JPH01172214A - Production of superconducting material - Google Patents

Production of superconducting material

Info

Publication number
JPH01172214A
JPH01172214A JP62331091A JP33109187A JPH01172214A JP H01172214 A JPH01172214 A JP H01172214A JP 62331091 A JP62331091 A JP 62331091A JP 33109187 A JP33109187 A JP 33109187A JP H01172214 A JPH01172214 A JP H01172214A
Authority
JP
Japan
Prior art keywords
evaporated
base material
sintered body
superconducting
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62331091A
Other languages
Japanese (ja)
Other versions
JPH0531496B2 (en
Inventor
Kyoji Tachikawa
恭治 太刀川
Shigechika Kosuge
小菅 茂義
Moriaki Ono
守章 小野
Kiyokazu Nakada
清和 仲田
Teruo Suzuki
輝男 鈴木
Itaru Watanabe
渡辺 之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
JFE Engineering Corp
Original Assignee
Tokai University
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University, NKK Corp, Nippon Kokan Ltd filed Critical Tokai University
Priority to JP62331091A priority Critical patent/JPH01172214A/en
Publication of JPH01172214A publication Critical patent/JPH01172214A/en
Publication of JPH0531496B2 publication Critical patent/JPH0531496B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation

Abstract

PURPOSE:To form a film having superior superconducting characteristic on the surface of a substrate when a compound oxide is deposited by the vapor deposition with laser on the surface of a substrate, by generating electric discharge to an evaporated stream of a material to be evaporated and prompting bonding of oxygen to the evaporated material. CONSTITUTION:A substrate 3 (material to be subjected to vapor deposition) and a sintered body of a compound oxide 2 (source of vapor deposition) contg. CuxOy group are disposed in an evacuated chamber 1. The sintered body 2 is evaporated by the irradiation with laser beam and an evaporated material generated in the evaporated stream 11 is deposited to the substrate 3. In this stage, the evacuated chamber 1 is held to be filled with O2 atmosphere, and electric discharge is generated by impressing an electric voltage to discharge electrodes 12, 12' disposed to both sides of said evaporated stream 11 interposing the stream. Thus, bonding of O to the evaporated material is prompted. The evaporated material bonded to O is deposited to the surface of the substrate 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、基材の表面上に超電導物質からなる皮膜が
形成された超電導材の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a superconducting material in which a film made of a superconducting substance is formed on the surface of a base material.

〔従来の技術〕[Conventional technology]

超電導材料は、既に高エネルギ粒子加速器、医療診断用
MHI−CTおよび物性研究装置などにおいて、超電導
マグネットの形で実用化されている。
Superconducting materials have already been put to practical use in the form of superconducting magnets in high-energy particle accelerators, MHI-CT for medical diagnosis, physical property research equipment, and the like.

このような超電導材料の応用分野は広く、今後、例えば
、発電機、エネルギーの貯蔵や変換、リニアモーターカ
ー、資源回収用磁気分離装置、核融合炉、送電ケーブル
および磁気シールド材等に対する超電導材料の応用が期
待されておシ、更に、超高速度コンピューター、赤外線
検出器、および、低雑音の増幅器やミキサー等に対する
、ジョセフソン効果を利用した超電導素子の応用が期待
されている。これらが本格的に実用化されたときの産業
的および社会的インパクトの大きさは計り知れないもの
がある。
The application fields of such superconducting materials are wide, and in the future, for example, superconducting materials will be used in generators, energy storage and conversion, linear motor cars, magnetic separation devices for resource recovery, nuclear fusion reactors, power transmission cables, and magnetic shielding materials. In addition, superconducting elements utilizing the Josephson effect are expected to be applied to ultra-high-speed computers, infrared detectors, and low-noise amplifiers and mixers. The magnitude of the industrial and social impact when these are fully put into practical use is immeasurable.

これまでに開発された代表的な超電導材料としてはNb
 −Ti合金があシ、これは、現在9Tまでの磁界発生
用線材として、広く使用されている。
A typical superconducting material developed so far is Nb.
-Ti alloy, which is currently widely used as a wire for generating magnetic fields up to 9T.

