JPH05314968A - Alkaline battery - Google Patents

Alkaline battery

Info

Publication number
JPH05314968A
JPH05314968A JP11884392A JP11884392A JPH05314968A JP H05314968 A JPH05314968 A JP H05314968A JP 11884392 A JP11884392 A JP 11884392A JP 11884392 A JP11884392 A JP 11884392A JP H05314968 A JPH05314968 A JP H05314968A
Authority
JP
Japan
Prior art keywords
indium
zinc alloy
alloy powder
added
trioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11884392A
Other languages
Japanese (ja)
Other versions
JP3293164B2 (en
Inventor
Akihide Izumi
彰英 泉
Takashi Matsuo
隆 松尾
Kiyohide Tsutsui
清英 筒井
Shusuke Tsuzuki
秀典 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP11884392A priority Critical patent/JP3293164B2/en
Publication of JPH05314968A publication Critical patent/JPH05314968A/en
Application granted granted Critical
Publication of JP3293164B2 publication Critical patent/JP3293164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Detergent Compositions (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enable a corrosion prevention effect to be displayed without any use of mercury harmful to environmental protection by adding a specific nonionic surface active agent to the gelatinized state of a negative electrode comprising zinc allay powder, an alkaline electrolyte and a gelatinizer. CONSTITUTION:A nonionic surface active agent of indium trioxide, or a condensed type of. indium hydroxide and alkylamide ethylene oxide expressed by the formula is added to the gelatinized state of a negative electrode comprising zinc alloy powder, an alkaline electrolyte and a gelatinizer, thereby constituting an alkaline battery. In this case, the ratio of the indium trioxide or indium hydroxide added to the zinc alloy powder is preferably maintained between 100 and 1000ppm by an indium conversion amount, and the ratio of the nonionic surface active agent of the condensed type of alkylamide ethylene oxide added to the zinc alloy powder is preferably maintained between 5 and 100ppm. As a result, corrosion prevention action is enhanced due to the mutual action of the additives, and the generation of hydrogen gas is restrained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有水銀アルカリ電池と
同等の性能を有する無水銀化アルカリ電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mercury-free alkaline battery having the same performance as a mercury-containing alkaline battery.

【0002】[0002]

【従来の技術】従来、無水銀化アルカリ電池において
は、防食効果を高めるため、耐食性亜鉛合金に無機又は
有機インヒビターをゲル状負極に添加していた。
2. Description of the Related Art Conventionally, in a mercury-free alkaline battery, an inorganic or organic inhibitor has been added to a gelled negative electrode in a corrosion resistant zinc alloy in order to enhance the anticorrosion effect.

【0003】[0003]

【発明が解決しようとする課題】しかし、無機インヒビ
ターを添加した場合には、未放電の防食効果は不十分と
なり、また有機インヒビターを添加した場合には、部分
放電後の防食効果が殆どみられず、特に有機インヒビタ
ーを多量に添加すると、放電性能に悪影響を及ぼす不都
合があった。
However, when an inorganic inhibitor is added, the anti-corrosion effect before undischarge becomes insufficient, and when an organic inhibitor is added, the anti-corrosion effect after partial discharge is almost observed. However, when a large amount of organic inhibitor is added, there is a disadvantage that discharge performance is adversely affected.

【0004】本発明は、上記事情に鑑み、環境保全上の
問題がある水銀を用いることなく十分な防食効果を発揮
し得るアルカリ電池を提供することを目的とする。
In view of the above circumstances, an object of the present invention is to provide an alkaline battery which can exhibit a sufficient anticorrosion effect without using mercury, which has a problem in environmental protection.

【0005】[0005]

【課題を解決するための手段】本発明によるアルカリ電
池は、亜鉛合金粉末と、アルカリ電解液及びゲル化剤か
らなるゲル状負極とに、三酸化二インジウム(In2
3 )又は水酸化インジウム(In(OH)3 )及びアル
キルアマイド酸化エチレン縮合物型の非イオン界面活性
剤を添加して構成される。
The alkaline battery according to the present invention comprises a zinc alloy powder, a gelled negative electrode composed of an alkaline electrolyte and a gelling agent, and indium trioxide (In 2 O 3).
3 ) or indium hydroxide (In (OH) 3 ) and an alkyl amide ethylene oxide condensate type nonionic surfactant are added.

