極が持つ配線抵抗
が原因となる輝度分布である。例えばワープロ等の液晶
ディスプレイのバックライトとして、分散型ELパネル
を使ったものがある。これはEL発光物質をバインダー
で固めた発光源を、金属電極ITO等の透明電極で夾ん
だ構成になっており、図2に示すように各層は、ディス
プレイ面積とほゞ等しい面積になっており、電極の取出
部8,9は、金属電極2、透明電極6にそれぞれ1ケ所
である。ITO等の透明電極材料は、金属に比べて抵抗
率が高いため、電極取出部から離れるにつれて電位が降
下する。したがって、ELパネルの電極材料として用い
た場合には、電極取出部から遠い位置では、EL発光膜
に加わる電界強度が弱まり、輝度が低下する。つまりE
Lパネルの電極取出部の近くは輝度が高く、電極取出部
から遠ざかるにつれて輝度が下がるような輝度分布を持
ってしまう。対策として透明電極を厚くしてシート抵抗
を下げる方法が挙げられるが、膜厚の増加により透明導
電膜の透過率が低下し、出射輝度の低下が起こるし、多
少の輝度のバラツキは残ってしまう。また、上下電極を
ともに透明導電膜を用いたEL素子を導波路領域内に形
成し、EL発光層からの光を導波路中を伝搬させ、導波
路端面迄導く図3のような端面発光型EL素子が提案さ
れているが、この場合は、端面への光の出射効率の点か
ら透明電極は薄い方が望ましく、透明電極の抵抗の影響
が大きいため、電極の取出個所が、上下1ケ所ずつで
は、輝度の分布を抑えることは難しい。
2. Description of the Related Art A current EL device has a structure as shown in FIG. 1, in which dielectric insulating films 3 and 5 are provided on both sides of the EL light emitting layer in order to apply a high electric field to the EL light emitting layer. It has a double insulating structure in which electrodes 2 and 6 are formed on the upper and lower sides so as to enclose the light emitting layer and the two insulating films. In order to use the EL element as a display or a light source, a transparent conductive film or a semitransparent metal thin film is generally used for at least one of the upper and lower electrodes. There are roughly three causes of variations in the brightness of EL elements. One is due to the film quality of the light emitting layer, such as the concentration distribution of impurities existing in the light emitting layer and serving as the light emission center and the non-uniformity of crystallinity of the light emitting layer.
This can be suppressed to some extent by optimizing the film forming method and the film forming conditions. The second is caused by the film thickness distribution of the light emitting layer and the insulating layer, and the brightness is high in a thin film area because the electric field strength is high when a voltage is applied. Also regarding this, by studying the film formation method and film formation conditions,
Although it can be suppressed to some extent, film formation on a large area or a long substrate is necessary when making a large area display or a linear light source of a long length surface light source. There is a limit to how small it can be made, and in some cases, a width of several + percent brightness distribution may occur. Therefore,
When making an EL light source or an EL display having a large area or a long length, it is necessary to reduce the width of the luminance distribution due to the film quality and the film thickness distribution of the light emitting layer in some way. The third is the luminance distribution caused by the wiring resistance of the electrode for driving the EL light emitting layer. For example, as a backlight of a liquid crystal display such as a word processor, there is one using a dispersion type EL panel. This has a structure in which a light emitting source obtained by hardening an EL light emitting material with a binder is surrounded by a transparent electrode such as a metal electrode ITO. As shown in FIG. 2, each layer has an area approximately equal to the display area. Therefore, the electrode take-out portions 8 and 9 are provided at one place on the metal electrode 2 and at one place on the transparent electrode 6, respectively. Since a transparent electrode material such as ITO has a higher resistivity than a metal, the potential drops as the distance from the electrode extraction portion increases. Therefore, when it is used as an electrode material of an EL panel, the electric field strength applied to the EL light emitting film is weakened at a position far from the electrode extraction portion, and the brightness is lowered. That is E
The luminance is high near the electrode extraction portion of the L panel, and has a luminance distribution in which the luminance decreases as the distance from the electrode extraction portion increases. As a countermeasure, there is a method of reducing the sheet resistance by thickening the transparent electrode, but the increase of the film thickness lowers the transmittance of the transparent conductive film, lowers the emission brightness, and leaves some variation in the brightness. . Further, an EL element using a transparent conductive film for both upper and lower electrodes is formed in the waveguide region, and the light from the EL light emitting layer is propagated through the waveguide and is guided to the end face of the waveguide. Although an EL element has been proposed, in this case, it is preferable that the transparent electrode be thin from the viewpoint of the efficiency of emitting light to the end face. It is difficult to suppress the luminance distribution by each.

【0003】[0003]

【目的】本発明の目的は、EL素子を用いたディスプレ
イ、液晶用のバックライト等の面光源、ファクシミリ、
コピア等の原稿面照射用の線状光源としてEL素子を利
用する場合に問題となる輝度分布の幅をできるだけ小さ
く抑えることにある。本発明の他の目的は、透明導電膜
の抵抗が原因となる輝度の低下を防ぐ点にある。
[Purpose] An object of the present invention is to provide a display using an EL device, a surface light source such as a backlight for liquid crystal, a facsimile,
It is to suppress the width of the luminance distribution, which is a problem when an EL element is used as a linear light source for illuminating a document surface such as copier, as small as possible. Another object of the present invention is to prevent a decrease in brightness caused by the resistance of the transparent conductive film.

