JPH06223840A - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JPH06223840A
JPH06223840A JP1130893A JP1130893A JPH06223840A JP H06223840 A JPH06223840 A JP H06223840A JP 1130893 A JP1130893 A JP 1130893A JP 1130893 A JP1130893 A JP 1130893A JP H06223840 A JPH06223840 A JP H06223840A
Authority
JP
Japan
Prior art keywords
zinc
bismuth
alkaline battery
zinc alloy
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1130893A
Other languages
Japanese (ja)
Inventor
Shuji Tsuchida
周二 土田
Arimichi Kojima
有理 小島
Junichi Asaoka
準一 浅岡
Akira Miura
晃 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1130893A priority Critical patent/JPH06223840A/en
Publication of JPH06223840A publication Critical patent/JPH06223840A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

PURPOSE:To provide a zinc alkaline battery which generates no pollution and excels in the property of storing and also in the discharging performance. CONSTITUTION:In preparing a negative electrode of a zinc alkaline battery, no mercury, lead, cadmium, or indium is added, and the iron content is below 1ppm, and therein bismuth or a zinc alloy containing an appropriate amount of bismuth and calcium is used as the active material. As organic inhibitor, an appropriate amount of surface active agent is included in the alkaline electrolytic solution, wherein the agent has polyethylene oxide in the hydrophilic part and a fluoride alkyl radical in the lipophilic part, and further an appropriate amount of gallium hydroxide is included, and thereby a zinc alkaline battery which generates no pollution and excels in the property of storing and also the discharging performance is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、負極活物質として亜
鉛、電解液としてアルカリ水溶液、正極活物質として二
酸化マンガン、酸化銀、酸素等を用いる亜鉛アルカリ電
池の無水銀化、無鉛化、無インジウム化の技術に関わ
り、無公害でかつ貯蔵性、放電性能に優れた亜鉛アルカ
リ電池を提供するものである。
BACKGROUND OF THE INVENTION The present invention relates to a zinc-alkali battery using zinc as a negative electrode active material, an alkaline aqueous solution as an electrolytic solution, and manganese dioxide, silver oxide, oxygen, etc. as a positive electrode active material. The present invention provides a zinc-alkali battery that is pollution-free, has excellent storage properties, and has excellent discharge performance.

【0002】[0002]

【従来の技術】約10年前から廃電池の水銀による環境
汚染が強く懸念されるようになり、アルカリ乾電池の水
銀量の低減の研究がなされた。その結果、耐食性亜鉛合
金やインヒビタ−の開発により、アルカリ乾電池中に含
まれる水銀量は電池重量に対し250ppmに低減さ
れ、さらには、無水銀アルカリ乾電池も発売された。
2. Description of the Related Art Since about 10 years ago, there has been a strong concern about environmental pollution due to mercury in waste batteries, and studies have been made to reduce the amount of mercury in alkaline dry batteries. As a result, due to the development of corrosion-resistant zinc alloys and inhibitors, the amount of mercury contained in alkaline dry batteries was reduced to 250 ppm with respect to the battery weight, and further, anhydrous silver alkaline dry batteries were also released.

【0003】アルカリ乾電池の無水銀化技術に関するア
プロ−チは、水銀を添加したアルカリ乾電池が開発され
ていた当時からなされ、特許や邦文に耐食亜鉛合金、イ
ンヒビターに関する様々な材料について、多数出願や発
表がなされている。例えば、鉛、インジウム、ビスマ
ス、カルシウム等が耐食性亜鉛合金の合金添加元素とし
て、また、インヒビターとして、たとえば水酸化インジ
ウムやある種の界面活性剤がインヒビターとして用いら
れている。(特開平4−26061号公報)
[0003] The approach to the technology of producing anhydrous silver for alkaline dry batteries has been made since the time when the alkaline dry batteries containing mercury were developed, and many applications and announcements have been made in patents and Japanese texts on various materials related to corrosion resistant zinc alloys and inhibitors. Has been done. For example, lead, indium, bismuth, calcium and the like are used as alloying elements for corrosion-resistant zinc alloys, and as inhibitors, such as indium hydroxide and certain surfactants. (Japanese Patent Laid-Open No. 4-26061)

【0004】[0004]