Nb −Ti合金のTc (超電導状態が存在する臨界
温度)は、9にである。
The Tc (critical temperature at which superconducting state exists) of the Nb-Ti alloy is 9.

このNb −Ti  合金よシも格段に高いTcを有す
る超電導材料として、化合物系の超電導材料が開発され
、現在、Nb5an (Tc ”、 18 K )およ
びV、 oa(Tc :15K)  が線材化され、実
用に供されている。更に、Nb3Ge Kよれば、23
にのTcが得られている。
Compound-based superconducting materials have been developed as superconducting materials that have a much higher Tc than this Nb-Ti alloy, and currently Nb5an (Tc'', 18 K) and V, oa (Tc: 15 K) are being made into wires. , has been put into practical use.Furthermore, according to Nb3Ge K, 23
A Tc of 2 is obtained.

このように、長年にわたって高’rcの超電導材料を得
るための努力がなされてきたが、従来の合金系および化
合物系の超電導材料においては、現状ではTc23Kが
大きな壁になっている。即ち、Tcが23に以下の超電
導材料の冷却には、高価な液体ヘリウムを必要とするた
め、これが超電導材料の広範な応用を阻害している。
As described above, efforts have been made for many years to obtain high rc superconducting materials, but Tc23K is currently a major barrier to conventional alloy-based and compound-based superconducting materials. That is, cooling superconducting materials with a Tc of 23 or less requires expensive liquid helium, which hinders the wide application of superconducting materials.

このTcの壁を大幅に打破する超電導物質に関し、19
86年にIBMチューリッヒ研究所のMii 11 e
r氏等が、Ba−L、Cu−0系の複合酸化物で超電導
の徴候が認められたことを発表して以来、複合酸化物超
電導物質の開発競争に拍車がかかった。即ち、1986
年代の超電導物質のTcは40に級であったが、翌年(
1987年)の初めには、早くも液体窒素の温度である
7’/Kを超えるTcを有するY−Ba  Cu  O
系複合酸化物超電導物質が開発され、そのTcは約93
Kに達した。
Regarding superconducting materials that can significantly break down this Tc wall, 19
In 1986, the Mii 11 e was developed at the IBM Zurich Research Institute.
Since Mr. R et al. announced that signs of superconductivity were observed in complex oxides based on Ba-L and Cu-0, the competition to develop complex oxide superconducting materials has accelerated. That is, 1986
The Tc of superconducting materials in the 1990s was in the 40s, but the following year (
As early as 1987), Y-BaCuO with a Tc exceeding 7'/K, the temperature of liquid nitrogen, was
A composite oxide superconducting material has been developed, and its Tc is about 93
Reached K.

更に、その後も精力的に超電導物質の開発が続けられて
おり、最近、安定性等に問題はあるものの、室温で超電
導現象を示す超電導物質の開発も報告されている。
Furthermore, the development of superconducting materials has continued vigorously since then, and recently, the development of superconducting materials that exhibit superconducting phenomena at room temperature has been reported, although there are problems with stability and the like.

上述のようK、液体窒素温度(77K)で使用可能な超
電導物質が発見されたことによって、超電導材料の前述
した応用分野への実用化の期待度が、−段と高められて
きた。
As mentioned above, with the discovery of a superconducting material that can be used at K and liquid nitrogen temperatures (77 K), expectations for the practical application of superconducting materials in the above-mentioned application fields have been greatly increased.

超電導材料の実用化に当って必要なことは、超電導物質
の線材化、皮膜化等、その加工技術の開発である。
In order to put superconducting materials into practical use, what is necessary is the development of processing techniques such as forming superconducting materials into wires and films.

このような加工技術の1つとして、レーザ蒸着方法によ
り、基材の表面上にCuxOy基を含む複合酸化物超電
導皮膜を形成する研究がなされている。
As one such processing technique, research has been conducted to form a composite oxide superconducting film containing a CuxOy group on the surface of a base material by a laser vapor deposition method.