【0004】[0004]

【構成】本発明の第1は、EL素子を駆動するための上
下電極の少なくとも一方に透明導電膜を用いたEL素子
において、電圧印加用の取出部が多数個所設けられてい
ることを特徴とするEL素子に関する。本発明の第2
は、EL素子を駆動するための上下電極の少なくとも一
方に透明導電膜を用いたEL素子において、上部電極お
よび下部電極よりなる群から選らばれた少なくとも1つ
の電極が個別分離されていることを特徴とするEL素子
に関する。すなわち、本発明の第2は、第1の本発明は
電極取出部を多数個にしているのに対して、電極それ自
体を多数個にしたものである。また、本発明の第3は、
EL素子を駆動するための上下電極の少なくとも一方に
透明導電膜を用いたEL素子において、上部電極および
下部電極よりなる群から選らばれた少なくとも1つの電
極が個別分離され、個別分離された電極と駆動回路の間
に、抵抗体および/または容量が設けられていることを
特徴とするEL素子に関する。
According to a first aspect of the present invention, in an EL element using a transparent conductive film as at least one of upper and lower electrodes for driving the EL element, a large number of lead-out portions for voltage application are provided. The present invention relates to an EL device for Second of the present invention
Are characterized in that, in an EL element using a transparent conductive film for at least one of upper and lower electrodes for driving the EL element, at least one electrode selected from the group consisting of an upper electrode and a lower electrode is individually separated. And an EL element. That is, the second aspect of the present invention is that the first aspect of the present invention has a large number of electrode extraction portions, whereas the number of electrodes themselves is a large number. The third aspect of the present invention is
In an EL element using a transparent conductive film for at least one of upper and lower electrodes for driving the EL element, at least one electrode selected from the group consisting of an upper electrode and a lower electrode is individually separated, and The present invention relates to an EL element having a resistor and / or a capacitor provided between drive circuits.

【0005】透明導電膜の抵抗が原因で起こる輝度分布
を抑えるためには、従来、図2で示すように、上下電極
6,2に対して1ケ所ずつだった電極の取出部分を、多
数ケ所にすれば良い。例えば図4に示すように上部透明
電極6の周辺部から多数の電極取出部9を設けて駆動す
れば、中央部分が周辺部に比べて輝度は多少小さくなる
が、図2の構成の場合にみられた比較的大きな輝度分布
の幅を減らすことができる。図3に示した端面発光型E
L素子の場合は、図5のように導波路端面と平行に一定
間隔で電極の取出部8,9を設ければ、図6のように電
極の取出部が上下それぞれ1ケ所の場合にみられる導波
路端面と平行な方向の輝度のバラツキは、なくすことが
できる。しかし光の取出方向と平行な方向の輝度分布
は、依然として残ることになるが、この輝度分布は、導
波路端面での輝度分布とは、無関係であるため、導波路
端面からの発光は、一様な線状光源として使用可能にな
る。
In order to suppress the luminance distribution caused by the resistance of the transparent conductive film, as shown in FIG. 2, conventionally, there are a large number of electrode lead-out portions, one for each of the upper and lower electrodes 6, 2. You can do it. For example, as shown in FIG. 4, if a large number of electrode lead-out portions 9 are provided from the peripheral portion of the upper transparent electrode 6 and driven, the central portion has a slightly lower luminance than the peripheral portion, but in the case of the configuration of FIG. The width of the relatively large luminance distribution seen can be reduced. Edge emitting type E shown in FIG.
In the case of the L element, if the electrode lead-out portions 8 and 9 are provided at a constant interval in parallel with the waveguide end face as shown in FIG. The variation in brightness in the direction parallel to the end face of the waveguide can be eliminated. However, although the luminance distribution in the direction parallel to the light extraction direction still remains, this luminance distribution is independent of the luminance distribution at the end face of the waveguide, so that light emission from the end face of the waveguide is It can be used as a linear light source.

【0006】前述の例では、EL発光層、上下の電極は
すべて一枚の薄膜を使った構成になっているが、実際に
は、EL発光層、上下電極の少なくとも一層は、何枚か
に個別分離形成し、各々から電極を取出しても良い。分
離形成により発光を起こさない領域が生じるが、フォト
リソグラフィー技術により、発光しない領域の幅を数μ
m〜数+μmにすれば、発光しない領域は無視できるの
で一様な光源として使用できる。特に端面発光型EL素
子では、導波路端面とEL発光層との距離が比較的大き
いため、発光しない領域の幅が数+μm〜数百μmあっ
ても導波路端面では境界のない線状発光が得られる。ま
た、大面積の面光源を得る場合には、図7に示すよう
に、EL発光層4は一枚の薄膜を用い、上下の電極6,
2は、発光しない領域の幅が数μm〜数+μmの互いに
直交するストライプ状に形成しても良い。このときに
は、先に述べた透明導電膜の抵抗の影響を少なくするた
めに、電極の取出しは、ストライプの両側から行なうこ
とが望ましい。端面発光型EL素子において、発光する
領域を分割する場合には、図8に示すように、透明導電
膜のうち少なくとも一方を個別分離し、図のように配線
すればよい。前述のようにEL発光層4、上下電極6,
2の少なくとも1つを個別分離すれば、個別駆動によ
り、面発光光源はELディスプレイに、端面発光型EL
素子はプリンター光源としての使用が可能となるが、先
に述べた発光層の膜質及び発光層、絶縁層の膜厚分布が
原因の輝度分布を補正するための手段の一助となる。す
なわち、ELの発光部分を個別分離すれば、各素子に輝
度のバラツキが生じた場合にはEL素子への印加電圧を
個別に調整することにより、輝度を一様にすることが可
能となる。印加電圧を調整するためには、EL発光素子
と、駆動用回路の間に交流の抵抗となる物、例えばIT
O膜を介して配線を行なえば、抵抗値の大小により、各
EL素子駆動の印加電圧を変えれば良い。抵抗体も含め
たEL素子の等価回路を図9に示す。EL素子は、コン
デンサとみなせるのでその容量値を、C1、C2……とす
る。また抵抗体のインピーダンスの値を、Z1、Z2……
とする。交流印加電圧の値をVとすれば、各EL素子に
加わる電圧の値は(C1・V)/(C1+Z1)、(C2
V)/(C2+Z2)、……で与えられる。EL素子が同
一基板上に形成されている場合には、C1、C2……の値
は、EL素子を構成する上下絶縁層と発光層の膜厚で決
まるため、膜厚分布により、Z1、Z2……の値を変えれ
ばEL素子に加わる印加電圧を変えて、輝度を調整する
ことができる。
In the above-mentioned example, the EL light emitting layer and the upper and lower electrodes are all constructed by using a single thin film, but in reality, at least one layer of the EL light emitting layer and the upper and lower electrodes is composed of several sheets. The electrodes may be formed separately and the electrodes may be taken out from each. A region that does not emit light is generated due to the separation formation, but the width of the region that does not emit light is reduced to several μ by photolithography technology.
If it is set to m to several + μm, it can be used as a uniform light source because the region that does not emit light can be ignored. Particularly in the edge emitting EL device, since the distance between the end face of the waveguide and the EL light emitting layer is relatively large, linear light emission with no boundary is generated at the end face of the waveguide even if the width of the non-light emitting region is several + μm to several hundred μm. can get. Further, when obtaining a large-area surface light source, as shown in FIG. 7, a single thin film is used for the EL light emitting layer 4, and the upper and lower electrodes 6, 6 are used.
2 may be formed in stripes in which the width of the non-light emitting region is several μm to several + μm and are orthogonal to each other. At this time, in order to reduce the influence of the resistance of the transparent conductive film described above, it is desirable to take out the electrodes from both sides of the stripe. In the case of dividing the region emitting light in the edge emitting EL device, at least one of the transparent conductive films may be individually separated and wired as shown in FIG. As described above, the EL light emitting layer 4, the upper and lower electrodes 6,
If at least one of the two is individually separated, the surface emitting light source can be used as an EL display and the edge emitting EL
Although the element can be used as a printer light source, it serves as a means for correcting the luminance distribution due to the film quality of the light emitting layer and the film thickness distribution of the light emitting layer and the insulating layer described above. That is, by separately separating the light emitting portions of the EL, it becomes possible to make the brightness uniform by individually adjusting the voltage applied to the EL element when the brightness varies among the elements. In order to adjust the applied voltage, an alternating current resistance between the EL light emitting element and the driving circuit, such as IT
If wiring is performed through the O film, the applied voltage for driving each EL element may be changed depending on the resistance value. FIG. 9 shows an equivalent circuit of the EL element including the resistor. Since the EL element can be regarded as a capacitor, its capacitance value is C 1 , C 2, ... In addition, the impedance value of the resistor is Z 1 , Z 2 ...
And If the value of the AC applied voltage is V, the value of the voltage applied to each EL element is (C 1 · V) / (C 1 + Z 1 ), (C 2 ·
V) / (C 2 + Z 2 ), ... When the EL elements are formed on the same substrate, the values of C 1 , C 2, ... Are determined by the film thicknesses of the upper and lower insulating layers and the light emitting layer that make up the EL element. The luminance can be adjusted by changing the applied voltage applied to the EL element by changing the values of 1 , Z 2 ...