【発明が解決しようとする課題】純亜鉛を無水銀のまま
負極の活物質に用いた電池では、亜鉛の水素発生を伴っ
た腐食反応が激しく起こり、電池内圧が増加して電解液
を外部へ押し出し、耐漏液性の低下する問題がある。ま
た部分的に放電した電池では亜鉛負極の水素発生速度が
加速され、耐漏液性はさらに低下する。これらは亜鉛表
面の水素過電圧を高めることで腐食反応を抑制していた
水銀がなくなったことに起因している。アルカリ乾電池
の無水銀化技術では上記の如く、鉛、カドミウム、イン
ジウム、ビスマス、カルシウム等が耐食性亜鉛合金の合
金添加元素として用いられている。特に鉛、カドミウ
ム、インジウムは水素過電圧の高い材料として知られ、
亜鉛の耐食性の向上に優れた効果を示す。
In a battery using pure zinc as an active material of a negative electrode as it is as anhydrous silver, a corrosive reaction accompanied by hydrogen generation of zinc occurs violently, and the internal pressure of the battery increases, so that the electrolytic solution is discharged to the outside. There is a problem of extrusion and deterioration of liquid leakage resistance. Further, in the partially discharged battery, the hydrogen generation rate of the zinc negative electrode is accelerated, and the leakage resistance is further reduced. These are due to the disappearance of the mercury that suppressed the corrosion reaction by increasing the hydrogen overvoltage on the zinc surface. As described above, lead, cadmium, indium, bismuth, calcium and the like are used as alloying addition elements of the corrosion-resistant zinc alloy in the technology of producing anhydrous silver for alkaline dry batteries. Especially, lead, cadmium, and indium are known as materials with high hydrogen overvoltage,
It exhibits an excellent effect in improving the corrosion resistance of zinc.

【0005】しかし、鉛、カドミウムは水銀と並ぶ公害
物質であるので電池の無公害化に微量添加とは言え、望
ましい添加金属とは言い難い。また、インジウムは一般
的に有害物質として扱われず、防食性も高いので、一次
電池にかかわらず二次電池の負極への添加剤として知ら
れている。しかし、インジウムも慢性的中毒については
不明であり、米国産業衛生専門家会議(ACGIH)に
よれば鉛よりも厳しく許容濃度が定められている。
However, since lead and cadmium are pollutants similar to mercury, they can be said to be small amounts of additives for making the battery non-polluting, but they cannot be said to be desirable additive metals. Further, indium is generally not treated as a harmful substance and has a high anticorrosion property, so that it is known as an additive to the negative electrode of a secondary battery regardless of the primary battery. However, indium is not known for chronic poisoning either, and the American Industrial Hygienist Council (ACGIH) defines stricter permissible concentrations than lead.

【0006】ところが水銀はもとより、鉛、カドミウ
ム、インジウムを用いずにビスマスやカルシウムを添加
した耐食性亜鉛合金においては、放電深度の深い部分放
電後の電池の耐漏液性は確保できず、放電性能において
も特に低温下での放電性能の低下という問題があった。
また、ビスマス、カルシウムを添加した耐食性亜鉛合金
を負極の活物質としたゲル負極に有機系インヒビターを
添加して電池を構成しても、放電深度の深い部分放電後
の電池の耐漏液性は確保できず、放電性能においても同
様に低温下での放電性能の低下が解消できなかった。
However, in the corrosion-resistant zinc alloy containing bismuth or calcium without using lead, cadmium, or indium as well as mercury, it is not possible to secure the liquid leakage resistance of the battery after the partial discharge with a deep discharge depth, and the discharge performance is poor. However, there is a problem that the discharge performance is deteriorated especially at a low temperature.
Moreover, even if a battery is constructed by adding an organic inhibitor to a gel negative electrode that uses a corrosion-resistant zinc alloy containing bismuth and calcium as the negative electrode active material, the leakage resistance of the battery after partial discharge with a deep discharge depth is secured. As a result, the deterioration of the discharge performance at low temperature could not be resolved.

【0007】本発明では、水銀はもとより、鉛、カドミ
ウム、インジウムを用いることなく、耐食性亜鉛合金と
有機系インヒビターのそれぞれについて、最高に効果を
発揮できる材料およびその最適な状態や濃度について検
討することにより、亜鉛の腐食を抑制し、無公害でかつ
貯蔵性、放電性能に優れたアルカリ乾電池を提供するこ
とを課題としている。
In the present invention, it is necessary to examine the materials capable of exerting the maximum effect and the optimum state and concentration of each of the corrosion-resistant zinc alloy and the organic inhibitor without using lead, cadmium, and indium as well as mercury. In view of the above, it is an object to provide an alkaline dry battery which suppresses corrosion of zinc, is pollution-free, and is excellent in storability and discharge performance.