【0006】また、上記三酸化二インジウム又は水酸化
インジウムの上記亜鉛合金粉末に対する添加率をインジ
ウム換算量で100〜1000ppm とし、上記アルキル
アマイド酸化エチレン縮合物型の非イオン界面活性剤の
上記亜鉛合金粉末に対する添加率を5〜100ppm とし
て構成される。
Further, the addition ratio of the indium trioxide or indium hydroxide to the zinc alloy powder is 100 to 1000 ppm in terms of indium, and the zinc alloy of the alkyl amide ethylene oxide condensate type nonionic surfactant is used. The powder is added in an amount of 5 to 100 ppm.

【0007】[0007]

【作用】上記した構成により、本発明は、三酸化二イン
ジウム又は水酸化インジウムとアルキルアマイド酸化エ
チレン縮合物型の非イオン界面活性剤との相互作用によ
り、防食作用が高められ、水素ガスの発生が抑制される
ように作用する。
With the above-mentioned constitution, the present invention enhances the anticorrosion action by the interaction between the indium trioxide or indium hydroxide and the alkyl amide ethylene oxide condensate type nonionic surfactant, and the generation of hydrogen gas. Acts to be suppressed.

【0008】[0008]

【実施例】以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0009】亜鉛合金粉末(鉛を500ppm 含有するも
の)63%と、水酸化カリウム(40%KOH)35%
と、ゲル化剤2%とからなるゲル状負極に、三酸化二イ
ンジウム(In2 3 )及び非イオン界面活性剤を添加
して、アルカリ電池を製造した。この際、非イオン界面
活性剤としては、アルキルアマイド酸化エチレン縮合物
型その他の各種の非イオン界面活性剤を用いた。
63% zinc alloy powder (containing 500 ppm lead) and 35% potassium hydroxide (40% KOH)
And indium trioxide (In 2 O 3 ) and a nonionic surfactant were added to a gelled negative electrode composed of 1% and a gelling agent of 2% to manufacture an alkaline battery. At this time, alkyl amide ethylene oxide condensate type and various other nonionic surfactants were used as the nonionic surfactant.

【0010】各非イオン界面活性剤を亜鉛合金粉末に対
して20ppm 添加したアルカリ電池について、三酸化二
インジウムの添加の有無が水素ガスの発生量に及ぼす影
響を調べるため、三酸化二インジウムを亜鉛合金粉末に
対してインジウム換算量で100ppm 添加した場合と、
三酸化二インジウムを添加しない場合におけるガス発生
量をそれぞれ測定した。ガス発生量の測定は、図1に示
すようなガス発生装置を用いて行なった。即ち、フラス
コ1内にゲル状負極2を入れ、その上に流動パラフィン
3を充填し、その状態のまま60℃で10日間静置した
後、流動パラフィン3の上面の上昇量を目盛り付きピペ
ット5で読み取り、ガス発生量を算出した。その結果を
表1に示す。
In an alkaline battery in which each nonionic surfactant was added to the zinc alloy powder in an amount of 20 ppm, in order to investigate the effect of the addition or non-addition of diindium trioxide on the amount of hydrogen gas produced, zinc indium trioxide was added. In the case of adding 100 ppm in terms of indium to the alloy powder,
The amount of gas generated when no indium trioxide was added was measured. The amount of gas generated was measured using a gas generator as shown in FIG. That is, the gelled negative electrode 2 was placed in the flask 1, the liquid paraffin 3 was filled therein, and the liquid paraffin 3 was left still at 60 ° C. for 10 days. And the gas generation amount was calculated. The results are shown in Table 1.