【0007】[0007]

【実施例】以下に本発明の具体的な実施例を示す。 実施例1 まず図4の構成のELパネルを作成した。基板は50m
m角のパイレックス板を用いた。下部電極2として、A
lを真空蒸着法により成膜し、パターニングを行なっ
た。その上に下部絶縁層3として、反応性スパッタリン
グ法によりSi34膜を成膜した。ターゲットはSi、
スパッタガスには、N2を用いて膜厚は3000Åとし
た。膜厚分布は45mm角内で±3%以内に収まった。
次に、発光層4としてTbOFドープのZnS膜を成膜
した。ターゲットはZnS粉末に、5wt%のTbOF
粉末を混合したものを用い、スパッタガスにはAr60
%、He40%の混合ガスを用いた。膜厚は、6000
Åとし、40mm角の領域に成膜し、膜厚分布は、やは
り3%以内に収まった。その上に、上部絶縁層5として
下部絶縁層3と同じ条件でSi34膜を成膜した。最後
に上部電極6としてITO膜をRFスパッタリング法に
より成膜した。スパッタガスは、Arを用いた。膜厚は
1000Åであり、シート抵抗は、40Ω/□であっ
た。上部ITO電極は、図4に示すごとく各辺から5ケ
所ずつ取出部9を持つようにパターニングを行なった。
このように膜厚分布による輝度分布を極力減らしたEL
素子を作成し、電極の取出方法を変えて輝度分布を測定
した。まず下部Al電極2に1ケ所、上部ITO電極6
にも1ケ所つまり、図2の配線方法にして、輝度を測定
した。駆動は5KHzの正弦波を使い、印加電圧は23
0Vとした。電極取出部に近い個所での輝度は1730
cd/m2であり、電極取出部から遠ざかるにしたがっ
て輝度は低下し、一番遠い位置では1410cd/m2
になり、18%程度の輝度低下になっている。これに対
して、20ケ所設けた上部電極取出部9のすべてに電圧
を印加した場合には周辺部の輝度は1930cd/
2、一番暗い中央部でも、1780cd/m2で、8%
程度の低下に収まった。ELパネルの輝度分布として
は、最大値に対して最小値が10%以内の低下に収まる
ことが望ましく、充分範囲内に入っており、多数配線の
効果が確認できた。
EXAMPLES The following are specific examples of the present invention. Example 1 First, an EL panel having the structure shown in FIG. 4 was prepared. The board is 50m
An m-square Pyrex plate was used. As the lower electrode 2, A
1 was formed into a film by a vacuum vapor deposition method and patterned. A Si 3 N 4 film was formed thereon as a lower insulating layer 3 by a reactive sputtering method. The target is Si,
N 2 was used as the sputtering gas, and the film thickness was 3000 Å. The film thickness distribution was within ± 3% within a 45 mm square.
Next, a TbOF-doped ZnS film was formed as the light emitting layer 4. The target is ZnS powder and 5 wt% TbOF.
Ar60 was used as the sputtering gas by using a mixture of powders.
%, He 40% mixed gas was used. The film thickness is 6000
The thickness was set to Å and a film was formed in a 40 mm square area, and the film thickness distribution was still within 3%. A Si 3 N 4 film was formed thereon as the upper insulating layer 5 under the same conditions as the lower insulating layer 3. Finally, an ITO film was formed as the upper electrode 6 by the RF sputtering method. Ar was used as the sputtering gas. The film thickness was 1000Å, and the sheet resistance was 40Ω / □. The upper ITO electrode was patterned so that it had five lead-out portions 9 from each side as shown in FIG.
In this way, the EL whose luminance distribution due to the film thickness distribution is reduced as much as possible
A device was prepared, and the luminance distribution was measured by changing the method of taking out the electrodes. First, one place on the lower Al electrode 2 and the upper ITO electrode 6
In addition, the brightness was measured at one location, that is, the wiring method of FIG. The drive uses a 5 KHz sine wave and the applied voltage is 23
It was set to 0V. The brightness at the location near the electrode outlet is 1730
a cd / m 2, the luminance decreases as the distance from the electrode lead-out portion, in the farthest position 1410cd / m 2
The brightness is reduced by about 18%. On the other hand, when a voltage is applied to all of the upper electrode lead-out portions 9 provided at 20 places, the luminance of the peripheral portion is 1930 cd /
m 2, even in the darkest central, at 1780cd / m 2, 8%
It fell within the decline. As for the brightness distribution of the EL panel, it is desirable that the minimum value falls within 10% of the maximum value, and it is well within the range, and the effect of multiple wirings was confirmed.

