JPH0531496B2 - - Google Patents

Info

Publication number
JPH0531496B2
JPH0531496B2 JP62331091A JP33109187A JPH0531496B2 JP H0531496 B2 JPH0531496 B2 JP H0531496B2 JP 62331091 A JP62331091 A JP 62331091A JP 33109187 A JP33109187 A JP 33109187A JP H0531496 B2 JPH0531496 B2 JP H0531496B2
Authority
JP
Japan
Prior art keywords
base material
superconducting
sintered body
composite oxide
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62331091A
Other languages
Japanese (ja)
Other versions
JPH01172214A (en
Inventor
Kyoji Tachikawa
Shigechika Kosuge
Moriaki Ono
Kyokazu Nakada
Teruo Suzuki
Itaru Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
JFE Engineering Corp
Original Assignee
Tokai University
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University, Nippon Kokan Ltd filed Critical Tokai University
Priority to JP62331091A priority Critical patent/JPH01172214A/en
Publication of JPH01172214A publication Critical patent/JPH01172214A/en
Publication of JPH0531496B2 publication Critical patent/JPH0531496B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、基材の表面上に超電導物質からな
る皮膜が形成された超電導材の製造方法に関する
ものである。 〔従来の技術〕 超電導材料は、既に高エネルギ粒子加速器、医
療診断用MRI−CTおよび物性研究装置などにお
いて、超電導マグネツトの形で実用化されてい
る。このような超電導材料の応用分野は広く、今
後、例えば、発電機、エネルギーの貯蔵や変換、
リニアモーターカー、資源回収用磁気分離装置、
核融合炉、送電ケーブルおよび磁気シールド材等
に対する超電導材料の応用が期待されており、更
に、超高速度コンピユーター、赤外線検出器、お
よび、低雑音の増幅器やミキサー等に対する、シ
ヨセフソン効果を利用した超電導素子の応用が期
待されている。これらが本格的に実用化されたと
きの産業的および社会的インパクトの大きさは計
り知れないものがある。 これまでに開発された代表的な超電導材料とし
てはNb−Ti合金があり、これは、現在9Tまでの
磁界発生用線材として、広く使用されている。
Nb−Ti合金のTc(超電導状態が存在する臨界温
度)は、9Kである。 このNb−Ti合金よりも格段に高いTcを有する
超電導材料として、化合物系の超電導材料が開発
され、現在、Nb3Sn(Tc:18K)およびV3Ga
(Tc:15K)が線材化され、実用に供されてい
る。更に、Nb3Geによれば、23KのTcが得られ
ている。 このように、長年にわたつて高Tcの超電導材
料を得るための努力がなされてきたが、従来の合
金系および化合物系の超電導材料においては、現
状ではTc23Kが大きな壁になつている。即ち、
Tcが23K以下の超電導材料の冷却には、高価な
液体ヘリウムを必要とするため、これが超電導材
料の広範な応用を阻害している。 このTcの壁を大幅に打破する超電導物質に関
し、1986年にIBMチユーリツヒ研究所のMuller
氏等が、Ba−La−Cu−o系の複合酸化物で超電
導の徴候が認められたことを発表して以来、複合
酸化物超電導物質の開発競争に拍車がかかつた。
即ち、1986年代の超電導物質のTcは40K級であ
つたが、翌年(1987年)の初めには、早くも液体
窒素の温度である77Kを超えるTcを有するY−
Ba−Cu−O系複合酸化物超電導物質が開発さ
れ、そのTcは約93Kに達した。 更に、その後も精力的に超電導物質の開発が続