【0011】 表1から明らかなように、4種類の非イオン界面活性剤
の全てについて、三酸化二インジウムの添加によって水
素ガスの発生が抑制された結果となっている。即ち、三
酸化二インジウムを添加しない場合には順に108、1
33、97及び111μl/gであったガス発生量が、
三酸化二インジウムの添加によってそれぞれ52、10
5、92及び106μl/gに減少し、特にアルキルア
マイド酸化エチレン縮合物型の非イオン界面活性剤につ
いては半分以下に減少しており、ガス発生が大幅に抑制
されていることが分かる。
[0011] As is clear from Table 1, generation of hydrogen gas was suppressed by the addition of diindium trioxide for all four types of nonionic surfactants. That is, when no indium trioxide is added, 108 and 1
The amount of gas generated was 33, 97 and 111 μl / g,
52,10 by addition of indium trioxide respectively
5, 92 and 106 μl / g, especially for alkyl amide ethylene oxide condensate type nonionic surfactants, the amount was reduced to less than half, and it can be seen that gas generation is significantly suppressed.

【0012】また、このアルキルアマイド酸化エチレン
縮合物型の非イオン界面活性剤について、非イオン界面
活性剤の添加率を一定(20 ppm/Zn)とし、三酸化
二インジウムの添加率を0〜3000 ppm/Znの範囲
内で変えた場合に、ガス発生量がどのように変化するか
を調べた。その結果を表2に示す。
Regarding the alkyl amide ethylene oxide condensate type nonionic surfactant, the addition ratio of the nonionic surfactant is constant (20 ppm / Zn), and the addition ratio of diindium trioxide is 0 to 3000. It was investigated how the gas generation amount changed when the amount was changed within the range of ppm / Zn. The results are shown in Table 2.

【0013】 表2から明らかなように、三酸化二インジウムを亜鉛合
金粉末に対してインジウム換算量で100、300又は
1000ppm 添加したときに、ガス発生量がピーク的に
少なくなっており、これより多くても少なくても抑制効
果が薄れていることが分かる。なお、一般に、ガス発生
量が約100μl/gを越えると漏液しやすくなると言
われているが、三酸化二インジウムを100、300、
1000ppm 添加した場合には、ガス発生量がそれぞれ
52、49、78μl/gであり、いずれも100μl
/gを下回っているので、漏液の危険性は極めて少ない
こととなる。
[0013] As is clear from Table 2, when indium trioxide is added to the zinc alloy powder in an amount of 100, 300 or 1000 ppm in terms of indium, the gas generation amount is reduced to a peak, and even if it is more than this amount. It can be seen that the suppression effect is weakened at least. It is generally said that when the gas generation amount exceeds about 100 μl / g, liquid leakage is likely to occur.
When 1000ppm was added, the amount of gas generated was 52, 49 and 78μl / g, respectively, 100μl
Since it is less than / g, the risk of liquid leakage is extremely small.

【0014】逆に、このアルキルアマイド酸化エチレン
縮合物型の非イオン界面活性剤について、三酸化二イン
ジウムの添加率を一定(100 ppm/Zn)とし、非イ
オン界面活性剤の添加率を0〜500 ppm/Znの範囲
内で変えた場合に、ガス発生量及び低温時の放電性能
(−10℃で10Ω連続、終止電圧0.9V)がどのよ
うに変化するかを調べた。同様にして、0.15%の水
銀を添加して製造した従来のアルカリ電池についても、
ガス発生量及び低温時の放電性能を測定した。その結果
をまとめて表3に示す。
On the contrary, with respect to the alkyl amide ethylene oxide condensate type nonionic surfactant, the addition ratio of diindium trioxide is constant (100 ppm / Zn), and the addition ratio of the nonionic surfactant is 0 to 0. It was examined how the amount of gas generated and the discharge performance at low temperature (10Ω continuous at -10 ° C, final voltage 0.9V) changed when the amount was changed within the range of 500 ppm / Zn. Similarly, for a conventional alkaline battery manufactured by adding 0.15% mercury,
The gas generation amount and the discharge performance at low temperature were measured. The results are summarized in Table 3.