【0008】実施例2 図3に示す端面発光型EL素子を作成し、輝度分布を測
定した。基板1は50mm×75mmのパイレックスガ
ラスを用い遮光層としてCr/CrO2膜をスパッタリ
ング法で1000Å形成した。その上に導波路第1クラ
ッド層12、導波路コア層13をプラズマCVD法で形
成した。原料ガスはSiH4、CO2、N2を用い、クラ
ッド層とコア層の膜厚はそれぞれ5μm、20μm、屈
折率はそれぞれ1.46、1.57である。導波路コア
層13の上にさらに、ITO透明電極(下部電極)2、
Si34下部絶縁層3、ZnS:TbOF発光層4、S
34上部絶縁層5、ITO透明電極(上部電極)6の
順に、実施例1と同じ方法、条件で形成し、EL発光素
子とした。また上下のITO透明電極は、図5のような
パターニングを行なった。EL発光層の大きさは、10
mm×70mmとし、電極取出部は、上下とも10mm
ピッチで7ケ所ずつ設けた。最後に遮光層上のクラッド
層と同じ条件で、導波路第2クラッド層12を5μm形
成した。輝度の測定は、第2クラッド層、上部ITO透
明電極を通した上面の輝度と、導波路端面からの端面輝
度を測定し、輝度分布を評価した。図10に結果を示
す。図中α1〜α7は上部ITO電極の取出電極、β1
β7は、下部ITO電極の取出電極である。輝度は導波
路端面(A−A′)での端面輝度と導波路端面と平行な
直線(B−B′)、光の取出方向と平行な直線(C−
C′)での上面輝度を測定し、グラフに示した。配線の
方法は、上下引き出し電極を1ケ所ずつ使用したものが
2種類と、すなわち、(i)α1とβ1のみを使用した場
合〔図10の(ロ)〕、(ii)α1とβ7のみを使用した
場合〔図10の(ハ)〕、(iii)上下取出電極のすべ
てを使用した場合〔図10の(ニ)〕、の合わせて3種
類行なった。A−A′、B−B′での輝度の最大値(L
max)と最小値(Lmin)及び輝度分布の目安とし
て(Lmax−Lmin)/Lmax×100で計算さ
れるΔLの値をまとめたものを表1に示す。
Example 2 An edge emitting EL device shown in FIG. 3 was prepared and the luminance distribution was measured. The substrate 1 was made of Pyrex glass having a size of 50 mm × 75 mm, and a Cr / CrO 2 film was formed as 1000 Å by a sputtering method as a light shielding layer. The first waveguide cladding layer 12 and the waveguide core layer 13 were formed thereon by plasma CVD. SiH 4 , CO 2 , and N 2 are used as the source gas, the film thicknesses of the clad layer and the core layer are 5 μm and 20 μm, respectively, and the refractive indices are 1.46 and 1.57, respectively. Further, an ITO transparent electrode (lower electrode) 2, on the waveguide core layer 13,
Si 3 N 4 lower insulating layer 3, ZnS: TbOF light emitting layer 4, S
The i 3 N 4 upper insulating layer 5 and the ITO transparent electrode (upper electrode) 6 were formed in this order by the same method and conditions as in Example 1 to obtain an EL light emitting device. The upper and lower ITO transparent electrodes were patterned as shown in FIG. The size of the EL emitting layer is 10
mm x 70 mm, the electrode extraction part is 10 mm both up and down
There are 7 places on the pitch. Finally, the second waveguide cladding layer 12 was formed to a thickness of 5 μm under the same conditions as the cladding layer on the light shielding layer. The luminance was measured by measuring the luminance of the upper surface through the second cladding layer and the upper ITO transparent electrode and the luminance of the end face from the end face of the waveguide to evaluate the luminance distribution. The results are shown in FIG. In the figure, α 1 to α 7 are extraction electrodes of the upper ITO electrode, β 1 to
β 7 is an extraction electrode of the lower ITO electrode. The brightness is defined by the end face brightness at the waveguide end face (AA) and the straight line (BB ') parallel to the waveguide end face, and the straight line (C- parallel to the light extraction direction).
The upper surface luminance at C ') was measured and shown in the graph. There are two wiring methods, one in which the upper and lower extraction electrodes are used, one in which (i) α 1 and β 1 are used [(b) in FIG. 10], and (ii) α 1 . A total of three types were carried out, using only β 7 [(c) of FIG. 10], and (iii) using all of the upper and lower extraction electrodes [(d) of FIG. 10]. The maximum value of the brightness at A-A 'and BB' (L
Table 1 shows a summary of the values of ΔL calculated by (Lmax−Lmin) / Lmax × 100 as a guideline of the luminance distribution.