けられており、最近、安定性等に問題はあるもの
の、室温で超電導現象を示す超電導物質の開発も
報告されている。 上述のように、液体窒素温度(77K)で使用可
能な超電導物質が発見されたことによつて、超電
導材料の前述した応用分野への実用化の期待度
が、一段と高められてきた。 超電導材料の実用化に当つて必要なことは、超
電導物質の線材化、皮膜化等、その加工技術の開
発である。 このような加工技術の1つとして、レーザ蒸着
方法により、基材の表面上にCuxOy基を含む複合
酸化物超電導皮膜を形成する研究がなされてい
る。 第2図は、レーザ蒸着方法により超電導皮膜を
形成するための装置の一例を示す概略垂直断面図
である。第2図に示すように、減圧室1内には、
その下方に蒸着源としての複合酸化物焼結体2が
配置され、そして、蒸着源2の上方に被蒸着体と
しての基材3が配置されている。基材3の上方に
は、基材3を所定温度に加熱するためのヒータ4
が設けられている。 減圧室1の一方の側壁1aには、減圧室1内の
蒸着源2に向けてレーザビームを照射するための
レーザ透過窓5が設けられ、レーザ透過窓5の外
側には、レーザビーム集光用の集光レンズ6が設
けられている。7は減圧室1内のガスを排出する
ためのガス排出口、8は減圧室1内にガスを供給
するためのガス供給口である。 蒸着源として、例えばY−Ba−Cu−O系複合
酸化物焼結体を使用する。減圧室1内を所定の真
空度に保持し、図示しないレーザビーム発生装置
から、レーザ透過窓5を通して、減圧室1内の焼
結体2に向けてレーザビームを照射する。 レーザビームが照射された焼結体2の表面は、
溶融しそして蒸発し、その蒸発物質が基材3の表
面上に付着する。かくして、基材3の表面上に、
CuxOy基を含む複合酸化物超電導物質の皮膜9が
形成された超電導材10が製造される。 〔発明が解決しようとする問題点〕 しかしながら、上述の方法には、次のような問
題がある。 (1) 蒸着源として、例えばY−Ba−Cu−O系複
合酸化物焼結体を使用する場合、この焼結体
は、次のようにして製造される。即ち、粉末状
の酸化イツトリウム(Y2O3)、炭酸バリウム
(BaCO3)および酸化銅(CuO)を所定割合で
配合しそして混合する。得られた混合物を所定
形状に成形し次いでその成形体を酸素雰囲気中
において焼成する。かくして、Y−Ba−Cu−
O系複合酸化物焼結体が得られる。 上述のようにして焼結体を製造するに当り、
焼結体の厚さが例えば10mmを超えて厚いと、成
形体の焼成時にその中心部まで十分に酸素が浸
透せず、従つて、焼結体の中心部における酸素
が不足する。 その結果、レーザビームの照射によつて、蒸
着源としての焼結体表面の溶融が進行し、焼結
体の肉厚が薄くなるに従つて、焼結体からの蒸
発物質中の酸素分が少なくなるため、基材3の
表面上に形成された皮膜9中の酸素量が不足す
る。 (2) 前述したように、レーザビームの照射によつ
て、蒸着源としてのY−Ba−Cu−O系複合酸
化物焼結体の表面は溶融しそして蒸発するが、
この蒸発時に、上記焼結体の組成中の酸化物が
分解し、蒸発物質中から一部の酸素が分離す
る。この分離した酸素は、基材3の表面上に付
着しないため、皮膜9中の酸素量が不足する。 上記(1)および(2)に述べたように、基材3の表面
上に形成された皮膜9中の酸素量が不足すると、
基材3の表面上に所望の超電導特性を有する皮膜
9を形成することができない。 そこで、減圧室1内を10-1〜10-4Torrの低圧
の酸素雰囲気となし、このような低圧の酸素雰囲
気中において、蒸着源2に向けレーザビームを照
射し、蒸着源2からの蒸発物質と雰囲気中の酸素
とを結合させて、皮膜9中の酸素量不足を補う試
みがなされている。しかしながら、焼結体2から
の蒸発物質と減圧室1内の酸素とは短時間では反
応しないため、上述の方法によつても、皮膜9中
の酸素量不足を解消するには至らない。 従つて、この発明の目的は、レーザ蒸着方法に
より基材の表面上にCuxOy基を含む複合酸化物超
電導皮膜を形成するに当り、皮膜中に酸素量の不
足が生ずることなく、所望の超電導特性を有する
皮膜を形成することができる超電導材の製造方法
を提供することにある。 〔問題点を解決するための手段〕 この発明は、減圧室中に、蒸着源としてのCux
Oy基を含む複合酸化物焼結体と、被蒸着体とし
ての基材とを配置し、前記複合酸化物焼結体に対
してレーザビームを照射し、前記レーザビームの
照射により前記複合酸化物焼結体から蒸発した蒸
発物質を前記基材の表面上に付着させることによ
り、前記基材の表面上にCuxOy基を含む複合酸化
物超電導皮膜を形成する超電導材の製造方法にお
いて、 前記減圧室内を酸素雰囲気に保ち、そして、前