【0008】[0008]

【課題を解決するための手段】本発明における亜鉛負極
部は、鉄の含有量が1ppm以下で、ビスマスまたは、
ビスマスとカルシウムを含有した亜鉛合金を活物質とし
て使用し、ポリエチレンオキサイドを親水部に持ち、フ
ッ化アルキル基を親油部に持ったいわゆるパーフルオロ
アルキルポリエチレンオキサイド系界面活性剤の適正量
を含有させ、さらに水酸化ガリウムを適正量含有させた
アルカリ電解液により構成される。
The zinc negative electrode portion of the present invention has an iron content of 1 ppm or less, and bismuth or
Using a zinc alloy containing bismuth and calcium as the active material, polyethylene oxide in the hydrophilic part, and a suitable amount of so-called perfluoroalkyl polyethylene oxide-based surfactant having a fluorinated alkyl group in the lipophilic part And an alkaline electrolyte containing gallium hydroxide in an appropriate amount.

【0009】なお、耐漏液性の改善のために亜鉛合金に
おいて、鉄の含有量が1ppm以下で、ビスマスとカル
シウムの含有量は、ビスマス0.02〜0.1wt%、
カルシウム0〜0.015wt%であることが必要であ
る。
In order to improve the resistance to liquid leakage, the zinc alloy has an iron content of 1 ppm or less and a bismuth and calcium content of 0.02 to 0.1 wt%.
It is necessary that the calcium content is 0 to 0.015 wt%.

【0010】また、前記のパーフルオロアルキルポリエ
チレンオキサイド系界面活性剤は、亜鉛合金に対して、
0.0005〜0.02wt%アルカリ電解液中に含有
させることで防食効果が発揮できる。。
The above-mentioned perfluoroalkyl polyethylene oxide type surfactant is
The anticorrosion effect can be exhibited by containing 0.0005 to 0.02 wt% in the alkaline electrolyte. .

【0011】また、前記水酸化ガリウムは、亜鉛合金に
対して、0.005〜0.1wt%アルカリ電解液中に
含有させることで放電性能の改善に効果がある。
Further, the gallium hydroxide is effective in improving the discharge performance by containing 0.005 to 0.1 wt% of the gallium hydroxide in the alkaline electrolyte.

【0012】[0012]

【作用】本発明の耐食性亜鉛合金の材料、無機系インヒ
ビター、有機系インヒビター、およびそれらの複合にお
ける組合せや組成については、それぞれが複合効果を最
高に発揮できるように鋭意研究した結果、見出したもの
である。その作用は、以下のように推察される。
[Function] Regarding the material of the corrosion-resistant zinc alloy of the present invention, the inorganic type inhibitor, the organic type inhibitor, and the combination and composition in the combination thereof, those found as a result of earnest research so as to maximize the combination effect Is. The action is presumed as follows.

【0013】亜鉛中の鉄等の不純物の含有量を低減する
ことによって、亜鉛の腐食による水素ガスの発生が抑制
できるが、連続的にガスが発生する部位が鉄、ステンレ
ス、酸化鉄等がごく微量混合偏在する場所であることか
ら、鉄の含有量を極めて微量にすると共に、特定の添加
元素を一定量含有させることによって両者の相乗効果に
よって、水素ガスの発生が抑制される。
By reducing the content of impurities such as iron in zinc, generation of hydrogen gas due to corrosion of zinc can be suppressed, but iron, stainless steel, iron oxide, etc. are the only parts where gas is continuously generated. Since it is a place where a small amount of iron is mixed and unevenly distributed, the generation of hydrogen gas is suppressed by the synergistic effect of both by making the content of iron extremely small and by containing a certain amount of a specific additive element.

【0014】合金中の添加元素のうちビスマスはその元
素自身の水素過電圧が高く、亜鉛に添加されて、その表
面の水素過電圧を高める作用がある。これを均一に合金
中に添加した場合、粉末のどの深さにも添加元素が存在
するため、この作用は放電により新しい亜鉛表面が現れ
たとしても保持される。また、カルシウムは亜鉛粒子を
球形化させる作用があり、真の比表面積を少なくさせる
ため、亜鉛の単位重量当たりの腐食量を低下させる。
Among the additional elements in the alloy, bismuth has a high hydrogen overvoltage of the element itself, and is added to zinc to have an effect of increasing the hydrogen overvoltage of its surface. When this is uniformly added to the alloy, this effect is maintained even if a new zinc surface appears due to discharge, because the additive element exists at any depth of the powder. Further, calcium has the effect of making the zinc particles spherical, and reduces the true specific surface area, thus reducing the amount of corrosion of zinc per unit weight.