【表1】 (i)の場合のように、上下1ケ所ずつの取出電極を片
側から取った場合には、ITO電極による電位降下が上
下電極で起こるため取出電極から遠い場所での輝度は相
当低下している。(ii)のように、取出電極を両側に設
けた場合でも中央部で輝度の低下は避けられない。どち
らの場合にも、さらに長尺にすることにより、輝度の低
下は一層進むことが予想される。これに対して、(ii
i)のように取出電極を多数設けた場合には、輝度分布
が殆どみられず均一な線状光源として使用可能である。
また(i)(ii)(iii)いずれの場合でも、光の取出方
向と平行なC−C′上では数%の輝度分布がみられる
が、先にも述ベたように、この分布は、端面での輝度分
布には影響を及ぼすことは無い。このように、上下電極
とも透明導電膜を用いる端面発光型EL素子の場合に
は、取出電極を多数設けたことによる輝度分布の低減効
果は、特に大きいことがわかる。
[Table 1] When the upper and lower extraction electrodes are taken from one side as in the case of (i), the potential drop due to the ITO electrode occurs at the upper and lower electrodes, and the brightness at a place far from the extraction electrode is considerably reduced. .. Even if the extraction electrodes are provided on both sides as in (ii), a decrease in brightness is unavoidable at the central portion. In either case, it is expected that the brightness will be further reduced by making the length longer. In contrast, (ii
When a large number of extraction electrodes are provided as in i), it can be used as a uniform linear light source with almost no brightness distribution.
In any of the cases (i), (ii), and (iii), a luminance distribution of several% can be seen on CC ′ parallel to the light extraction direction. , It does not affect the luminance distribution on the end face. As described above, in the case of the edge emitting EL element using the transparent conductive film for both the upper and lower electrodes, it is understood that the effect of reducing the luminance distribution by providing a large number of extraction electrodes is particularly large.

【0009】実施例3 EL発光素子と駆動用回路の間に、抵抗体を入れて配線
する例を以下に示す。抵抗体としては、市販のチップ部
品を用いても良いが、素子数が多くなると配線の手間が
かかり、場所もとるため、薄膜プロセスで、EL素子と
同一基板上に形成するのが望ましい。抵抗体の材料とし
ては、カーボン、Si等の半導体、タングステン、タン
タル等の高抵抗金属が挙げられるが、EL素子の透明電
極として使われるITO、In23、SnO2、ZnO
等を使用するのがプロセス上便利である。抵抗体の抵抗
値は各EL素子の輝度分布に応じて変える必要が有る
が、輝度分布の大きな原因であるEL発光層及び絶縁層
の膜厚分布の様子を調べておけば必要な抵抗値は、計算
により求めることができる。膜厚が薄く輝度が高くなる
と予想される部分には、大きな抵抗値すなわち断面積の
小さな抵抗体、逆に膜厚が厚くて、輝度が低くなると予
想される部分には、小さな抵抗値を配置するように電極
及び抵抗体をパターニングすれば良い。例えばITOを
抵抗体として使う場合には図11に示すように、EL素
子の上部ITO電極の取出部9を抵抗体として使用し、
その幅(断面積)や長さで抵抗値を調整すれば良い。ま
たEL素子は二重絶縁構成が主流であり、数KHzの交
流で駆動する場合が多いため、抵抗体としてコンデンサ
を使うこともできる。やはりこの場合も、コンデンサは
EL素子と同一基板上に形成することが望ましく、二重
絶縁構成EL素子のEL発光層の無い部分をコンデンサ
として用いることができる。具体的には、図12に示す
ように、EL素子の上下のITO電極を、EL発光層の
無い部分迄延長すれば、延長した部分でかつ上下電極、
上下絶縁層が重なった部分をコンデンサとして用いるこ
とができる。先に示したITOの電極を単なる抵抗とし
て用いた場合には、駆動周波数によって図9のC1、C2
……は変化するが、Z1、Z2……は変化しないため、特
定の周波数でしか正しい輝度調整はできないが、コンデ
ンサを用いれば、Z1、Z2……は、C1、C2……と同じ
周波数特性を持つため数+Hz〜数KHz内のあらゆる
周波数に対応できる利点がある。コンデンサの交流に対
する抵抗値は、コンデンサの電極面積、絶縁膜の膜厚で
変えることができるが、この場合は、絶縁膜の膜厚は、
EL素子の絶縁膜と同じであるため、輝度調整は、電極
面積の大小で行なうことができる。但し電極面積は、コ
ンデンサの絶縁層の膜厚分布も考慮に入れて決定する必
要がある。しかし、膜厚分布が事前に調べたものとずれ
たり、その他の原因例えば膜中の発光中心の分布均一
性、結晶性の不均一により輝度分布が残ってしまう場合
には、ITOの抵抗体又は、コンデンサの上部ITO電
極の一部をレーザーの瞬間照射によりトリミングして、
抵抗値を変えて、輝度調整を行なうこともできる。もち
ろん始めは、各抵抗、コンデンサの面積を同じにしてお
き、輝度分布を調べながらレーザートリミングにより調
整してもよい。
Example 3 An example in which a resistor is placed between the EL light emitting element and the driving circuit and wiring is shown below. Although a commercially available chip component may be used as the resistor, it is desirable to form it on the same substrate as the EL element by a thin film process because it takes time and effort for wiring when the number of elements increases. Examples of the material for the resistor include carbon, semiconductors such as Si, and high resistance metals such as tungsten and tantalum. ITO, In 2 O 3 , SnO 2 , ZnO used as a transparent electrode of an EL element.
It is convenient for the process to use etc. It is necessary to change the resistance value of the resistor according to the brightness distribution of each EL element, but if the state of the thickness distribution of the EL light emitting layer and the insulating layer, which is a major cause of the brightness distribution, is investigated, the required resistance value is , Can be calculated. A large resistance value, that is, a resistor with a small cross-sectional area, is placed in a portion where the film thickness is expected to be high, and a small resistance value is placed in a portion where the film thickness is expected to be low and the luminance is expected to be low The electrodes and the resistor may be patterned so as to do so. For example, when ITO is used as a resistor, the lead-out portion 9 of the upper ITO electrode of the EL element is used as a resistor as shown in FIG.
The resistance value may be adjusted by the width (cross-sectional area) or length. Further, the EL element mainly has a double insulation structure and is often driven by an alternating current of several KHz, so that a capacitor can be used as a resistor. In this case as well, the capacitor is preferably formed on the same substrate as the EL element, and the portion of the double-insulated EL element without the EL light emitting layer can be used as the capacitor. Specifically, as shown in FIG. 12, if the upper and lower ITO electrodes of the EL element are extended to a portion where there is no EL light emitting layer, the extended portion and the upper and lower electrodes,
The portion where the upper and lower insulating layers overlap can be used as a capacitor. When the ITO electrode described above is used as a mere resistor, C 1 and C 2 in FIG.
...... changes, but Z 1 , Z 2 ...... does not change, so correct brightness adjustment is possible only at a specific frequency. However, if a capacitor is used, Z 1 , Z 2 ...... can be changed to C 1 , C 2 Since it has the same frequency characteristics as ..., it has the advantage of being able to handle all frequencies within several + Hz to several KHz. The resistance value of the capacitor with respect to alternating current can be changed by the electrode area of the capacitor and the film thickness of the insulating film. In this case, the film thickness of the insulating film is
Since it is the same as the insulating film of the EL element, the brightness can be adjusted by adjusting the size of the electrode area. However, the electrode area must be determined in consideration of the film thickness distribution of the insulating layer of the capacitor. However, if the film thickness distribution deviates from that previously examined, or if the luminance distribution remains due to other causes such as uneven distribution of emission centers in the film and uneven crystallinity, the ITO resistor or , Part of the upper ITO electrode of the capacitor is trimmed by instantaneous laser irradiation,
The brightness can be adjusted by changing the resistance value. Of course, at the beginning, the areas of the resistors and capacitors may be the same, and adjustment may be performed by laser trimming while checking the luminance distribution.