記複合酸化物焼結体から蒸発した前記蒸発物質が
前記基材に至る蒸発流をはさんでその両側に放電
用電極を設け、前記電極間に電圧を印加して放電
させることにより、放電域内に存在する酸素を励
起させて前記酸素と前記蒸発物質との結合を促進
し、前記基材の表面上に酸素と結合した蒸発物質
を付着させ、かくして、前記皮膜の超電導特性を
向上させることに特徴を有するものである。 次に、この発明を図面を参照しながら説明す
る。第1図は、この発明の方法の一実施態様を示
す概略垂直断面図である。第1図に示すように、
減圧室1内には、蒸着源としての複合酸化物焼結
体2および被蒸着体としての基材3が配置され、
基材3の上方には基材3を所定温度に加熱するた
めのヒータ4が設けられ、そして、減圧室1の側
壁には、集光レンズ6を有するレーザ透過窓5、
ガス排出口7およびガス供給口8が設けられてい
ることは、第2図に示した従来の方法の装置と同
様である。 この発明においては、図示しないレーザビーム
発生装置からレーザ透過窓5を通して減圧室1内
の複合酸化物焼結体2に向け照射されたレーザビ
ームにより、焼結体2から蒸発した蒸発物質が基
材3に至る蒸発流11をはさんで、その両側に放
電用電極12,12′が設けられている。電極1
2,12′を相互に接続する導線13の途中には、
電源14が設けられている。 ガス供給口8を通して減圧室1内に酸素を連続
的に吹き込み、そして、ガス排出口7を通して減
圧室1内のガスを連続的に排出することにより、
減圧室1内を10-1〜10-4Torrの低圧の酸素雰囲
気に保つ。 蒸着源として、円盤状のY−Ba−Cu−O系複
合酸化物焼結体2を配置し、図示しないレーザビ
ーム発生装置から、レーザ透過窓5を通して、減
圧室1内の焼結体2に向けレーザビームを照射す
る。レーザビームが照射された焼結体2の表面
は、溶融しそして蒸発する。このようにして焼結
体2から蒸発した蒸発物質は、基材3に向けた蒸
発流11となり、基材3の表面上に付着する。 このとき、蒸発流11をはさむ両側に設けられ
た電極12,12′間に電源14によつて電圧を
印加し、電極12,12′間において放電させる。
この結果、放電域内における雰囲気中の酸素は励
起された状態となる。 従つて、このような励起状態の酸素雰囲気中
を、基材3に向けて蒸発流11が通るため、蒸発
流11中の蒸発物質は酸素と容易に結合し、両者
の反応が促進される。かくして、基材3の表面上
に雰囲気中の酸素と結合した蒸発物質が付着する
結果、超電導特性の優れた皮膜9を有する超電導
材10を製造することができる。 〔実施例〕 次に、この発明を実施例により説明する。 蒸着源としての複合酸化物焼結体として、Y1.2
Ba0.6CuOxの成分組成を有する、直径20mm、厚さ
10mmの円盤状の複合酸化物焼結体を使用し、被蒸
着体としての基材として、1辺の長さが20mmで、
厚さが0.5mmの、イツトリウム安定化ジルコニア
(YSZ)からなる四角形状の板を使用した。 上述した蒸着源を使用し、この発明の方法によ
り下記条件によつて上述の基材の表面上に超電導
物質の皮膜を形成した。 (a) 減圧室の真空度:10-2Torr(酸素雰囲気) (b) 基材の加熱温度:800℃ (c) レーザビームの種類:炭酸ガスレーザ (d) レーザビームの出力:300W (e) レーザビームの照射時間:5分 (f) 放電の種類:高周波放電 (g) 電極間のキヤツプ:70mm (h) 高周波放電の電力:50W この結果、基材の表面上に7μmの厚さの皮膜
を形成することができた。 次いで、このような皮膜の形成された基材を、
酸素雰囲気中において930℃の温度まで加熱し、
この温度において30分間保持した後、室温まで徐
冷した。かくして、基材の表面上にY0.3Ba0.65
Cu1Oxの成分組成を有する複合酸化物超電導皮膜
が形成された本発明超電導材を製造した。 上記により製造された超電導材のTc(臨界温
度)およびJc(臨界電流密度)を四端子抵抗測定
法により調べた。比較のために、放電を行なわな
いほかは上記と同じ方法により比較用超電導材を
製造し、そのTcおよびJcを前記測定法により調
べた。この結集を第1表に示す。