【0015】界面活性剤はゲル状アルカリ電解液中に亜
鉛合金と共存すると、金属石けんの原理で亜鉛合金表面
に化学吸着して疎水性の単分子層を形成し、防食効果を
示す。特に、ポリエチレンオキサイドを親水部に持つ界
面活性剤は、アルカリ電解液に対しミセルとしての溶解
性が高く、電解液に含有させた場合、亜鉛合金表面への
移動、吸着が速やかに起こるため、防食効果が高い。さ
らに、フッ化アルキル基を親油部に持てば、これが亜鉛
合金表面に吸着した場合、電気絶縁性が高いため腐食反
応の電子授受を効果的に阻害し、また耐アルカリ性が強
いため、その効果は持続する。
When the surfactant coexists with the zinc alloy in the gelled alkaline electrolyte, it chemically adsorbs on the surface of the zinc alloy by the principle of metallic soap to form a hydrophobic monomolecular layer and exhibits an anticorrosion effect. In particular, a surfactant having polyethylene oxide in the hydrophilic part has a high solubility as a micelle in an alkaline electrolyte, and when it is contained in the electrolyte, migration and adsorption to the zinc alloy surface occur rapidly, so anticorrosion Highly effective. Furthermore, if the lipophilic part has a fluorinated alkyl group, when it is adsorbed on the surface of the zinc alloy, it has a high electrical insulation property, which effectively hinders the electron transfer of the corrosion reaction, and also has a strong alkali resistance. Lasts.

【0016】水酸化ガリウムの含有が低温放電性能の改
善に寄与する理由は定かではないが、ゲル状アルカリ電
解液中に亜鉛合金と共存すると、水酸化ガリウムが亜鉛
の表面に吸着し、その面の、放電反応により生成する亜
鉛酸化物の被膜中で不働態化を抑制する作用をすると考
えられる。
The reason why the inclusion of gallium hydroxide contributes to the improvement of low-temperature discharge performance is not clear, but when coexisting with a zinc alloy in the gel alkaline electrolyte, gallium hydroxide is adsorbed on the surface of zinc and It is considered that it has the effect of suppressing the passivation in the zinc oxide film formed by the discharge reaction.

【0017】[0017]

【実施例】以下、実施例によって、本発明の詳細ならび
に効果を説明する。まず、耐食性亜鉛合金の作成方法、
本発明の構成の効果を示すため実施例に用いたLR6型
アルカリマンガン電池の構造、およびガス発生速度およ
び耐漏液性の比較評価の方法について説明する。
The details and effects of the present invention will be described below with reference to examples. First, the method of making a corrosion resistant zinc alloy,
The structure of the LR6 type alkaline manganese battery used in the examples and the method for comparative evaluation of the gas generation rate and the liquid leakage resistance will be described in order to show the effects of the constitution of the present invention.

【0018】耐食性亜鉛合金粉末は、鉄の含有量が1p
pm以下である電解析離亜鉛を約500℃で溶融し、所
定の添加元素を所定量加え、均一溶解させた後、圧縮空
気で噴霧して粉末化する、いわゆるアトマイズ法で作成
し、これをふるいで分級して粒度範囲45〜150メッ
シュに調整した。得られた亜鉛合金粉末の鉄含有量は1
ppm以下であった。
The corrosion resistant zinc alloy powder has an iron content of 1 p
Ionized zinc having a particle size of pm or less is melted at about 500 ° C., a predetermined amount of a predetermined additive element is added and uniformly dissolved, and then sprayed with compressed air to be powdered. The particles were classified with a sieve and adjusted to have a particle size range of 45 to 150 mesh. The iron content of the obtained zinc alloy powder is 1
It was below ppm.

【0019】ゲル状亜鉛負極は以下のようにして調整し
た。まず、40重量%の水酸化カリウム水溶液(ZnO
を3wt%含む)に3重量%のポリアクリル酸ソーダと
1重量%のカルボキシメチルセルロースを加えてゲル化
する。ついで、このゲル状電解液を攪拌しながら界面活
性剤を所定量投入、攪拌し、2〜3時間熟成する。次に
ゲル状電解液に対して重量比で2倍の亜鉛合金粉末を加
えて混合した。
The gelled zinc negative electrode was prepared as follows. First, a 40 wt% potassium hydroxide aqueous solution (ZnO
3% by weight) and 3% by weight of sodium polyacrylate and 1% by weight of carboxymethyl cellulose are added to gel. Then, a predetermined amount of a surfactant is added while stirring the gel electrolyte, and the mixture is stirred and aged for 2 to 3 hours. Next, the zinc alloy powder was added and mixed in a weight ratio twice that of the gel electrolyte.