第2図は、レーザ蒸着方法により超電導皮膜を形成する
ための装置の一例を示す概略垂直断面図である。第2図
に示すように、減圧室1内には、その下方に蒸着源とし
ての複合酸化物焼結体2が配置され、そして、蒸着源2
の上方に被蒸着体としての基材3が配置されている。基
材3の上方には、基材3を所定温度に加熱するためのヒ
ータ4が設けられている。
FIG. 2 is a schematic vertical sectional view showing an example of an apparatus for forming a superconducting film by a laser vapor deposition method. As shown in FIG. 2, a composite oxide sintered body 2 as a vapor deposition source is arranged below the decompression chamber 1, and the vapor deposition source 2
A base material 3 as an object to be deposited is arranged above. A heater 4 is provided above the base material 3 to heat the base material 3 to a predetermined temperature.

減圧室1の一方の側壁1aには、減圧室1内の蒸着源2
に向けてレーザビームを照射するためのレーザ透過窓5
が設けられ、レーザ透過窓5の外側には、レーザビーム
集光用の集光レンズ6が設けられている。7は減圧室1
内のガスを排出するためのガス排出口、8は減圧室1内
にガスを供給するためのガス供給口である。
On one side wall 1a of the reduced pressure chamber 1, a vapor deposition source 2 inside the reduced pressure chamber 1 is provided.
Laser transmission window 5 for irradiating a laser beam toward
A condensing lens 6 for condensing the laser beam is disposed outside the laser transmission window 5. 7 is decompression chamber 1
A gas outlet 8 is a gas supply port for supplying gas into the decompression chamber 1 .

蒸着源として、例えばY  Ba−Cu−0系複合酸化
物焼結体を使用する。減圧室l内を所定の真空度に保持
し、図示しないレーザビーム発生装置から、レーザ透過
窓5を通して、減圧室l内の焼結体2に向はレーザビー
ムを照射する。
For example, a YBa-Cu-0 based composite oxide sintered body is used as the vapor deposition source. The interior of the decompression chamber 1 is maintained at a predetermined degree of vacuum, and a laser beam is irradiated from a laser beam generator (not shown) to the sintered body 2 in the decompression chamber 1 through the laser transmission window 5.

レーザビームが照射された焼結体20表面は、溶融しそ
して蒸発し、その蒸発物質が基材3の表面上に付着する
。かくして、基材3の表面上に、CuxOy基を含む複
合酸化物超電導物質の皮膜9が形成された超電導材10
が製造される。
The surface of the sintered body 20 irradiated with the laser beam melts and evaporates, and the evaporated substance adheres to the surface of the base material 3. Thus, a superconducting material 10 in which a film 9 of a composite oxide superconducting material containing a CuxOy group is formed on the surface of the base material 3
is manufactured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述の方法には、次のような問題がある
However, the above method has the following problems.

(1)  蒸着源として、例えばY−BcL−Cu  
O系複合酸化物焼結体を使用する場合、この焼結体は、
次のようにして製造される。即ち、粉末状の酸化イツト
リウム(Y2O2)、炭酸バリウム(B、C05)およ
び酸化銅(CuO)を所定割合で配合しそして混合する
。得られた混合物を所定形状に成形し次いでその成形体
を酸素雰囲気中において焼成する。かくして、Y −B
4− Cu −0系複合酸化物焼結体が得られる。
(1) As a vapor deposition source, for example, Y-BcL-Cu
When using an O-based composite oxide sintered body, this sintered body is
It is manufactured as follows. That is, powdered yttrium oxide (Y2O2), barium carbonate (B, C05), and copper oxide (CuO) are blended and mixed in a predetermined ratio. The obtained mixture is molded into a predetermined shape, and then the molded body is fired in an oxygen atmosphere. Thus, Y-B
A 4-Cu-0 complex oxide sintered body is obtained.

上述のようにして焼結体を製造するに当り、焼結体の厚
さが例えば10鴫を超えて厚いと、成形体の焼成時にそ
の中心部まで十分に酸素が浸透せず、従って、焼結体の
中心部における酸素が不足する。
When producing a sintered body as described above, if the thickness of the sintered body is thicker than, for example, 10 mm, oxygen will not penetrate sufficiently to the center during firing of the molded body, and therefore, the sintering will be difficult. There is a lack of oxygen in the center of the body.