【0015】 ガス発生量に関しては、表3から明らかなように、非イ
オン界面活性剤の添加率が高い程、ガス発生量が少な
く、非イオン界面活性剤を5 ppm/Zn以上添加した場
合には、ガス発生量が100μl/g未満となり、漏液
の危険性は極めて少ない。また、非イオン界面活性剤を
5〜20 ppm/Zn添加すれば、有水銀アルカリ電池と
同程度のガス発生抑制効果が得られることが分かる。
[0015] Regarding the gas generation amount, as is clear from Table 3, the higher the addition rate of the nonionic surfactant is, the smaller the gas generation amount is. When the nonionic surfactant is added at 5 ppm / Zn or more, the gas generation amount is The generated amount is less than 100 μl / g, and the risk of liquid leakage is extremely low. Further, it is understood that when the nonionic surfactant is added in an amount of 5 to 20 ppm / Zn, the same gas generation suppressing effect as that of the mercury-containing alkaline battery can be obtained.

【0016】一方、低温時の放電性能に関しては、表3
に示すように、非イオン界面活性剤の添加率が高い程、
放電時間が短縮される傾向にあるが、非イオン界面活性
剤の添加率が100 ppm/Zn以下の場合は、有水銀ア
ルカリ電池と比べて遜色のない低温放電性能を有してい
る。
On the other hand, Table 3 shows the discharge performance at low temperature.
As shown in, the higher the nonionic surfactant addition rate,
Although the discharge time tends to be shortened, when the addition rate of the nonionic surfactant is 100 ppm / Zn or less, it has low-temperature discharge performance comparable to that of the mercury-containing alkaline battery.

【0017】更に、アルキルアマイド酸化エチレン縮合
物型の非イオン界面活性剤について、部分放電(3.9
Ω×2H)後の耐漏液性能を調べるため、非イオン界面
活性剤の添加率を一定(20 ppm/Zn)とし、三酸化
二インジウムの添加率を0〜3000 ppm/Znの範囲
内で変えたアルカリ電池を20本ずつ製造し、温度60
℃、相対湿度90%の条件下で40日間放置し、10
日、20日及び40日経過時の漏液数をチェックした。
その結果を表4に示す。
Furthermore, regarding the alkyl amide ethylene oxide condensate type nonionic surfactant, partial discharge (3.9
In order to investigate the leakage resistance after Ω × 2H), the addition rate of the nonionic surfactant was fixed (20 ppm / Zn), and the addition rate of diindium trioxide was changed within the range of 0 to 3000 ppm / Zn. 20 alkaline batteries are manufactured at a temperature of 60
Leave for 40 days under the conditions of ℃ and 90% relative humidity for 10 days.
The number of leaks at day, 20th and 40th day was checked.
The results are shown in Table 4.

【0018】 表4から明らかなように、特に三酸化二インジウムを亜
鉛合金粉末に対してインジウム換算量で100〜100
0ppm 添加したときに、部分放電後の耐漏液性能が優れ
ていることが分かる。即ち、三酸化二インジウムの添加
率がゼロである場合には、20本の試験体のうち3本
(即ち、15%)が10日経過時までに漏液し、8本
(即ち、40%)が20日経過時までに漏液し、18本
(即ち、90%)が40日経過時までに漏液した。これ
に対して、三酸化二インジウムの添加率が30 ppm/Z
nである場合には、20日経過時までに漏液したものは
1本もなく、40日経過時までに20本の試験体のうち
5本(即ち、25%)が漏液したに過ぎない。また、三
酸化二インジウムの添加率が100、300又は100
0 ppm/Znである場合には、40日経過時までに漏液
したものは1本もなかった。更に、三酸化二インジウム
の添加率が3000 ppm/Znである場合には、10日
経過時までに漏液したものは1本もなく、20日経過時
までに20本の試験体のうち2本(即ち、10%)が漏
液し、40日経過時までに3本(即ち、15%)が漏液
したに過ぎない。
[0018] As is clear from Table 4, indium trioxide is 100 to 100 in terms of indium in terms of zinc alloy powder.
It can be seen that the liquid leakage resistance after partial discharge is excellent when 0 ppm is added. That is, when the addition rate of diindium trioxide is zero, 3 out of 20 test bodies (that is, 15%) leaked by 10 days, and 8 (that is, 40%). ) Leaked by 20 days, and 18 (ie, 90%) leaked by 40 days. On the other hand, the addition rate of indium trioxide is 30 ppm / Z
In the case of n, none of the samples leaked by the time of 20 days, and only 5 (that is, 25%) of the 20 test samples leaked by the time of 40 days. Absent. Further, the addition ratio of diindium trioxide is 100, 300 or 100.
In the case of 0 ppm / Zn, none of the liquid leaked by 40 days. Furthermore, when the addition rate of diindium trioxide was 3000 ppm / Zn, no one leaked by the time of 10 days, and 2 out of 20 test bodies by the time of 20 days. Only 3 bottles (ie 15%) were leaked by 40 days (ie 10%).