【効果】本発明の第1と第2は、EL発光素子の駆動用
の電極に透明導電膜に用いた場合に、電圧印加用の引出
電極を多数ケ所設け、あるいは電極それ自体を多数個設
けているので、透明導電膜の抵抗によるEL発光素子に
加わる実効的な印加電圧の低下の影響が低減でき、輝度
の均一化が図れる。特に、上下電極ともに透明導電膜を
用いる端面発光型EL素子においては、その効果が大き
い。本発明の第3は、さらにEL発光層、上部電極、下
部電極の少なくとも1つは個別形成された構成のEL素
子において、個別化されたEL素子と駆動用回路の間に
抵抗体又は容量を設けて配線しているので、その抵抗値
を変えることにより、EL素子の発光層、絶縁層の膜厚
分布や発光層の膜質の不均一性等が原因の輝度分布を調
整し、輝度の均一化が図れる。
According to the first and second aspects of the present invention, when a transparent conductive film is used as an electrode for driving an EL light emitting element, a large number of lead-out electrodes for voltage application are provided, or a large number of electrodes themselves are provided. Therefore, the effect of the effective applied voltage drop applied to the EL light emitting element due to the resistance of the transparent conductive film can be reduced, and the brightness can be made uniform. In particular, the effect is large in the edge emitting EL element using the transparent conductive film for both the upper and lower electrodes. A third aspect of the present invention is an EL element having a structure in which at least one of the EL light emitting layer, the upper electrode and the lower electrode is individually formed, and a resistor or a capacitor is provided between the individual EL element and the driving circuit. Since the wiring is provided and adjusted, the resistance value can be changed to adjust the brightness distribution due to the film thickness distribution of the light emitting layer and the insulating layer of the EL element and the non-uniformity of the film quality of the light emitting layer, etc. Can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来型EL素子の断面図である。FIG. 1 is a cross-sectional view of a conventional EL device.

【図2】従来のELパネルの上下電極からの取出部分が
それぞれ1つの場合の平面図である。
FIG. 2 is a plan view of a conventional EL panel in which there is one extraction portion from each of the upper and lower electrodes.

【図3】典型的な端面発光型EL素子の断面図である。FIG. 3 is a cross-sectional view of a typical edge emitting EL device.

【図4】本発明実施例1の上下電極からの取出部分を説
明するための平面図である。
FIG. 4 is a plan view for explaining a portion taken out from the upper and lower electrodes according to the first embodiment of the present invention.

【図5】図4とは別の態様(本発明実施例2)で上下電
極からの引出し部分を形成した場合の平面図である。
FIG. 5 is a plan view of a case where lead-out portions from upper and lower electrodes are formed in a mode different from FIG. 4 (Example 2 of the present invention).

【図6】端面発光型EL素子における上下電極からの取
出部分がそれぞれ1つの場合の平面図である(従来
型)。
FIG. 6 is a plan view of a case where there is only one extraction portion from each of the upper and lower electrodes in the edge emitting EL element (conventional type).

【図7】図4、5とは別の態様の本発明具体例を示すも
ので、上下電極をストライプ状に個別化した平面図であ
る。
FIG. 7 is a plan view showing a specific example of the present invention in a mode different from that of FIGS. 4 and 5, in which upper and lower electrodes are individually formed into stripes.

【図8】本発明における端面発光型EL素子の上下電極
の分割例を示す平面図である。
FIG. 8 is a plan view showing an example of division of upper and lower electrodes of the edge-emitting EL device according to the present invention.

【図9】本発明のEL素子の等価回路を示す。FIG. 9 shows an equivalent circuit of the EL device of the present invention.

【図10】本発明実施例2の端面発光型EL素子の平面
図とそれに対応する各面の輝度分布を示す。(イ)は該
EL素子の平面図であり(ロ)、(ロ′)は、α1とβ1
の電極取出部から電圧を印加した場合のA−A′面、B
−B′面、C−C′面の各輝度分布を示す。(ハ)、
(ハ′)は、α1とβ7の電極取出部から電圧を印加した
場合のA−A′面、B−B′面、C−C′面の各輝度分
布を示す。(ニ)、(ニ′)は、α1〜α7、β1〜β7
電極取出部から電圧を印加した場合のA−A′面、B−
B′面、C−C′面の各輝度分布を示す。
FIG. 10 is a plan view of an edge emitting EL device according to Example 2 of the present invention and shows a luminance distribution on each surface corresponding thereto. (A) is a plan view of the EL element, and (B) and (B ') show α 1 and β 1
A-A 'surface when voltage is applied from the electrode extraction part of B, B
The respective luminance distributions on the −B ′ surface and the CC ′ surface are shown. (C),
(C ') shows the respective luminance distributions of the AA' plane, the BB 'plane, and the CC' plane when voltage is applied from the electrode extraction portions of α 1 and β 7 . (D), (d ') is, α 1 ~α 7, A- A when a voltage is applied to the electrode lead-out portion of the β 17' surface, B-
The respective luminance distributions on the B ′ surface and the CC ′ surface are shown.