その結果、レーザビームの照射によって、蒸着源として
の焼結体表面の溶融が進行し、焼結体の肉厚が薄くなる
に従って、焼結体からの蒸発物質中の酸素量が少なくな
るため、基材3の表面上に形成された皮膜9中の酸素量
が不足する。
As a result, as the laser beam irradiation progresses in melting the surface of the sintered body, which serves as a vapor deposition source, and as the thickness of the sintered body becomes thinner, the amount of oxygen in the evaporated material from the sintered body decreases. The amount of oxygen in the film 9 formed on the surface of the base material 3 is insufficient.

(2)  前述したように、レーザビームの照射によっ
て、蒸着源としてのY  Ba  Cu  O系複合酸
化物焼結体の表面は溶融しそして蒸発するが、この蒸発
時に、上記焼結体の組成中の酸化物が分解し、蒸発物質
中から一部の酸素が分離する。この分離した酸素は、基
材3の表面上に付着しないため、皮膜9中の酸素量が不
足する。
(2) As mentioned above, the surface of the YBaCuO-based composite oxide sintered body as a vapor deposition source is melted and evaporated by laser beam irradiation, but during this evaporation, the composition of the sintered body is oxide decomposes, and some oxygen is separated from the evaporated substance. Since this separated oxygen does not adhere to the surface of the base material 3, the amount of oxygen in the film 9 becomes insufficient.

上記(1)および(2)に述べたように、基材3の表面
上に形成された皮膜9中の酸素量が不足すると、基材3
の表面上に所望の超電導特性を有する皮膜9を形成する
ことができない。
As described in (1) and (2) above, when the amount of oxygen in the film 9 formed on the surface of the base material 3 is insufficient, the base material 3
It is not possible to form a film 9 having desired superconducting properties on the surface of the .

そこで、減圧室1内を10−” 〜10−’Torrの
低圧の酸素雰囲気となし、このような低圧の酸素雰囲気
中において、蒸着源2に向はレーザビームを照射し、蒸
着源2からの蒸発物質と雰囲気中の酸素とを結合させて
、皮膜9中の酸素量不足を補う試みがなされている。し
かしながら、焼結体2からの蒸発物質と減圧室1内の酸
素とは短時間では゛反応しないため、上述の方法によっ
ても、皮膜9中の酸素量不足を解消するには至らない。
Therefore, a low-pressure oxygen atmosphere of 10-'' to 10-' Torr is created in the decompression chamber 1, and in such a low-pressure oxygen atmosphere, the vapor deposition source 2 is irradiated with a laser beam to reduce the amount of light from the vapor deposition source 2. Attempts have been made to compensate for the lack of oxygen in the film 9 by combining evaporated substances and oxygen in the atmosphere. Since no reaction occurs, the above-mentioned method does not solve the shortage of oxygen in the film 9.