【0020】図1は本実施例で用いたアルカリマンガン
電池LR6の構造断面図である。図1において、1は正
極合剤、2は本発明で特徴付けられたゲル状負極、3は
セパレータ、4はゲル状負極の集電子である。5は正極
端子キャップ、6は金属ケース、7は電池の外装缶、8
はケース6の開口部を閉塞する樹脂封口体、9は負極端
子をなす底板である。
FIG. 1 is a structural sectional view of an alkaline manganese battery LR6 used in this embodiment. In FIG. 1, 1 is a positive electrode mixture, 2 is a gelled negative electrode characterized by the present invention, 3 is a separator, and 4 is a gelled negative electrode current collector. 5 is a positive electrode terminal cap, 6 is a metal case, 7 is a battery outer can, 8
Is a resin sealing body that closes the opening of the case 6, and 9 is a bottom plate that serves as a negative electrode terminal.

【0021】次にガス発生速度および耐漏液性の比較評
価の方法について説明する。ガス発生速度の測定方法
は、図1で示したアルカリマンガン電池を、LR6に対
して最も苛酷な条件である1Ωの定抵抗で、0.9Vま
での放電時間を100%とした場合の200%まで部分
放電させた後、60℃保存での亜鉛合金粉末の腐食によ
り発生する水素ガス発生量を測定して求めた。なお、1
Ω、128分の放電条件をもって200%部分放電とし
た。
Next, a method for comparative evaluation of gas generation rate and liquid leakage resistance will be described. The method for measuring the gas generation rate was 200% when the alkaline manganese battery shown in FIG. 1 was used, with a constant resistance of 1 Ω, which is the most severe condition for LR6, and a discharge time up to 0.9 V of 100%. After partial discharge up to 60 ° C., the amount of hydrogen gas generated by corrosion of the zinc alloy powder stored at 60 ° C. was measured and determined. 1
The discharge condition was set to 200% partial discharge under the condition of Ω for 128 minutes.

【0022】耐漏液性の比較評価の方法は、図1で示し
たアルカリマンガン電池100個を、上記ガス発生速度
の測定の場合と同様の200%まで部分放電させた後、
60℃で60日保存し、漏液した電池数を漏液指数
(%)として評価した。
The method of comparative evaluation of liquid leakage resistance is as follows: 100 alkaline manganese batteries shown in FIG. 1 are partially discharged to 200% as in the case of measuring the gas generation rate.
It was stored at 60 ° C. for 60 days, and the number of leaked batteries was evaluated as a leak index (%).

【0023】放電性能の比較評価の方法は、図1で示し
たアルカリマンガン電池を0℃の温度条件下で、3.9
Ωの定抵抗で0.75Vまで放電させたときの持続時間
により評価した。
The method of comparative evaluation of discharge performance was as follows. The alkaline manganese battery shown in FIG.
It was evaluated by the duration when discharged to 0.75 V with a constant resistance of Ω.

【0024】(実施例1)鉄の含有量を規制した亜鉛合
金粉末と有機系インヒビターとしての界面活性剤とを複
合した場合の鉄の含有量と界面活性剤の適正量について
説明する。
(Example 1) The iron content and the proper amount of the surfactant in the case where the zinc alloy powder in which the iron content is regulated and the surfactant as the organic inhibitor are compounded will be described.

【0025】表1にビスマスを0.05wt%含有した
亜鉛合金粉末と、ビスマス0.05wt%、カルシウム
0.005wt%含有した亜鉛合金粉末について、鉄の
含有量が1ppm以下と5ppmのそれぞれの亜鉛合金
粉末を用い、水酸化ガリウムの含有量を亜鉛合金粉末に
対し0.05wt%に固定し、界面活性剤を無添加のも
のと、亜鉛合金に対して0.0005〜0.02wt%
含有した電池の水素ガス発生速度を示す。表2に60℃
60日保存後の漏液試験結果を示す。
Regarding the zinc alloy powder containing 0.05 wt% of bismuth in Table 1 and the zinc alloy powder containing 0.05 wt% of bismuth and 0.005 wt% of calcium, zinc having iron contents of 1 ppm or less and 5 ppm, respectively. Using an alloy powder, the content of gallium hydroxide was fixed to 0.05 wt% with respect to the zinc alloy powder, and no surfactant was added, and 0.0005 to 0.02 wt% with respect to the zinc alloy.
The hydrogen gas generation rate of the contained battery is shown. 60 ° C in Table 2
The leakage test result after storage for 60 days is shown.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】なお、有機系インヒビターとして用いた界
面活性剤は化1に示す構造式
The surfactant used as the organic inhibitor is the structural formula shown in Chemical formula 1.