[Industrial Application Field] The present invention relates to a method for manufacturing a superconducting material in which a film made of a superconducting substance is formed on the surface of a base material. [Prior Art] Superconducting materials have already been put to practical use in the form of superconducting magnets in high-energy particle accelerators, MRI-CT for medical diagnosis, and physical property research equipment. Such superconducting materials have a wide range of applications, such as power generators, energy storage and conversion,
Linear motor cars, magnetic separation equipment for resource recovery,
Superconducting materials are expected to be applied to nuclear fusion reactors, power transmission cables, magnetic shielding materials, etc., and superconducting materials using the Syosefson effect are also expected to be used in ultra-high-speed computers, infrared detectors, and low-noise amplifiers and mixers. Applications of the device are expected. The magnitude of the industrial and social impact when these are fully put into practical use is immeasurable. A typical superconducting material developed so far is Nb-Ti alloy, which is currently widely used as a wire for generating magnetic fields up to 9T.
The Tc (critical temperature at which a superconducting state exists) of the Nb-Ti alloy is 9K. Compound-based superconducting materials have been developed as superconducting materials with Tc much higher than this Nb-Ti alloy, and currently Nb 3 Sn (Tc: 18K) and V 3 Ga
(Tc: 15K) has been made into wire rod and is in practical use. Furthermore, according to Nb 3 Ge, a Tc of 23K has been obtained. As described above, efforts have been made for many years to obtain superconducting materials with high Tc, but Tc23K is currently a major barrier to conventional alloy-based and compound-based superconducting materials. That is,
Cooling superconducting materials with Tc below 23K requires expensive liquid helium, which hinders their widespread application. Regarding superconducting materials that can significantly break down this Tc barrier, in 1986 Muller of the IBM Zurich Research Institute
Since they announced that signs of superconductivity were observed in Ba-La-Cu-o complex oxides, the race to develop complex oxide superconducting materials has accelerated.