従って、この発明の目的は、レーザ蒸着方法により基材
の表面上にCuxOy基を含む複合酸化物超電導皮膜を
形成するに当り、皮膜中に酸素量の不足が生ずることな
く、所望の超電導特性を有する皮膜を形成することがで
きる超電導材の製造方法を提供することにある。
Therefore, an object of the present invention is to achieve desired superconducting properties without causing a shortage of oxygen in the film when forming a composite oxide superconducting film containing CuxOy groups on the surface of a substrate by a laser vapor deposition method. It is an object of the present invention to provide a method for producing a superconducting material that can form a film having the following properties.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、減圧室中に、蒸着源としてのCuxOy基
を含む複合酸化物焼結体と、被蒸着体としての基材とを
配置し、前記複合酸化物焼結体に対してレーザビームを
照射し、前記レーザビームの照射により前記複合酸化物
焼結体から蒸発した蒸発物質を前記基材の表面上に付着
させることにより、前記基材の表面上にCuxOy基を
含む複合酸化物超電導皮膜を形成する超電導材の製造方
法において、 前記減圧室内を酸素雰囲気に保ち、そして、前記複合酸
化物焼結体から蒸発した前記蒸発物質が前記基材に至る
蒸発流をはさんでその両側に放電用電極を設け、前記電
極間に電圧を印加して放電させることにより、放電域内
に存在する酸素を励起させて前記酸素と前記蒸発物質と
の結合を促進し、前記基材の表面上に酸素と結合した蒸
発物質を付着させ、かくして、前記皮膜の超電導特性を
向上させることに特徴を有するものである。
In this invention, a complex oxide sintered body containing a CuxOy group as a vapor deposition source and a base material as a vapor deposition target are placed in a reduced pressure chamber, and a laser beam is directed to the complex oxide sintered body. A composite oxide superconducting film containing a CuxOy group is formed on the surface of the base material by irradiating the base material with evaporated substances evaporated from the composite oxide sintered body by irradiating the laser beam onto the surface of the base material. In the method for manufacturing a superconducting material, the reduced pressure chamber is maintained in an oxygen atmosphere, and the evaporated substance evaporated from the composite oxide sintered body is discharged on both sides of the evaporation flow leading to the base material. By applying a voltage between the electrodes and causing a discharge, the oxygen present in the discharge area is excited and the bond between the oxygen and the evaporated substance is promoted, and the oxygen is formed on the surface of the base material. The film is characterized in that it attaches an evaporated substance combined with the film, thus improving the superconducting properties of the film.

次に、この発明を図面を参照しながら説明する。Next, the present invention will be explained with reference to the drawings.

第1図は、この発明の方法の一実、施態様を示す概略垂
直断面図である。第1図に示すように、減圧室1内には
、蒸着源としての複合酸化物焼結体2および被蒸着体と
しての基材3が配置され、基材3の上方には基材3を所
定温度に加熱するためのヒータ4が設けられ、そして、
減圧室1の側壁には、集光レンズ6を有するレーザ透過
窓5、ガス排出ロアおよびガス供給口8が設けられてい
ることは、第2図に示した従来の方法の装置と同様であ
る。
FIG. 1 is a schematic vertical sectional view showing an embodiment of the method of the present invention. As shown in FIG. 1, a composite oxide sintered body 2 as a vapor deposition source and a base material 3 as a deposition target are arranged in a reduced pressure chamber 1, and the base material 3 is placed above the base material 3. A heater 4 for heating to a predetermined temperature is provided, and
The side wall of the decompression chamber 1 is provided with a laser transmission window 5 having a condensing lens 6, a gas discharge lower, and a gas supply port 8, which is similar to the apparatus of the conventional method shown in FIG. .

この発明においては、図示しないレーザビーム発生装置
からレーザ透過窓5を通して減圧室1内の複合酸化物焼
結体2に向は照射されたレーザビームにより、焼結体2
から蒸発した蒸発物質が基材3に至る蒸発流11をはさ
んで、その両側に放電用電極12.12’が設けられて
いる。電極12゜12′を相互に接続する導線13の途
中には、電源14が設けられている。
In this invention, the sintered body 2 is irradiated with a laser beam from a laser beam generator (not shown) to the composite oxide sintered body 2 in the decompression chamber 1 through the laser transmission window 5.
Discharging electrodes 12 and 12' are provided on both sides of the evaporation flow 11, in which the evaporated substances evaporated from the substrate 3 reach the base material 3. A power source 14 is provided in the middle of the conducting wire 13 that interconnects the electrodes 12 and 12'.

ガス供給口8を通して減圧室1内に酸素を連続的に吹き
込み、そして、ガス排出ロアを通して減圧室1内のガス
を連続的に排出することにより、減圧室1内を10−1
〜10−’ Torr  の低圧の酸素雰囲気に保つ。
By continuously blowing oxygen into the decompression chamber 1 through the gas supply port 8 and continuously discharging the gas in the decompression chamber 1 through the gas discharge lower, the inside of the decompression chamber 1 is heated to 10-1.
Maintain a low pressure oxygen atmosphere of ~10-' Torr.