【0029】[0029]

【化1】 [Chemical 1]

【0030】であるものを用いたが、化2に示す構造式The structural formula shown in Chemical formula 2 was used.

【0031】[0031]

【化2】 [Chemical 2]

【0032】である界面活性剤であれば同様あるいはそ
れ以上の効果が得られる。また、上記の界面活性剤のう
ち、燐酸系のものは一級、二級燐酸塩の混合物でもかま
わない。
The same or higher effect can be obtained with the surface active agent. Of the above surfactants, the phosphoric acid type may be a mixture of primary and secondary phosphates.

【0033】表1より、いずれの亜鉛合金粉末において
も鉄の含有量が5ppmの場合、水素ガス発生速度が大
きく、界面活性剤を含有しても顕著な改善は認められな
い。しかし、鉄の含有量が1ppm以下の亜鉛合金粉末
においては界面活性剤が無添加の場合は水素ガス発生速
度は大きいが、界面活性剤を適正量含有させることによ
り低減できることがわかる。
From Table 1, in any of the zinc alloy powders, when the iron content was 5 ppm, the hydrogen gas generation rate was high, and no remarkable improvement was observed even if the surfactant was added. However, it can be seen that in the zinc alloy powder having an iron content of 1 ppm or less, the hydrogen gas generation rate is high when the surfactant is not added, but it can be reduced by adding an appropriate amount of the surfactant.

【0034】表2からも同様に、鉄の含有量が1ppm
以下の亜鉛合金粉末を用い、界面活性剤を適正量加える
ことにより60℃60日までの耐漏液性が大幅に改善で
きることがわかる。 各々の亜鉛合金粉末に対し界面活
性剤の含有量は0.0005〜0.02wt%の範囲で
良好である。
Similarly from Table 2, the iron content is 1 ppm.
It is understood that the leakage resistance up to 60 days at 60 ° C. can be significantly improved by using the following zinc alloy powder and adding an appropriate amount of a surfactant. The content of the surfactant is good in the range of 0.0005 to 0.02 wt% with respect to each zinc alloy powder.

【0035】なお、界面活性剤の含有量が0.02wt
%以上の範囲においても耐漏液性について良好な結果を
得ているが、0.02wt%を越えると、強負荷放電直
後の閉路電圧が著しく低下する現象が起こるため、界面
活性剤の含有量は0.0005〜0.02wt%の範囲
が好適である。
The content of the surfactant is 0.02 wt.
%, Good results have been obtained with respect to liquid leakage resistance, but if 0.02 wt% is exceeded, a phenomenon occurs in which the closed circuit voltage immediately after heavy load discharge remarkably decreases. The range of 0.0005 to 0.02 wt% is preferable.

【0036】(実施例2)亜鉛合金と界面活性剤とを複
合した場合の適正合金組成について説明する。
(Example 2) The proper alloy composition when a zinc alloy and a surfactant are compounded will be described.

【0037】表3、表4に水酸化ガリウムの含有量を亜
鉛合金粉末に対し0.05wt%、界面活性剤の含有量
を0.005wt%に固定し、鉄の含有量が1ppm以
下の亜鉛合金粉末について、ビスマスとカルシウムの含
有量を変化させて作成した電池の水素ガス発生速度と、
60℃60日保存後の漏液試験結果を示す。
In Tables 3 and 4, the content of gallium hydroxide was fixed to 0.05 wt% with respect to the zinc alloy powder, the content of surfactant was fixed to 0.005 wt%, and the zinc content of iron was 1 ppm or less. Regarding the alloy powder, the hydrogen gas generation rate of the battery created by changing the content of bismuth and calcium,
The results of a leakage test after storage at 60 ° C for 60 days are shown.

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【表4】 [Table 4]

【0040】表3より、ビスマスの含有量が0.02w
t%未満では水素ガス発生速度が大きいが、0.02〜
0.1wt%の範囲で良好である。なお、カルシウムの
含有量については少ないほうが望ましい。
From Table 3, the content of bismuth is 0.02w.
If it is less than t%, the hydrogen gas generation rate is high, but 0.02 to
It is good in the range of 0.1 wt%. It is desirable that the content of calcium is small.

【0041】表4からも同様に、ビスマスとカルシウム
を適正量含有することにより60℃60日まで漏液指数
が0%で耐漏液性は確保できることがわかる。 なお、
ビスマスの含有量は亜鉛に対し0.02〜0.1wt
%、カルシウムの含有量は亜鉛に対し0〜0.015w
t%の範囲で良好である。
Similarly from Table 4, it can be seen that by containing appropriate amounts of bismuth and calcium, the leakage index is 0% up to 60 days at 60 ° C. and the leakage resistance can be secured. In addition,
Bismuth content is 0.02 to 0.1 wt% with respect to zinc
%, Calcium content is 0 to 0.015w with respect to zinc
Good in the range of t%.