In other words, in 1986, the Tc of superconducting materials was 40K, but at the beginning of the following year (1987), Y-
A Ba-Cu-O composite oxide superconducting material has been developed, and its Tc has reached approximately 93K. Furthermore, the development of superconducting materials has continued vigorously since then, and recently, the development of superconducting materials that exhibit superconducting phenomena at room temperature has been reported, although there are problems with stability and the like. As mentioned above, the discovery of a superconducting material that can be used at liquid nitrogen temperatures (77K) has further raised expectations for the practical application of superconducting materials in the aforementioned application fields. In order to put superconducting materials into practical use, what is necessary is the development of processing techniques such as forming superconducting materials into wires and films. As one such processing technique, research has been conducted to form a composite oxide superconducting film containing Cu x O y groups on the surface of a base material using a laser vapor deposition method. FIG. 2 is a schematic vertical sectional view showing an example of an apparatus for forming a superconducting film by a laser vapor deposition method. As shown in FIG. 2, inside the decompression chamber 1,
A composite oxide sintered body 2 as a vapor deposition source is placed below the vapor deposition source, and a base material 3 as a vapor deposition target is placed above the vapor deposition source 2. Above the base material 3 is a heater 4 for heating the base material 3 to a predetermined temperature.
is provided. One side wall 1a of the decompression chamber 1 is provided with a laser transmission window 5 for irradiating a laser beam toward the vapor deposition source 2 in the decompression chamber 1, and a laser beam condensing window 5 is provided outside the laser transmission window 5. A condensing lens 6 is provided for this purpose. 7 is a gas exhaust port for discharging the gas in the reduced pressure chamber 1, and 8 is a gas supply port for supplying gas into the reduced pressure chamber 1. For example, a Y--Ba--Cu--O based composite oxide sintered body is used as the vapor deposition source. The interior of the decompression chamber 1 is maintained at a predetermined degree of vacuum, and a laser beam is irradiated from a laser beam generator (not shown) toward the sintered body 2 in the decompression chamber 1 through the laser transmission window 5 . The surface of the sintered body 2 irradiated with the laser beam is
It melts and evaporates, and the evaporated material is deposited on the surface of the substrate 3. Thus, on the surface of the substrate 3,
A superconducting material 10 on which a film 9 of a composite oxide superconducting material containing a Cu x O y group is formed is manufactured. [Problems to be Solved by the Invention] However, the above method has the following problems. (1) When using, for example, a Y--Ba--Cu--O based composite oxide sintered body as a vapor deposition source, this sintered body is manufactured as follows. That is, powdered yttrium oxide (Y 2 O 3 ), barium carbonate (BaCO 3 ), and copper oxide (CuO) are blended and mixed in a predetermined ratio. The obtained mixture is molded into a predetermined shape, and then the molded body is fired in an oxygen atmosphere. Thus, Y-Ba-Cu-
An O-based composite oxide sintered body is obtained. In manufacturing the sintered body as described above,
If the thickness of the sintered body is thick, for example, exceeding 10 mm, oxygen will not penetrate sufficiently into the center of the compact during firing, resulting in a lack of oxygen in the center of the sintered body. As a result, as the laser beam irradiation progresses the melting of the surface of the sintered body, which serves as a deposition source, and the thickness of the sintered body becomes thinner, the oxygen content in the evaporated material from the sintered body decreases. As a result, the amount of oxygen in the film 9 formed on the surface of the base material 3 becomes insufficient. (2) As mentioned above, the surface of the Y-Ba-Cu-O based composite oxide sintered body as a vapor deposition source is melted and evaporated by laser beam irradiation, but
During this evaporation, the oxide in the composition of the sintered body is decomposed, and some oxygen is separated from the evaporated substance. Since this separated oxygen does not adhere to the surface of the base material 3, the amount of oxygen in the film 9 becomes insufficient. As stated in (1) and (2) above, when the amount of oxygen in the film 9 formed on the surface of the base material 3 is insufficient,
A film 9 having desired superconducting properties cannot be formed on the surface of the base material 3. Therefore, a low-pressure oxygen atmosphere of 10 -1 to 10 -4 Torr is created in the decompression chamber 1, and a laser beam is irradiated toward the evaporation source 2 in such a low-pressure oxygen atmosphere to reduce the evaporation from the evaporation source 2. Attempts have been made to compensate for the lack of oxygen in the film 9 by combining the substance with oxygen in the atmosphere. However, since the evaporated substances from the sintered body 2 and the oxygen in the decompression chamber 1 do not react in a short time, even the above-mentioned method cannot solve the shortage of oxygen in the film 9. Therefore, an object of the present invention is to form a composite oxide superconducting film containing Cu x O y groups on the surface of a substrate by a laser vapor deposition method without causing a shortage of oxygen in the film. An object of the present invention is to provide a method for producing a superconducting material that can form a film having superconducting properties. [Means for Solving the Problems] This invention provides Cu x as a vapor deposition source in a reduced pressure chamber.