蒸着源として、円盤状のY −Ba  Cu  O系複
合酸化物焼結体2を配置し、図示しないレーザビーム発
生装置から、レーザ透過窓5全通して、減圧室1内の焼
結体2に向はレーザビームを照射する。レーザビームが
照射された焼結体2の表面は、溶融しそして蒸発する。
A disk-shaped Y-Ba Cu O-based composite oxide sintered body 2 is arranged as a vapor deposition source, and a laser beam is emitted from a laser beam generator (not shown) through the entire laser transmission window 5 to the sintered body 2 in the decompression chamber 1. The direction irradiates the laser beam. The surface of the sintered body 2 irradiated with the laser beam melts and evaporates.

このようにして焼結体2から蒸発した蒸発物質は、基材
3に向けた蒸発流11となり、基材3の表面上に付着す
る。
The evaporated substance evaporated from the sintered body 2 in this manner becomes an evaporation flow 11 directed toward the base material 3 and adheres to the surface of the base material 3.

このとき、蒸発流11をはさむ両側に設けられた電極1
2.12’間に電源14によって電圧を印加し、電極1
2.12’間において放電させる。この結果、放電域内
における雰囲気中の酸素は励起された状態となる。
At this time, electrodes 1 provided on both sides of the evaporation flow 11
2. Apply voltage by the power supply 14 between electrodes 1 and 12'.
2. Discharge between 12' and 12'. As a result, oxygen in the atmosphere within the discharge region becomes excited.

従って、このような励起状態の酸素雰囲気中を、基材3
に向けて蒸発流11が通るため、蒸発流11中の蒸発物
質は酸素と容易に結合し、両者の反応が促進される。か
くして、基材3の表面上に雰囲気中の酸素と結合した蒸
発物質が付着する結果、超電導特性の優れた皮膜9を有
する超電導材10を製造することができる。
Therefore, in such an excited state oxygen atmosphere, the base material 3
Since the evaporative stream 11 passes toward the evaporative stream 11, the evaporated substances in the evaporative stream 11 easily combine with oxygen, and the reaction between the two is promoted. In this manner, the evaporated substance combined with oxygen in the atmosphere adheres to the surface of the base material 3, so that a superconducting material 10 having a film 9 with excellent superconducting properties can be manufactured.

〔実施例〕〔Example〕

次に、この発明を実施例によシ説明する。 Next, the present invention will be explained using examples.

蒸着源としての複合酸化物焼結体として、Yl、2Ba
o、6CuO工の成分組成を有する、直径20爛、厚さ
101111の円盤状の複合酸化物焼結体を使用し、被
蒸着体としての基材として、1辺の長さが20四で、厚
さが0.5簡の、イツトリウム安定化ジルコニア(ys
z)からなる四角形状の板を使用した。
As a composite oxide sintered body as a vapor deposition source, Yl, 2Ba
A disk-shaped composite oxide sintered body with a diameter of 20 mm and a thickness of 101111 mm, having a composition of 6 CuO, was used as the base material to be deposited, and the length of one side was 20 mm. Yztrium stabilized zirconia (ys
A rectangular plate consisting of z) was used.

上述した蒸着源を使用し、この発明の方法により下記条
件によって上述の基材の表面上に超電導物質の皮膜を形
成した。
Using the above-mentioned vapor deposition source, a film of a superconducting material was formed on the surface of the above-mentioned substrate according to the method of the present invention under the following conditions.

(、)  減圧室の真空度: 1O−2Torr (酸
素雰囲気)(b)  基材の加熱温度=800℃ (c)  レーザビームの種類:炭酸ガスレーザ(d)
  レーザビームの出カニ300W(、)  レーザビ
ームの照射時間:5分(f)  放電の種類     
:高周波放電(g)  電極間のギャップ  ニア0m
+(h)  高周波放電の電力  :50Wこの結果、
基材の表面上に7μmの厚さの皮膜を形成することがで
きた。
(,) Degree of vacuum in decompression chamber: 1O-2Torr (oxygen atmosphere) (b) Heating temperature of base material = 800°C (c) Type of laser beam: Carbon dioxide laser (d)
Laser beam output: 300W (,) Laser beam irradiation time: 5 minutes (f) Type of discharge
: High frequency discharge (g) Gap between electrodes Near 0m
+(h) Power of high frequency discharge: 50W As a result,
A film with a thickness of 7 μm could be formed on the surface of the substrate.