【0042】なお、ビスマスの含有量については、0.
1wt%以上の範囲についても良好な結果を得ている
が、表3に示すように0.1wt%で水素ガス発生速度
の減少が鈍化し、さらに含有量を増やしてもそれ以上の
効果が認められず、しかも0.1wt%を越えると強負
荷放電直後の閉路電圧が著しく低下する現象が起こるた
め、ビスマスの含有量は0.02〜0.1wt%の範囲
が好適である。
The content of bismuth is 0.
Good results were obtained in the range of 1 wt% or more, but as shown in Table 3, the decrease in the hydrogen gas generation rate slowed down at 0.1 wt%, and even if the content was increased, further effects were recognized. If not, and if it exceeds 0.1 wt%, the phenomenon that the closed circuit voltage immediately after the heavy load discharge remarkably decreases occurs. Therefore, the content of bismuth is preferably in the range of 0.02 to 0.1 wt%.

【0043】(実施例3)亜鉛合金と界面活性剤および
水酸化ガリウムとを複合した場合の無機系インヒビター
である水酸化ガリウムの適正含有量について説明する。
(Example 3) The proper content of gallium hydroxide which is an inorganic inhibitor when a zinc alloy, a surfactant and gallium hydroxide are compounded will be described.

【0044】表5に鉄の含有量が1ppm以下で、ビス
マスを0.05wt%含有した亜鉛合金粉末と、ビスマ
ス0.05wt%、カルシウム0.005wt%含有し
た亜鉛合金粉末を用い、界面活性剤の含有量を0.00
5wt%に固定し、水酸化ガリウムを無添加のものと、
亜鉛合金に対して0.005〜0.1wt%含有した電
池の放電性能を示す。なお、ビスマスを0.05wt%
含有し、水酸化ガリウムを0.05wt%含有した電池
の放電性能を100とした。
In Table 5, a zinc alloy powder having an iron content of 1 ppm or less and containing 0.05 wt% of bismuth and a zinc alloy powder containing 0.05 wt% of bismuth and 0.005 wt% of calcium were used. Content of 0.00
Fixed to 5 wt%, with no gallium hydroxide added,
The discharge performance of the battery containing 0.005 to 0.1 wt% with respect to the zinc alloy is shown. In addition, 0.05 wt% of bismuth
The discharge performance of the battery containing 0.05% by weight of gallium hydroxide was set to 100.

【0045】[0045]

【表5】 [Table 5]

【0046】表5より、水酸化ガリウムの含有量が0.
005wt%未満では放電性能が低下する。また、0.
1wt%以上の範囲については、さらに含有量を増やし
てもそれ以上の効果が認められず、水酸化ガリウムの含
有量は、0.005〜0.1wt%の範囲が好ましい。
From Table 5, the content of gallium hydroxide is 0.
If it is less than 005 wt%, the discharge performance will be deteriorated. Also, 0.
In the range of 1 wt% or more, no further effect is observed even if the content is further increased, and the content of gallium hydroxide is preferably in the range of 0.005 to 0.1 wt%.

【0047】[0047]