A composite oxide sintered body containing an O y group and a base material as a deposition target are arranged, and the composite oxide sintered body is irradiated with a laser beam, and the composite oxide sintered body is irradiated with the laser beam. In a method for producing a superconducting material, in which a composite oxide superconducting film containing a Cu x O y group is formed on the surface of the base material by depositing an evaporated substance evaporated from a sintered body onto the surface of the base material. , maintaining an oxygen atmosphere in the reduced pressure chamber, and providing discharge electrodes on both sides of the evaporation flow in which the evaporated substance evaporated from the composite oxide sintered body reaches the base material, and between the electrodes. By applying a voltage and causing a discharge, oxygen present in the discharge region is excited to promote the combination of the oxygen and the evaporation substance, and the evaporation substance combined with oxygen is deposited on the surface of the base material, Thus, it is characterized in that the superconducting properties of the film are improved. Next, the present invention will be explained with reference to the drawings. FIG. 1 is a schematic vertical sectional view showing one embodiment of the method of the invention. As shown in Figure 1,
In the reduced pressure chamber 1, a composite oxide sintered body 2 as a vapor deposition source and a base material 3 as a deposition target are arranged,
A heater 4 for heating the base material 3 to a predetermined temperature is provided above the base material 3, and a laser transmission window 5 having a condensing lens 6 is provided on the side wall of the decompression chamber 1;
The provision of a gas outlet 7 and a gas inlet 8 is similar to the conventional method apparatus shown in FIG. In this invention, a laser beam irradiated from a laser beam generator (not shown) toward the composite oxide sintered body 2 in the reduced pressure chamber 1 through the laser transmission window 5 causes evaporated substances evaporated from the sintered body 2 to be transferred to the base material. Discharging electrodes 12 and 12' are provided on both sides of the evaporation flow 11 leading to the discharge point 3. Electrode 1
In the middle of the conductor 13 that interconnects 2 and 12',
A power source 14 is provided. By continuously blowing oxygen into the decompression chamber 1 through the gas supply port 8 and continuously discharging the gas in the decompression chamber 1 through the gas discharge port 7,
The inside of the decompression chamber 1 is maintained at a low pressure oxygen atmosphere of 10 -1 to 10 -4 Torr. A disk-shaped Y-Ba-Cu-O composite oxide sintered body 2 is arranged as a vapor deposition source, and a laser beam generator (not shown) passes through a laser transmission window 5 to the sintered body 2 in the decompression chamber 1. Irradiate the laser beam towards the target. The surface of the sintered body 2 irradiated with the laser beam melts and evaporates. The evaporated substance evaporated from the sintered body 2 in this manner becomes an evaporation flow 11 directed toward the base material 3 and adheres to the surface of the base material 3. At this time, a voltage is applied by the power supply 14 between the electrodes 12 and 12' provided on both sides of the evaporative flow 11, causing a discharge between the electrodes 12 and 12'.
As a result, oxygen in the atmosphere within the discharge region becomes excited. Therefore, since the evaporated stream 11 passes through such an excited oxygen atmosphere toward the base material 3, the evaporated substances in the evaporated stream 11 easily combine with oxygen, and the reaction between the two is promoted. In this manner, the evaporated substance combined with oxygen in the atmosphere adheres to the surface of the base material 3, so that a superconducting material 10 having a film 9 with excellent superconducting properties can be manufactured. [Example] Next, the present invention will be explained with reference to an example. As a composite oxide sintered body as a vapor deposition source, Y 1.2
Diameter 20mm, thickness with a composition of Ba 0.6 CuO x
A 10 mm disc-shaped composite oxide sintered body was used as the base material for the deposition object, with a side length of 20 mm.