【図11】電極の引出部分を抵抗体として使用する場合
(本発明)のEL素子の平面図(イ)と(ロ)〜(ニ)
の場合の受光面の輝度分布を示す。(ロ)は、抵抗体を
用いない場合、(ハ)は、抵抗体の長さと断面積が同じ
場合、(ニ)は、各抵抗体の長さを調節して輝度分布を
ほゞ一定にした場合を示す。
FIG. 11 is a plan view (a) and (b) to (d) of an EL element when the lead-out portion of the electrode is used as a resistor (the present invention).
The luminance distribution of the light receiving surface in the case of is shown. (B) shows the case where no resistor is used, (C) shows the same length and cross-sectional area of the resistor, and (D) adjusts the length of each resistor to make the brightness distribution almost constant. It shows the case.

【図12】電極の引出部分をコンデンサとして使用する
場合(本発明)のEL素子の平面図である。
FIG. 12 is a plan view of an EL element in the case where an electrode lead-out portion is used as a capacitor (the present invention).

【符号の説明】[Explanation of symbols]

1 基板 2 下部電極 3 下部絶縁層 4 発光層 5 上部絶縁層 6 上部電極 8 下部電極取出部 9 上部電極取出部 12 導波路第1、第2クラッド層 13 導波路コア層 1 Substrate 2 Lower Electrode 3 Lower Insulating Layer 4 Light Emitting Layer 5 Upper Insulating Layer 6 Upper Electrode 8 Lower Electrode Extraction Section 9 Upper Electrode Extraction Section 12 Waveguide First and Second Clad Layer 13 Waveguide Core Layer

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年6月10日[Submission date] June 10, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図10[Name of item to be corrected] Fig. 10

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図10】本発明実施例2の端面発光型EL素子の平面
図とそれに対応する各面の輝度分布を示す。(イ)は該
EL素子の平面図であり(ロ)は、α1とβ1の電極取出
部から電圧を印加した場合のA−A′面、B−B′面、
(ホ)は、C−C′面の各輝度分布を示す。(ハ)は、
α1とβ7の電極取出部から電圧を印加した場合のA−
A′面、B−B′面、(ヘ)は、C−C′面の各輝度分
布を示す。(ニ)は、α1〜α7、β1〜β7の電極取出部
から電圧を印加した場合のA−A′面、B−B′面、
(ト)は、C−C′面の各輝度分布を示す。
FIG. 10 is a plan view of an edge emitting EL device according to Example 2 of the present invention and shows a luminance distribution on each surface corresponding thereto. (A) is a plan view of the EL element, and (B) is a plane AA ′, a plane BB ′ when a voltage is applied from the electrode extraction portions of α 1 and β 1 .
(E) shows each luminance distribution of the CC ′ plane. (C) is
A when voltage is applied from the electrode extraction part of α 1 and β 7
The A ′ surface, the BB ′ surface, and (F) show the respective luminance distributions of the CC ′ surface. (D) is an A-A 'surface, a BB' surface when a voltage is applied from the electrode extraction portions of α 1 to α 7 and β 1 to β 7 .
(G) shows each luminance distribution on the CC ′ plane.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図10[Name of item to be corrected] Fig. 10

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図10】 [Figure 10]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 EL素子を駆動するための上下電極の少
なくとも一方に透明導電膜を用いたEL素子において、
電圧印加用の取出部が多数個所設けられていることを特
徴とするEL素子。
1. An EL element using a transparent conductive film for at least one of upper and lower electrodes for driving the EL element,
An EL element having a large number of extraction portions for voltage application.
【請求項2】 EL素子を駆動するための上下電極の少
なくとも一方に透明導電膜を用いたEL素子において、
上部電極および下部電極よりなる群から選らばれた少な
くとも1つの電極が個別分離されていることを特徴とす
るEL素子。
2. An EL element using a transparent conductive film for at least one of upper and lower electrodes for driving the EL element,
An EL device, wherein at least one electrode selected from the group consisting of an upper electrode and a lower electrode is individually separated.
【請求項3】 EL素子を駆動するための上下電極の少
なくとも一方に透明導電膜を用いたEL素子において、
上部電極および下部電極よりなる群から選らばれた少な
くとも1つの電極が個別分離され、かつ、EL素子と駆
動回路の間に抵抗体および/または容量が設けられてい
ることを特徴とするEL素子。
3. An EL element using a transparent conductive film for at least one of upper and lower electrodes for driving the EL element,
An EL element, wherein at least one electrode selected from the group consisting of an upper electrode and a lower electrode is individually separated, and a resistor and / or a capacitor is provided between the EL element and a drive circuit.
【請求項4】 前記抵抗体は、透明電極のうち断面積を
小さくしたり、長さを延長した部分である請求項3記載
のEL素子。
4. The EL element according to claim 3, wherein the resistor is a portion of the transparent electrode having a reduced cross-sectional area or an extended length.
【請求項5】 前記容量は、EL素子基本構成の一部に
発光層がない部分を設け、この部分を容量とする請求項
3記載のEL素子。
5. The EL element according to claim 3, wherein the capacitor is provided with a portion having no light emitting layer in a part of the basic structure of the EL element, and the portion is used as the capacitor.
JP3115485A 1991-04-19 1991-04-19 El element Pending JPH05315073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3115485A JPH05315073A (en) 1991-04-19 1991-04-19 El element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3115485A JPH05315073A (en) 1991-04-19 1991-04-19 El element

Publications (1)

Publication Number Publication Date
JPH05315073A true JPH05315073A (en) 1993-11-26

Family

ID=14663692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3115485A Pending JPH05315073A (en) 1991-04-19 1991-04-19 El element

Country Status (1)