次いで、このような皮膜の形成された基材を、酸素雰囲
気中において930℃の温度まで加熱し、この温度にお
いて30分間保持した後、室温まで徐冷した。かくして
、基材の表面上K Y+)、3Bc。、65CutOx
  の成分組成を有する複合酸化物超電導皮膜が形成さ
れた本発明超電導材を製造した。
Next, the base material on which such a film was formed was heated to a temperature of 930° C. in an oxygen atmosphere, held at this temperature for 30 minutes, and then slowly cooled to room temperature. Thus, on the surface of the substrate K Y+), 3Bc. ,65CutOx
A superconducting material of the present invention in which a composite oxide superconducting film having a component composition was formed was manufactured.

上記により製造された超電導材の’rc(臨界温度)お
よびJc (臨界電流密度)を四端子抵抗測定法により
調べた。比較のために、放電を行なわないほかは上記と
同じ方法により比較用超電導材を製造し、そのTcおよ
びJcを前記測定法によシ調ぺた。この結集を第1表に
示す。
The 'rc (critical temperature) and Jc (critical current density) of the superconducting material produced as described above were investigated by a four-terminal resistance measurement method. For comparison, a comparative superconducting material was manufactured by the same method as above except that no discharge was performed, and its Tc and Jc were measured using the above-mentioned measuring method. This concentration is shown in Table 1.

第  1  表 第1表から明らかなように、本発明超電導材のJcは、
比較用超電導材に比べて格段に大きく且つTcも高かっ
た。
Table 1 As is clear from Table 1, the Jc of the superconducting material of the present invention is:
It was much larger and had a higher Tc than the comparative superconducting material.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、この発明によれば、レーザ蒸着方法
により基材の表面上にCuxOy基を含む複合酸化物超
電導皮膜が形成された超電導材を製造するに当り、前記
皮膜中に酸素量の不足が生ずることがなく、従って、優
れた超電導特性を有する皮膜を形成することができる工
業上有用な効果がもたらされる。
As described above, according to the present invention, when producing a superconducting material in which a composite oxide superconducting film containing a CuxOy group is formed on the surface of a base material by a laser vapor deposition method, the amount of oxygen in the film is reduced. There is no shortage, and therefore, an industrially useful effect is brought about in that a film having excellent superconducting properties can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法の一実施態様を示す概略垂直断
面図、第2図は従来方法の一例を示す概略垂直断面図で
ある。図面において、 1・・・減圧室、   2・・・焼結体、3・・・基材
、     4・・・ヒータ、5・・・レーザ透過窓、
6・・・集光レンズ、7・・・ガス排出口、  8・・
・ガス供給口、9・・・皮膜、    10・・・超電
導材、11・・・蒸発流、  12.12’・・・電極
、13・・・導線、    14・・・電源。
FIG. 1 is a schematic vertical sectional view showing an embodiment of the method of the present invention, and FIG. 2 is a schematic vertical sectional view showing an example of the conventional method. In the drawings, 1... Decompression chamber, 2... Sintered body, 3... Base material, 4... Heater, 5... Laser transmission window,
6...Condensing lens, 7...Gas exhaust port, 8...
- Gas supply port, 9... Film, 10... Superconducting material, 11... Evaporation flow, 12.12'... Electrode, 13... Conductive wire, 14... Power source.