A rectangular plate made of yttrium stabilized zirconia (YSZ) with a thickness of 0.5 mm was used. Using the above-mentioned vapor deposition source, a film of a superconducting material was formed on the surface of the above-mentioned base material according to the method of the present invention under the following conditions. (a) Vacuum degree of decompression chamber: 10 -2 Torr (oxygen atmosphere) (b) Heating temperature of base material: 800℃ (c) Type of laser beam: Carbon dioxide laser (d) Laser beam output: 300W (e) Laser beam irradiation time: 5 minutes (f) Type of discharge: High frequency discharge (g) Cap between electrodes: 70 mm (h) Power of high frequency discharge: 50 W As a result, a 7 μm thick film is formed on the surface of the base material. was able to form. Next, the base material on which such a film has been formed is
Heated to a temperature of 930℃ in an oxygen atmosphere,
After maintaining this temperature for 30 minutes, it was slowly cooled to room temperature. Thus, Y 0.3 Ba 0.65 on the surface of the substrate
A superconducting material of the present invention was produced in which a composite oxide superconducting film having a component composition of Cu 1 O x was formed. The Tc (critical temperature) and Jc (critical current density) of the superconducting material produced as described above were investigated using a four-terminal resistance measurement method. For comparison, a comparative superconducting material was manufactured by the same method as above except that no discharge was performed, and its Tc and Jc were examined by the above measurement method. This concentration is shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、この発明によれば、レーザ
蒸着方法により基材の表面上にCuxOy基を含む複
合酸化物超電導皮膜が形成された超電導材を製造
するに当り、前記皮膜中に酸素量の不足が生ずる
ことがなく、従つて、優れた超電導特性を有する
皮膜を形成することができる工業上有用な効果が
もたらされる。
As described above, according to the present invention, when producing a superconducting material in which a composite oxide superconducting film containing Cu x O y groups is formed on the surface of a base material by a laser vapor deposition method, it is possible to There is no shortage of oxygen, and therefore a film having excellent superconducting properties can be formed, which is an industrially useful effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法の一実施態様を示す概
略垂直断面図、第2図は従来方法の一例を示す概
略垂直断面図である。 図面において、1……減圧室、2……焼結体、
3……基材、4……ヒータ、5……レーザ透過
窓、6……集光レンズ、7……ガス排出口、8…
…ガス供給口、9……皮膜、10……超電導材、
11……蒸発流、12,12′……電極、13…
…導線、14……電源。
FIG. 1 is a schematic vertical sectional view showing an embodiment of the method of the present invention, and FIG. 2 is a schematic vertical sectional view showing an example of the conventional method. In the drawings, 1... decompression chamber, 2... sintered body,
3...Base material, 4...Heater, 5...Laser transmission window, 6...Condensing lens, 7...Gas exhaust port, 8...
... Gas supply port, 9 ... Film, 10 ... Superconducting material,
11... Evaporation flow, 12, 12'... Electrode, 13...
...Conductor, 14...Power supply.