【0019】なお、上述の実施例においては、三酸化二
インジウム(In2 3 )を添加した場合について説明
したが、三酸化二インジウムの代わりに水酸化インジウ
ム(In(OH)3 )を添加することも可能である。
In the above-mentioned embodiments, the case where diindium trioxide (In 2 O 3 ) is added has been described, but indium hydroxide (In (OH) 3 ) is added instead of diindium trioxide. It is also possible to do so.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
亜鉛合金粉末、水酸化カリウム等のアルカリ電解液及び
ゲル化剤からなるゲル状負極に、三酸化二インジウム
(In2 3 )又は水酸化インジウム(In(O
H)3 )及びアルキルアマイド酸化エチレン縮合物型の
非イオン界面活性剤を添加して構成したので、三酸化二
インジウム又は水酸化インジウムとアルキルアマイド酸
化エチレン縮合物型の非イオン界面活性剤との相互作用
により、防食作用が高められ、水素ガスの発生が抑制さ
れることから、環境保全上の問題がある水銀を用いるこ
となく十分な防食効果を発揮し得るアルカリ電池を提供
することが可能となる。
As described above, according to the present invention,
Didium indium trioxide (In 2 O 3 ) or indium hydroxide (In (O) was added to a gelled negative electrode composed of zinc alloy powder, an alkaline electrolyte such as potassium hydroxide, and a gelling agent.
H) 3 ) and an alkyl amide ethylene oxide condensate type nonionic surfactant are added, so that the indium trioxide or indium hydroxide and the alkyl amide ethylene oxide condensate type nonionic surfactant are Since the anticorrosion effect is enhanced by the interaction and the generation of hydrogen gas is suppressed, it is possible to provide an alkaline battery that can exhibit a sufficient anticorrosion effect without using mercury, which has a problem in environmental protection. Become.

【0021】また、上記三酸化二インジウム又は水酸化
インジウムの上記亜鉛合金粉末に対する添加率をインジ
ウム換算量で100〜1000ppm とし、上記アルキル
アマイド酸化エチレン縮合物型の非イオン界面活性剤の
上記亜鉛合金粉末に対する添加率を5〜100ppm とし
て構成すると、上述の効果を顕著なものとすることが出
来る。
The addition ratio of the indium trioxide or indium hydroxide to the zinc alloy powder is 100 to 1000 ppm in terms of indium, and the zinc alloy of the alkyl amide ethylene oxide condensate type nonionic surfactant is used. When the addition rate to the powder is set to 5 to 100 ppm, the above effects can be made remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】ガス発生装置の正断面図である。FIG. 1 is a front sectional view of a gas generator.