Country Link
JP (1) JPH05315073A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010077989A (en) * 2000-01-27 2001-08-20 사토 히로시 Thin-Film Display System
US6891328B2 (en) * 2001-02-22 2005-05-10 Matsushita Electric Industrial Co., Ltd. Light source for image reading apparatus and image reading apparatus
EP1679939A2 (en) * 2004-12-24 2006-07-12 Kabushiki Kaisha Toyota Jidoshokki Electroluminescence element
JP2007173519A (en) * 2005-12-22 2007-07-05 Matsushita Electric Works Ltd Organic el lighting panel and organic el lighting device
JP2008258317A (en) * 2007-04-03 2008-10-23 Toyota Industries Corp Light source for scanner
JP2008257951A (en) * 2007-04-03 2008-10-23 Toyota Industries Corp Light source for scanner
US7511422B2 (en) 2003-10-02 2009-03-31 Kabushiki Kaisha Toyota Jidoshokki Organic electroluminescent element with specific structure connecting luminescent regions and organic electroluminescent device including the same
US7855506B2 (en) 2003-10-02 2010-12-21 Kabushiki Kaisha Toyota Jidoshokki Electric field light emitting element
WO2011135045A1 (en) * 2010-04-30 2011-11-03 Ledon Oled Lighting Gmbh & Co. Kg Planar luminous element having homogeneous light distribution and method for increasing the homogeneity of the light distribution of a planar luminous element
JP2013165068A (en) * 2013-04-15 2013-08-22 Sony Corp Top emission light-emitting element and manufacturing method of the same
JP2015076388A (en) * 2013-10-11 2015-04-20 パイオニア株式会社 Light-emitting device
JP2015135819A (en) * 2009-03-18 2015-07-27 株式会社半導体エネルギー研究所 Illuminating device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010077989A (en) * 2000-01-27 2001-08-20 사토 히로시 Thin-Film Display System
US6891328B2 (en) * 2001-02-22 2005-05-10 Matsushita Electric Industrial Co., Ltd. Light source for image reading apparatus and image reading apparatus
US7855506B2 (en) 2003-10-02 2010-12-21 Kabushiki Kaisha Toyota Jidoshokki Electric field light emitting element
US7511422B2 (en) 2003-10-02 2009-03-31 Kabushiki Kaisha Toyota Jidoshokki Organic electroluminescent element with specific structure connecting luminescent regions and organic electroluminescent device including the same
JP4561490B2 (en) * 2004-12-24 2010-10-13 株式会社豊田自動織機 Electroluminescence element
EP1679939A2 (en) * 2004-12-24 2006-07-12 Kabushiki Kaisha Toyota Jidoshokki Electroluminescence element
JP2006202717A (en) * 2004-12-24 2006-08-03 Toyota Industries Corp Electroluminescence element
EP1679939A3 (en) * 2004-12-24 2010-11-24 Kabushiki Kaisha Toyota Jidoshokki Electroluminescence element
JP2007173519A (en) * 2005-12-22 2007-07-05 Matsushita Electric Works Ltd Organic el lighting panel and organic el lighting device
JP4696896B2 (en) * 2005-12-22 2011-06-08 パナソニック電工株式会社 Organic EL lighting panel and organic EL lighting device
JP2008257951A (en) * 2007-04-03 2008-10-23 Toyota Industries Corp Light source for scanner
JP2008258317A (en) * 2007-04-03 2008-10-23 Toyota Industries Corp Light source for scanner
JP2015135819A (en) * 2009-03-18 2015-07-27 株式会社半導体エネルギー研究所 Illuminating device
WO2011135045A1 (en) * 2010-04-30 2011-11-03 Ledon Oled Lighting Gmbh & Co. Kg Planar luminous element having homogeneous light distribution and method for increasing the homogeneity of the light distribution of a planar luminous element
DE102010029848A1 (en) * 2010-04-30 2012-01-12 Ledon Oled Lighting Gmbh & Co.Kg Flat luminous element with homogeneous luminance and method for increasing the homogeneity of the luminance of a flat luminous element
CN102859742A (en) * 2010-04-30 2013-01-02 乐敦Oled照明股份公司 Planar luminous element having homogeneous light distribution and method for increasing the homogeneity of the light distribution of a planar luminous element
JP2013165068A (en) * 2013-04-15 2013-08-22 Sony Corp Top emission light-emitting element and manufacturing method of the same
JP2015076388A (en) * 2013-10-11 2015-04-20 パイオニア株式会社 Light-emitting device

Similar Documents

Publication Publication Date Title
JPH05315073A (en) El element
US5101288A (en) LCD having obliquely split or interdigitated pixels connected to MIM elements having a diamond-like insulator
EP0536731B1 (en) Electron-emitting device, and electron beam-generating apparatus and image-forming apparatus employing the device
US4924144A (en) Matrix screen, its production process and matrix display means with several tones, controlled on an all or nothing basis and incorporating said screen
EP1860489A1 (en) Thin film transistor array panel and liquid crystal display
KR20070111493A (en) Electromagnetic shielding laminate and display using same
JPS61284091A (en) Thin film el display element
US5820996A (en) Electroluminescence device and method of manufacturing same
CN113113431B (en) Array substrate, preparation method thereof and display device
US20040027068A1 (en) Electrode pair structure of a plasma display panel
US5646480A (en) Metal assist structure for an electroluminescent display
US6586871B1 (en) CRT panel glass and production method thereof and CRT
US20070159059A1 (en) Anode plate for a field emission display device
JP2854737B2 (en) Electrode structure and method of manufacturing the same
EP0501694A2 (en) Method of manufacturing a colour filter and colour electrooptical device
JPS6016077B2 (en) Electrode structure of thin film EL panel
JP2712166B2 (en) Method for producing transparent conductive film
JP3233086B2 (en) EL element
KR20090006352A (en) Light emission device and display device using the light emission device as a light source
JPH0950711A (en) Transparent conductive film
JPH06208114A (en) Liquid-crystal display element using low-resistance electrode
JPH06103903A (en) Plasma display panel
JPH09166782A (en) Liquid crystal display with back light of field-emission type display device
KR0163484B1 (en) Backlight for liquid crystal display for using field emission element
JPH11329085A (en) Low electrical resistant transparent conductive film