Claims (1)

【特許請求の範囲】 1 減圧室中に、蒸着源としてのCuxOy基を含む
複合酸化物焼結体と、被蒸着体としての基材とを
配置し、前記複合酸化物焼結体に対してレーザビ
ームを照射し、前記レーザビームの照射により前
記複合酸化物焼結体から蒸発した蒸発物質を前記
基材の表面上に付着させることにより、前記基材
の表面上にCuxOy基を含む複合酸化物超電導皮膜
を形成する超電導材の製造方法において、 前記減圧室内を酸素雰囲気に保ち、そして、前
記複合酸化物焼結体から蒸発した前記蒸発物質が
前記基材に至る蒸発流をはさんでその両側に放電
用電極を設け、前記電極間に電圧を印加して放電
させることにより、放電域内に存在する酸素を励
起させて前記酸素と前記蒸発物質との結合を促進
し、前記基材の表面上に酸素と結合した蒸発物質
を付着させ、かくして、前記基材の表面上に超電
導特性の優れた皮膜を形成することを特徴とする
超電導材の製造方法。
[Claims] 1. A composite oxide sintered body containing a Cu x O y group as an evaporation source and a base material as an evaporation target are placed in a reduced pressure chamber, and the composite oxide sintered body is placed in a reduced pressure chamber. A laser beam is irradiated onto the base material, and the evaporated material evaporated from the composite oxide sintered body by the laser beam irradiation is deposited on the surface of the base material, thereby depositing Cu x O on the surface of the base material. In the method for manufacturing a superconducting material forming a composite oxide superconducting film containing a y group, an oxygen atmosphere is maintained in the vacuum chamber, and the evaporated substance evaporated from the composite oxide sintered body evaporates to the base material. Discharging electrodes are provided on both sides of the flow, and by applying a voltage between the electrodes and causing a discharge, oxygen present in the discharge area is excited and the bond between the oxygen and the evaporated substance is promoted. . A method for producing a superconducting material, which comprises depositing an evaporated substance bonded with oxygen on the surface of the base material, thereby forming a film with excellent superconducting properties on the surface of the base material.
JP62331091A 1987-12-26 1987-12-26 Production of superconducting material Granted JPH01172214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62331091A JPH01172214A (en) 1987-12-26 1987-12-26 Production of superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62331091A JPH01172214A (en) 1987-12-26 1987-12-26 Production of superconducting material

Publications (2)

Publication Number Publication Date
JPH01172214A JPH01172214A (en) 1989-07-07
JPH0531496B2 true JPH0531496B2 (en) 1993-05-12

Family

ID=18239754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62331091A Granted JPH01172214A (en) 1987-12-26 1987-12-26 Production of superconducting material

Country Status (1)

Country Link
JP (1) JPH01172214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2781126B2 (en) * 1993-05-27 1998-07-30 スター精密株式会社 Electroacoustic transducer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2781126B2 (en) * 1993-05-27 1998-07-30 スター精密株式会社 Electroacoustic transducer

Also Published As

Publication number Publication date
JPH01172214A (en) 1989-07-07

Similar Documents

Publication Publication Date Title
JP2876211B2 (en) Method for producing superconducting oxide
CN1032885A (en) Be used to make the sputter equipment and the method for superconducting oxide material
EP0292958B1 (en) Method for preparing thin film of compound oxide superconductor
JPH01157579A (en) Manufacture of superconductor and superconductive circuit
JPH01144689A (en) Formation of superconducting circuit
JPH0531496B2 (en)
JPH0531497B2 (en)
JPH0455132B2 (en)
JPH0453818B2 (en)
JPH0531498B2 (en)
JPH0825742B2 (en) How to make superconducting material
JPH0531493B2 (en)
FR2622357A1 (en) PROCESS FOR PRODUCING AMBIENT TEMPERATURE SUPERCONDUCTOR FROM COMPOUND OXIDE USING IRRADIATION BY RADIATION
JPH01172220A (en) Production of superconducting material
JPH02167820A (en) Method for forming tl-base multiple oxide superconducting thin film
JP2609460B2 (en) Method for manufacturing molded body of ceramic oxide superconducting material
JPH07187614A (en) Production of superconducting oxide and superconductor device
JPH0531494B2 (en)
JPH01153521A (en) Production of superconducting material
JPH0453819B2 (en)
JP2502344B2 (en) Method for producing complex oxide superconductor thin film
JPH0531495B2 (en)
JPH01153523A (en) Production of superconducting material
JPH0534287B2 (en)
JPH01153524A (en) Production of superconducting material