【発明の効果】以上のように、本発明によれば、亜鉛ア
ルカリ電池において、アルカリ電解液中に、鉄の含有量
を規制した適正な組成を有する亜鉛合金と、適切な構造
式を有する有機系インヒビターとしての界面活性剤を適
正量含有し、さらに水酸化ガリウムを適正量含有するこ
とで予想以上の複合効果が得られ、水銀、鉛、カドミウ
ム、インジウムを用いることなく亜鉛の腐食による電池
内圧の上昇を抑制して電池の耐漏液性を向上させること
ができ、貯蔵性、放電性能に優れた無公害の亜鉛アルカ
リ電池を提供することができる。
As described above, according to the present invention, in a zinc alkaline battery, in an alkaline electrolyte, a zinc alloy having a proper composition in which the content of iron is regulated and an organic compound having a proper structural formula are used. The compound effect more than expected can be obtained by containing an appropriate amount of surfactant as a system inhibitor and an appropriate amount of gallium hydroxide, and the internal pressure of the battery due to corrosion of zinc without using mercury, lead, cadmium, or indium. It is possible to provide a non-polluting zinc-alkaline battery having excellent storage properties and discharge performance, which can suppress the rise in the battery and improve the liquid leakage resistance of the battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例におけるアルカリマンガン電池
の断面図。
FIG. 1 is a cross-sectional view of an alkaline manganese battery in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 正極合剤 2 ゲル状負極 3 セパレータ 1 Positive Electrode Mixture 2 Gel Negative Electrode 3 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三浦 晃 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Miura 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水銀、鉛、カドミウムおよびインジウム
を添加しておらず、鉄の含有量が1ppm以下で、ビス
マスまたは、ビスマスとカルシウムを含有した亜鉛合金
を活物質として使用し、アルカリ電解液中に、ポリエチ
レンオキサイドを親水部に持ち、フッ化アルキル基を親
油部に持つ界面活性剤を含有させ、さらに水酸化ガリウ
ムを含有させることを特徴とする亜鉛アルカリ電池。
1. Mercury, lead, cadmium and indium are not added, iron content is 1 ppm or less, and bismuth or a zinc alloy containing bismuth and calcium is used as an active material in an alkaline electrolyte. A zinc-alkaline battery characterized by containing a surfactant having polyethylene oxide in a hydrophilic part and a fluoroalkyl group in a lipophilic part, and further containing gallium hydroxide.
【請求項2】 ビスマスを0.02〜0.1wt%、カ
ルシウムを0〜0.015wt%含有する亜鉛合金を負
極活物質として使用したことを特徴とする請求項1記載
の亜鉛アルカリ電池。
2. The zinc alkaline battery according to claim 1, wherein a zinc alloy containing 0.02 to 0.1 wt% of bismuth and 0 to 0.015 wt% of calcium is used as a negative electrode active material.
【請求項3】 前記界面活性剤を亜鉛合金に対して0.
0005〜0.02wt%含有させることを特徴とする
請求項1記載の亜鉛アルカリ電池。
3. The surface active agent for zinc alloy is less than 0.1%.
The zinc alkaline battery according to claim 1, wherein the zinc alkaline battery is contained in an amount of 0005 to 0.02 wt%.
【請求項4】 前記水酸化ガリウムを亜鉛合金に対して
0.005〜0.1wt%含有させることを特徴とする
請求項1記載の亜鉛アルカリ電池。
4. The zinc alkaline battery according to claim 1, wherein the gallium hydroxide is contained in 0.005 to 0.1 wt% with respect to the zinc alloy.
JP1130893A 1993-01-27 1993-01-27 Zinc alkaline battery Pending JPH06223840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1130893A JPH06223840A (en) 1993-01-27 1993-01-27 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1130893A JPH06223840A (en) 1993-01-27 1993-01-27 Zinc alkaline battery

Publications (1)

Publication Number Publication Date
JPH06223840A true JPH06223840A (en) 1994-08-12

Family

ID=11774386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1130893A Pending JPH06223840A (en) 1993-01-27 1993-01-27 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPH06223840A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10868340B2 (en) 2018-03-23 2020-12-15 Kabushiki Kaisha Toshiba Secondary battery, battery pack, vehicle, and stationary power supply

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10868340B2 (en) 2018-03-23 2020-12-15 Kabushiki Kaisha Toshiba Secondary battery, battery pack, vehicle, and stationary power supply

Similar Documents

Publication Publication Date Title
US5128222A (en) Zinc-alkaline batteries
JP3111634B2 (en) Manufacturing method of zinc alkaline battery
JP3018715B2 (en) Manufacturing method of zinc alkaline battery
JPS61203564A (en) Alkaline battery
JPH0421310B2 (en)
JPH06223840A (en) Zinc alkaline battery
JPH0371738B2 (en)
JPH06223839A (en) Zinc alkaline battery
JP3031037B2 (en) Manufacturing method of zinc alkaline battery
JP2754865B2 (en) Manufacturing method of zinc alkaline battery
JPH0622122B2 (en) Zinc alkaline battery
JP2754864B2 (en) Manufacturing method of zinc alkaline battery
JPS63254671A (en) Zinc alkaline cell
JP2935855B2 (en) Alkaline battery
JPH0418674B2 (en)
JPH0636764A (en) Zinc-alkaline battery
JPH05166508A (en) Zinc alkaline battery
JPS6180758A (en) Alkali battery
JPH0562682A (en) Alkaline battery
JPH07105948A (en) Mercury-free alkaline battery
JPS61153952A (en) Zinc alkaline storage battery
JPH0665032B2 (en) Zinc alkaline battery
JPS6240157A (en) Zinc alkaline battery
JPS61290652A (en) Zinc alkaline battery
JPH0418672B2 (en)