Claims (1)

【特許請求の範囲】  減圧室中に、蒸着源としてのCu_xO_y基を含む
複合酸化物焼結体と、被蒸着体としての基材とを配置し
、前記複合酸化物焼結体に対してレーザビームを照射し
、前記レーザビームの照射により前記複合酸化物焼結体
から蒸発した蒸発物質を前記基材の表面上に付着させる
ことにより、前記基材の表面上にCu_xO_y基を含
む複合酸化物超電導皮膜を形成する超電導材の製造方法
において、 前記減圧室内を酸素雰囲気に保ち、そして、前記複合酸
化物焼結体から蒸発した前記蒸発物質が前記基材に至る
蒸発流をはさんでその両側に放電用電極を設け、前記電
極間に電圧を印加して放電させることにより、放電域内
に存在する酸素を励起させて前記酸素と前記蒸発物質と
の結合を促進し、前記基材の表面上に酸素と結合した蒸
発物質を付着させ、かくして、前記基材の表面上に超電
導特性の優れた皮膜を形成することを特徴とする超電導
材の製造方法。
[Claims] A composite oxide sintered body containing a Cu_xO_y group as an evaporation source and a base material as an evaporation target are placed in a reduced pressure chamber, and a laser beam is applied to the composite oxide sintered body. A composite oxide containing a Cu_xO_y group is produced on the surface of the base material by irradiating the laser beam and causing the evaporated substance evaporated from the composite oxide sintered body by the laser beam irradiation to adhere to the surface of the base material. In the method for manufacturing a superconducting material forming a superconducting film, the reduced pressure chamber is maintained in an oxygen atmosphere, and the evaporated substance evaporated from the composite oxide sintered body flows on both sides of the evaporation flow leading to the base material. A discharge electrode is provided on the substrate, and by applying a voltage between the electrodes and causing a discharge, the oxygen present in the discharge region is excited and the bond between the oxygen and the evaporated substance is promoted. 1. A method for producing a superconducting material, which comprises depositing an evaporated substance bonded with oxygen on the base material, thereby forming a film with excellent superconducting properties on the surface of the base material.
JP62331091A 1987-12-26 1987-12-26 Production of superconducting material Granted JPH01172214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62331091A JPH01172214A (en) 1987-12-26 1987-12-26 Production of superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62331091A JPH01172214A (en) 1987-12-26 1987-12-26 Production of superconducting material

Publications (2)

Publication Number Publication Date
JPH01172214A true JPH01172214A (en) 1989-07-07
JPH0531496B2 JPH0531496B2 (en) 1993-05-12

Family

ID=18239754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62331091A Granted JPH01172214A (en) 1987-12-26 1987-12-26 Production of superconducting material

Country Status (1)

Country Link
JP (1) JPH01172214A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2781126B2 (en) * 1993-05-27 1998-07-30 スター精密株式会社 Electroacoustic transducer

Also Published As

Publication number Publication date
JPH0531496B2 (en) 1993-05-12

Similar Documents

Publication Publication Date Title
JP2876211B2 (en) Method for producing superconducting oxide
EP0292958A2 (en) Method for preparing thin film of compound oxide superconductor
JP2855614B2 (en) Method of forming superconducting circuit
JPH01172214A (en) Production of superconducting material
JPH07500076A (en) High transition temperature superconducting ceramic oxide products and their macroscopic and microscopic manufacturing methods
JPH01172215A (en) Production of superconducting material
EP0324121A1 (en) Method for metallizing superconducting material onto surface of substrate by use of plasma phenomenon
JPH0455132B2 (en)
JPH0453818B2 (en)
JPH0531493B2 (en)
JPH0531498B2 (en)
JPH01153521A (en) Production of superconducting material
WO1989003125A1 (en) A process for producing an electric circuit including josephson diodes
JPH0531494B2 (en)
JPH01153522A (en) Production of superconducting material
JPH07187614A (en) Production of superconducting oxide and superconductor device
JPH0453819B2 (en)
JPH01256107A (en) Manufacture of oxide superconducting coil
JPH01153524A (en) Production of superconducting material
JPH01153523A (en) Production of superconducting material
JP2502344B2 (en) Method for producing complex oxide superconductor thin film
JP2742418B2 (en) Method for producing oxide superconducting thin film
JPH01201008A (en) Production of thin film of oxide superconductor
JPH03505803A (en) Method for activating superconductors and devices manufactured thereby
JPH01153519A (en) Production of superconducting material