【符号の説明】[Explanation of symbols]

1……フラスコ 2……ゲル状負極 3……流動パラフィン 5……目盛り付きピペット 1 ... Flask 2 ... Gel negative electrode 3 ... Liquid paraffin 5 ... Scaled pipette

───────────────────────────────────────────────────── フロントページの続き (72)発明者 都築 秀典 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hidenori Tsuzuki, 5-36-11 Shinbashi, Minato-ku, Tokyo Inside Fuji Electric Chemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 亜鉛合金粉末、アルカリ電解液及びゲル
化剤からなるゲル状負極に、三酸化二インジウム又は水
酸化インジウム及びアルキルアマイド酸化エチレン縮合
物型の非イオン界面活性剤 を添加したことを特徴とするアルカリ電池。
1. A non-ionic surfactant of diindium trioxide or indium hydroxide and an alkyl amide ethylene oxide condensate type is applied to a gelled negative electrode comprising zinc alloy powder, an alkaline electrolyte and a gelling agent. Alkaline battery characterized by the addition of.
【請求項2】 三酸化二インジウム又は水酸化インジウ
ムの亜鉛合金粉末に対する添加率をインジウム換算量で
100〜1000ppm とし、アルキルアマイド酸化エチ
レン縮合物型の非イオン界面活性剤の亜鉛合金粉末に対
する添加率を5〜100ppm として構成した請求項1記
載のアルカリ電池。
2. The addition ratio of indium trioxide or indium hydroxide to the zinc alloy powder is 100 to 1000 ppm in terms of indium, and the addition ratio of the alkyl amide ethylene oxide condensate type nonionic surfactant to the zinc alloy powder. The alkaline battery according to claim 1, wherein the content is 5 to 100 ppm.
JP11884392A 1992-05-12 1992-05-12 Alkaline battery Expired - Fee Related JP3293164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11884392A JP3293164B2 (en) 1992-05-12 1992-05-12 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11884392A JP3293164B2 (en) 1992-05-12 1992-05-12 Alkaline battery

Publications (2)

Publication Number Publication Date
JPH05314968A true JPH05314968A (en) 1993-11-26
JP3293164B2 JP3293164B2 (en) 2002-06-17

Family

ID=14746532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11884392A Expired - Fee Related JP3293164B2 (en) 1992-05-12 1992-05-12 Alkaline battery

Country Status (1)

Country Link
JP (1) JP3293164B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101947422A (en) * 2010-08-24 2011-01-19 天津大学 Alkaline solution gel and preparation method as well as application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101947422A (en) * 2010-08-24 2011-01-19 天津大学 Alkaline solution gel and preparation method as well as application thereof

Also Published As

Publication number Publication date
JP3293164B2 (en) 2002-06-17

Similar Documents

Publication Publication Date Title
KR950002957B1 (en) Alkaline batteries
US4857424A (en) Zinc alkaline electrochemical cells with reduced mercury anodes
JPH05314968A (en) Alkaline battery
JP3105115B2 (en) Manganese dry cell
JP3617743B2 (en) Negative electrode material for alkaline manganese battery and method for producing the same
CN1039067C (en) Mercury-free zinc-manganese cell with paperboard partition
JPH0371559A (en) Zinc alkaline battery
JP3512826B2 (en) Button type alkaline battery
JPH07240202A (en) Alkaline battery
JP2798971B2 (en) Gelled negative electrode for alkaline batteries
JPH05174826A (en) Zinc alkaline battery
JP2935855B2 (en) Alkaline battery
JP2784151B2 (en) Alkaline battery
JPH08222233A (en) Alkaline button battery
JP2562664B2 (en) Alkaline battery and its negative electrode active material
US3281277A (en) Corrosion inhibitors
JPS61153289A (en) Corrosion inhibitor for metal and alkali cell using it
JP4733816B2 (en) Negative electrode for alkaline battery and alkaline battery using the same
JP2796154B2 (en) Zinc negative electrode for alkaline batteries
JPS6180758A (en) Alkali battery
JPH06223840A (en) Zinc alkaline battery
JPH07114914A (en) Manufacture of alkaline zinc battery
JP2798680B2 (en) Alkaline battery
JPH03167757A (en) Manganese dry battery
JPH08213031A (en) Alkaline button battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090405

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees